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Fig. 1. Comparisons of the predicted depth and 3D reconstruction results between
panoramic depth estimation (with RGB) and completion (with RGB and sparse depth).

Abstract. In this paper, we formulate a potentially valuable panoramic
depth completion (PDC) task as panoramic 3D cameras often produce
360◦ depth with missing data in complex scenes. Its goal is to recover
dense panoramic depths from raw sparse ones and panoramic RGB im-
ages. To deal with the PDC task, we train a deep network that takes
both depth and image as inputs for the dense panoramic depth recov-
ery. However, it needs to face a challenging optimization problem of the
network parameters due to its non-convex objective function. To address
this problem, we propose a simple yet effective approach termed M3PT:
multi-modal masked pre-training. Specifically, during pre-training, we si-
multaneously cover up patches of the panoramic RGB image and sparse
depth by shared random mask, then reconstruct the sparse depth in the
masked regions. To our best knowledge, it is the first time that we show
the effectiveness of masked pre-training in a multi-modal vision task, in-
stead of the single-modal task resolved by masked autoencoders (MAE).
Different from MAE where fine-tuning completely discards the decoder
part of pre-training, there is no architectural difference between the pre-
training and fine-tuning stages in our M3PT as they only differ in the
prediction density, which potentially makes the transfer learning more
convenient and effective. Extensive experiments verify the effectiveness
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of M3PT on three panoramic datasets. Notably, we improve the state-
of-the-art baselines by averagely 29.2% in RMSE, 51.7% in MRE, 49.7%
in MAE, and 37.5% in RMSElog on three benchmark datasets.

Keywords: 360◦ depth completion, multi-modal masked pre-training,
network optimization, shared random mask, 3D reconstruction

1 Introduction

Panoramic depth perception (see Table 1) has received increasing attention in
both academic and industrial communities due to its crucial role in a wide variety
of downstream applications, such as virtual reality [1], scene understanding [46],
and autonomous navigation [17]. With the development of hardware devices,
panoramic 3D cameras become easier and cheaper to capture both RGB and
depth (RGB-D) data with 360◦ field of view (FoV). Depending on the captured
RGB images, all recent perception technologies [37,46,23,31,63,67,3,42,41], to the
best of our knowledge, concentrate on panoramic depth estimation (PDE) that
predicts dense depth from a single 360◦ RGB image. In this paper, we focus on
exploring the 360◦ RGB-D pairs for the panorama perception with an effective
pre-training strategy. We show our motivations as follows:

Two Motivations for Panoramic Depth Completion (PDC). One is the
360◦ depth maps with missing areas. During the collection process, the popular
panoramic 3D cameras (e.g., Matterport Pro21 and FARO Focus2) still produce
360◦ depth with missing areas when facing bright, glossy, thin or far surfaces,
especially indoor rooms in Figure 2. These depth maps will result in a poor
panorama perception. To overcome this problem, we consider a new panoramic
depth completion task, completing the depth channel of a single 360◦ RGB-D
pair captured from a panoramic 3D camera. Another is an experimental inves-
tigation that in contrast with PDE, PDC is much fitter for the panoramic depth
perception. For simplicity and fairness, we directly employ the same network
architectures (e.g., UniFuse [23]) to estimate or complete the depth map. Fig-
ure 7 reports that the PDC has much lower root mean square error than PDE.
Furthermore, Figure 1 shows that the PDC can recover more precise 360◦ depth
values, leading to better 3D reconstruction. This observation reveals that PDC
is more important than PDE for 3D scene understanding.

One Motivation for Pre-Training. When using deep networks to per-
ceive the depth information, there is a challenging problem: how to optimize the
parameters of the deep networks? It is well-known that the objective function is
highly non-convex, resulting in many distinct local minima in the network pa-
rameter space. Although the completion can lead to better network parameters
and higher accuracy on the depth perception, it is still not to satisfy practical
needs of the 3D reconstruction. Here, we are inspired by the greedy layer-wise
pre-training technology [14,30] that stacks two-layer unsupervised autoencoders

1 https://matterport.com/cameras/pro2-3D-camera
2 https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners
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Fig. 2. Panoramic depth maps with large missing areas shown in darkest blue color.

to initialize the networks to a point in parameter space, and then fine-tunes
them in a supervised setting. This technology drives the optimization process
more effective, achieving a ‘good’ local minimum. Recently, the single-modal
masked autoencoders [19,58] are also applied into object detection and seman-
tic segmentation, achieving amazing improvements on their benchmarks. These
interpretations and improvements motivate us to explore a new pre-training
technology for the multi-modal panoramic depth completion.

In this paper, we propose a Multi-Modal Masked Pre-Training (M3PT) tech-
nology to directly initialize all parameters of deep completion networks. Specifi-
cally, the key idea of M3PT is to employ a shared random mask to simultaneously
corrupt the RGB image and sparse depth, and then use the invisible pixels of
the sparse depth as supervised signal to reconstruct the original sparse depth.
After this pre-training, no-masked RGB-D pairs are fed into the pre-trained
network supervised by dense ground-truth depths. Different from the layer-wise
pre-training [14], M3PT is to pre-train all layers of the deep network. Compared
to MAE [19], M3PT has no architectural difference between the pre-training
and fine-tuning stages, where they differ in only the prediction density of tar-
get depth. This characteristic probably makes it convenient and effective for the
transfer learning, including but not limited to the multi-modal depth comple-
tion, denoising, and super-resolution guided by RGB images. In summary, our
contributions are as follows:

– We introduce a new panoramic depth completion (PDC) task that aims to
complete the depth channel of a single 360◦ RGB-D pair captured from a
panoramic 3D camera. To the best of our knowledge, we are the first to study
the PDC task to facilitate 360◦ depth perception.

– We propose the multi-modal masked pre-training (M3PT) for the multi-modal
vision task. Different from the layer-wise pre-training [14] and MAE [19],
M3PT is to pre-train all layers of the deep network, and does not change the
network architecture in the pre-training and fine-tuning stages.

– On three benchmarks, i.e., Matterport3D [1], Stanford2D3D [2], and 3D60
[68], extensive experiments demonstrate that (i) PDC achieves higher accuracy
of panoramic depth perception than PDE, and (ii) our M3PT technology
achieves the state-of-the-art performance.

2 Related Work

Since this paper aims to learn the new task of monocular panoramic depth
completion, we report three related but different topics whose detailed differences
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Task Depth Estimation Depth Completion Panoramic Depth Estimation Panoramic Depth Completion

New task No No No Yes

Data FoV <180◦ <180◦ 360◦ 360◦

Data modal RGB RGB-D RGB RGB-D

Camera perspective perspective panoramic panoramic

Target depth depth depth & 3D reconstruction depth & 3D reconstruction

Table 1. Comparisons of different depth related tasks. FoV denotes the field of vision.

are listed in Table 1. First, we review depth completion approaches that input
single RGB-D pair with limited FoV. Second, we elaborate on panoramic depth
estimation works which predict 360◦ depths from panoramic color images. At
last, we introduce the masked image encoding technology.

2.1 Monocular Depth Completion with Limited FoV

Existing monocular depth completion methods primarily focus on sparse depths
and color images with a narrow FoV less than 180◦. Up to now, based on the
commonly used KITTI [50] and NYUv2 [43] datasets, a great deal of methods
have been proposed to tackle the task, which can be broadly divided into depth-
only [50,10,35,13] and multi-sensor fusion based [9,8,40,61,18,62,32] categories.
For example, the literatures [22,51] take sparse depths as the only input to re-
cover dense ones without using color images. Further, Lu et al. [34] use color
images as auxiliary supervision during training and is discarded when testing.
Recently, as technology quickly develops, multi-modal information can be cap-
tured by sensors, which is beneficial for depth completion. For example, S2D [35]
directly concatenate RGB-D pairs and feed them into networks, contributing to
promising improvement. Li et al. [29] propose multi-scale guided cascade hour-
glass network to handle diverse patterns. PENet [21] proposes to refine depth
recovery at three stages. FCFRNet [33] designs channel-shuffle technology to
enhance RGB-D feature fusion. GuideNet [47] proposes dynamic convolution
to adaptively generate convolution kernels according to color image contents.
ACMNet [64] conducts graph propagation to extract multi-modal representa-
tions. Furthermore, DeepLiDAR [38] and PwP [59] jointly utilize color images,
surface normals, and sparse depths to recover dense depth. FusionNet [51] and
Zhu et al. [66] present to estimate uncertainty for robust recovery. NLSPN [36]
and DSPN [60] introduce recurrent non-local and dynamic spatial propagation
networks, which significantly improve depth accuracy nearby object boundaries.

In addition, several unsupervised depth completion works [56,25,55,54,49]
also contribute to the development of this domain. For example, KBNet [57]
proposes the fantastic calibrated backprojection network which achieves very
superior performances. However, as mentioned above these methods are designed
for dense depth recovery from FoV-limited sparse depth, whilst we aim to learn
360◦ depth completion and 3D reconstruction from panoramic RGB-D input.
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2.2 Monocular Depth Estimation with Full FoV

Given panoramic color images, current monocular panoramic depth estimation
works mainly devote into predicting 360◦ depths and 3D reconstructions. This
topic springs up as soon as the large indoor panoramic datasets Matterport3D
[5] and Stanford2D3D [2] are constructed in 2017. For this domain in the last five
years, supervised methods play a primary role while unsupervised approaches
develop slowly. Next we will introduce each of them.

Supervised category: In 2018, OmniDepth [69] synthesizes 360◦ data with
high-quality ground-truth depth annotations by rendering existing datasets.
DistConv [48] proposes distortion-aware convolutional filters to address the in-
herent distortion of equirectangular projection (EPR) panoramic data. In 2019,
Eder et al. [12] utilize surface normal and plane boundaries to train a plane-
aware network to benefit depth estimation. SpherePHD [27,28] explores a new
data representation via spherical polyhedron, which resolves the shape distortion
of spherical panoramas. In 2020, Jin et al. [24] and Feng et al. [15] use geometric
priors to help with depth estimation. Wang et al. [53] adopt a two-branch net-
work leveraging EPR and cubemap projections, which are the two most common
data forms. In 2021, PanoDepth [31] develops a two-stage framework contain-
ing view synthesis and stereo matching. UniFuse [23] further improves [53] with
better accuracy and fewer parameters. SliceNet [37] transforms the EPR data
into slice-based representation, which can tackle the inherent distortion. Sun
et al. [46,45] focus on horizontal and vertical contents of a scene for 3D re-
construction. 360MonoDepth [39] projects the high-resolution spherical image
into tangent image for efficient training. In 2022, SegFuse [16] utilizes geomet-
ric and temporal consistency to constraint depth recovery. GLPanoDepth [3]
employs vision transformer and CNNs to encode cubemap and spherical images
respectively, obtaining global-to-local representation of panoramas. ACDNet [67]
designs adaptively combined dilated convolution to extend receptive field in the
EPR and achieves state-of-the-art performances.

Unsupervised category: In 2019, Nikolaos et al. [68] explore spherical view
synthesis for monocular 360◦ depth estimation in a self-supervised manner. In
2021, OlaNet [26] adopts the distortion-aware view synthesis, atrous spatial pyra-
mid pooling, and L1-norm regularized smooth term to effectively and robustly
deal with self-supervised panoramic depth estimation. Zhou et al. [65] combine
supervised and unsupervised learning methods to facilitate network training. In
2022, Yun et al. [63] propose a self-supervised method based on gravity-aligned
videos. Similarly, they also utilize the complementarity of supervised and self-
supervised learning to improve their models’ robustness.

Different from them that only utilize 360◦ color image, our goal is to recover
dense depth and 3D reconstruction from the aligned 360◦ color image and sparse
depth, which could help improve the accuracy with large margins.

2.3 Masked Image Encoding for Vision Tasks

Recently, several Transformer [52] based approaches [7,11,4,58,19] have proved
it effective to learn representations from masked images. Specifically, iGPT [7]
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Fig. 3. A flowchart of data synthesis (left) and an example of the blurring artifact issue
(right) that has negative effects on data processing. Best color of view.

trains a sequence Transformer to auto-regressively predict unknown pixels. ViT
[11] conducts masked patch prediction to learn mean color. BEiT [4] presents to
predict tokenization. SimMIM [58] and MAE [19] propose to recover raw pixels
of randomly masked patches by a lightweight one-layer head and an asymmetric
decoder, respectively. In contrast to them, our M3PT is technically designed for
multi-modal vision tasks instead of the single-modal image-based recognition.

3 Method

In this section, we first introduce how to synthesize sparse depth data and then
elaborate on the multi-modal masked pre-training strategy.

3.1 Data Synthesis

All existing panoramic datasets do not provide sparse depth for 360◦ depth
completion task. However, the sparse depth data can be possibly captured by
some actual products such as Matterport Pro2 and FARO Focus 3D cameras.
Limited by the lack of these hardware devices, in this paper, we imitate the
principle of laser scanning to produce 360◦ sparse depth sampled from the dense
ground-truth depth annotation, aiming at synthesizing the sparse depth data
that matches the actual products as much as possible. The sampling principle is
similar to that of KITTI benchmark [50] which provides depth with about 7%
density captured by 64-line LiDAR scanning.

As illustrated in the left of Figure 3, the ground-truth depth GT is stored in
spherical view by equirectangular projection, which brings inherent distortion.
Hence, it’s inaccurate to produce sparse depth directly based on GT in scanning
mode. As an alternative, we first project the equirectangular GT into cubical
map C by e2c function, ignoring the inherent distortion. Next, we generate cube
sparse depth Cs via imitating the laser scanning, e.g., taking one pixel for every
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Fig. 4. Our M3PT pipeline. During pre-training, the input color image I and sparse
depth D are masked out by the shared random mask M , obtaining Ī and D̄ respec-
tively. Then Ī and D̄ are fed into a network to predict the depth reconstruction R,
supervised by the signal S which is the complementary set of D̄ in D. After pre-
training, with I and D as input, the network with learned initial weights is applied to
recover target depths supervised by dense ground-truth depth annotations.

eight pixels horizontally and one pixel for every two pixels vertically. Then Cs

is binarized to obtain cube binary map Bc. Bc is thus converted into Be by c2e
function. Finally, we acquire the desired sparse depth D multiply Be by GT .
The process can be simply defined as:

D = Be ∗GT , (1)

where Be = f (Bc|Cs, C,GT ), f (·) refers to the combination of e2c, scan,
binarize, and c2e. The details of e2c and c2e functions refer to this project3.

Note that, it is theoretically possible to use c2e to directly project the cubical
Cs into the equirectangular D. However, this would lead to blurring artifacts in
the polar region, as evidenced in the right part of Figure 3. Instead, we choose
to project a binary map and then use it to accurately sample valid points from
GT . In this way, our method can reduce error pixels as much as possible.

3.2 Multi-Modal Masked Pre-Training

As shown in Figure 4, our multi-modal masked pre-training (M3PT) for 360◦

depth completion is a simple strategy that reconstructs the sparse depth sig-
nal given partial observations of the RGB-D pair under shared random mask.
Here we introduce the key components of M3PT and explicitly analyze the dif-
ferences between recent visual masked pre-training approaches (e.g., MAE [19],
SimMIM [58]) and M3PT.

Shared random mask. Different from MAE where masking is performed
on single RGB data, we propose to mask both RGB image and sparse depth
with the shared random mask to produce incomplete RGB-D pair as input for
pre-training. In fact, there are other options of masking strategies for PDC task,
including (i) only mask the RGB image, (ii) only mask the sparse depth, and

3 https://github.com/sunset1995/py360convert
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(iii) mask both RGB image and sparse depth but with different random masks.
Unfortunately, all of these strategies have a risk of leaking information from
another modality, preventing the pre-training task from learning robust seman-
tics based on the multi-modal context. We will show the comparisons between
different masking strategies later in the experimental part.

Backbone. Our method is flexible and can be applied to any existing ap-
proach which receives the RGB-D pair as input. In this paper, we mainly choose
GuideNet [47] as backbone for the majority of our experiments. In addition,
we also test the effectiveness of M3PT using UniFuse [23] and HoHoNet [46].
Note that there is no need to design extra modules (e.g., a decoder) for the
architectures of these existing approaches, even when they have an additional
pre-training stage in M3PT. It is because that the regression targets are physi-
cally similar between pre-training and fine-tuning stages. See more details in the
‘Reconstruction target’ part as follows.

Reconstruction target. The reconstruction target of M3PT is the sparse
depth on the masked regions. It is quite different from the popular masked pre-
training methods [19,58] in vision where the missing image pixels are predicted.
Compared to the vision pre-training counterparts [19,58], this design has two
obvious advantages: (i) it closes the gap between pre-training and fine-tuning
tasks, as they differ only in the prediction density; (ii) it leads to no architectural
modification between pre-training and fine-tuning stages, which can potentially
make the transfer learning more smooth and effective.

4 Experiments

Here, we first report datasets and metrics. Next, extensive ablation studies are
conducted to verify the effectiveness of the proposed M3PT. Then, we compare
against other state-of-the-art (SoTA) works on three datasets. At last, we vali-
date the generalization capability of M3PT on KITTI benchmark [50].

4.1 Datasets

We conduct our experiments on three commonly used benchmark datasets of
real world, i.e., Matterport3D4 [1], Stanford2D3D5 [2], and 3D606 [68]. Mat-
terport3D is a scanned dataset collected by Matterport’s Pro 3D camera. The
latest Matterport3D (512 × 256) consists of 7,907 panoramic RGB-D pairs, of
which 5636 for training, 744 for validating, and 1527 for testing. Stanford2D3D
is composed of 1,413 panoramic color images and corresponding depth maps,
whose training and testing splits contain 1,040 and 373 RGB-D pairs, respec-
tively. We resize them to 512× 256. 3D60 is initially made up of Matterport3D,
Stanford2D3D, and SunCG [44]. But now it skips the entire SunCG dataset con-
sidering legal matters. As a result, the latest 3D60 (512× 256) consists of 6,669
RGB-D pairs for training, 906 for validating, and 1831 for testing, 9,406 in total.

4 https://vcl3d.github.io/Pano3D/download/
5 http://buildingparser.stanford.edu/dataset.html
6 https://vcl3d.github.io/3D60/
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Masked Data Shared Mask Mask Ratio
Mask Size

4 8 16 32

RGB -

0.75

195.7 198.1 194.0 196.2

D - 190.7 177.6 186.1 203.3

RGB-D No 183.4 178.5 182.2 193.0

RGB-D Yes 166.8 168.9 167.6 169.9

Table 2. Ablation on different masked input data on Stanford2D3D dataset, where
the metric is RMSE (mm). The error of baseline without pre-training is 196.7.

Mask Size 4 8 16 32

Mask Ratio 0.45 0.6 0.75 0.45 0.6 0.75 0.15 0.3 0.45 0.6 0.75 0.9 0.45 0.6 0.75

RMSE 172.4 170.3 168.8 171.2 169.3 168.9 173.5 169.4 168.9 169.7 167.6 169.3 173.7 172.4 169.9

Table 3. Ablation on different mask sizes and mask ratios on Stanford2D3D dataset.

4.2 Metrics

Following previous works [46,37,63,67], we use five common and standard metrics
to evaluate our methods, including MRE, MAE, RMSE, RMSElog, and δi (i =
1.25, 1.252, 1.253). Please refer to our appendix for more details.

4.3 Ablation Studies

Settings: We employ GuideNet [47] as the default backbone. The model is pre-
trained for 300 epochs and fine-tuned for 100 epochs on every dataset. The mask
is randomly generated following [58,19] with different sizes and ratios.
(1) Masking strategy.

(i) We explore how to corrupt RGB-D data during pre-training in Table 2.
We can find that shielding only RGB, only Depth, or RGB-D without shared
mask, all of which lead to worse performances because these operations destroy
the model’s learning of unknown areas. In contrast, the model achieves the best
results when employing the proposed shared random mask, indicating that cor-
rupting the same areas can contribute to improvement for multi-modal vision
tasks. The following experiments are based on the random shared mask.

(ii) We study the effect of different mask sizes and ratios on the model’s
representation learning in Table 3. First, the model performs better when the
mask size is changed from 4 to 16. We hold the opinion that the larger mask
urges the model to learn long-range dependency between invisible and visible
pixels. However, when setting the mask size to 32, the model has a degraded
performance as it is too large to establish remote dependency. Second, when
the mask size is set to 16, the model tends to perform better from 15% to 90%
ratios, which could enforce the model to predict more unseen areas and acquires
representation that is closer to the real domain.
(2) Number of pre-training epochs and data amounts.

(i) The left of Figure 5 demonstrates the influence of different pre-training
epochs on fine-tuning, and the right shows the loss of pre-training. We can find
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Fig. 5. Ablation on different pre-training epochs with mask size 16 and mask ratio 0.75
on Stanford2D3D dataset. The loss value is magnified by 104 for clear visualization.

Dataset
Data w/o Pret. w/o Pret. Pret. on Self Data Pret. on All Data

amount (100 epochs) (400 epochs) (300+100 epochs) (300+100 epochs)

Matterport3D 5.6k 168.1 168.5 146.2 138.9

Stanford2D3D 1k 196.7 196.3 167.6 149.0

3D60 6.7k 159.9 160.2 142.3 127.2

Table 4. Ablation on different data amounts used during pre-training (Pret.). The
mask size and ratio are 16 and 0.75, respectively. “300+100 epochs” denotes 300 pre-
training epochs and 100 fine-tuning epochs.

that the model’s error gradually decreases with the increase of pre-training
epochs. This is because the model can learn better representation with more
epochs, which is also reflected in the lower loss in the right of Figure 5. For the
trade-off between speed and accuracy, unless otherwise stated, we pre-train the
model for 300 epochs by default.

(ii) Table 4 explores the effect of different data amounts for pre-training on
fine-tuning. For a fair comparison, we report the results of the 400th epoch with-
out pre-training, whose cost roughly aligns with the setting of pre-training for 300
epochs and fine-tuning for 100 epochs. It can be found that without pre-training,
the performance of 400 epochs has no improvements over 100 epochs. However,
when conducting M3PT just on single dataset, it leads to 12.9% improvements
averagely on three datasets, demonstrating the significant effectiveness of M3PT.
Further, when pre-training on all the data of these three datasets, the perfor-
mances are always superior to that only using a single dataset. Therefore, it
is concluded that more data involved in M3PT can consistently prevents the
overfitting risks during fine-tuning.

4.4 Comparisons with SoTA Methods

In this subsection, we compare with recent SoTA works, including UniFuse [23],
HoHoNet [46], PENet [21], and GuideNet [47]. HoHo-R and HoHo-H severally
refer to using ResNet [20] and HardNet [6] as its backbone. Table 5 and Figure
6 demonstrate the quantitative and qualitative results, respectively. Based on



M3PT for Monocular Panoramic Depth Completion 11

Dataset Method
Error Metric ↓ Accuracy Metric ↑

MRE MAE RMSE RMSElog δ1.25 δ1.252 δ1.253

M
a
tt

er
p

o
rt

3
D

UniFuse [23] 0.0475 95.2 229.1 0.0381 0.9710 0.9924 0.9970

HoHo-R [46] 0.0355 75.0 199.2 0.0311 0.9806 0.9945 0.9977

HoHo-H [46] 0.0406 85.7 215.5 0.0337 0.9772 0.9938 0.9975

PENet [21] 0.0493 91.5 248.0 0.0350 0.9728 0.9935 0.9970

GuideNet [47] 0.0438 87.2 192.9 0.0327 0.9806 0.9948 0.9981

M3PT 0.0164 36.2 138.9 0.0193 0.9927 0.9976 0.9990

S
ta

n
fo

rd
2
D

3
D

UniFuse [23] 0.0489 93.4 216.2 0.0392 0.9661 0.9919 0.9973

HoHo-R [46] 0.0677 123.9 242.5 0.0478 0.9463 0.9862 0.9959

HoHo-H [46] 0.0695 127.9 254.8 0.0497 0.9434 0.9852 0.9957

PENet [21] 0.0530 95.9 200.6 0.0404 0.9694 0.9934 0.9981

GuideNet [21] 0.0506 92.1 196.7 0.0380 0.9689 0.9926 0.9978

M3PT 0.0274 52.9 149.0 0.0263 0.9859 0.9963 0.9988

3
D

6
0

UniFuse [23] 0.0446 94.1 215.6 0.0342 0.9749 0.9947 0.9984

HoHo-R [46] 0.0338 75.6 196.9 0.0294 0.9818 0.9954 0.9983

HoHo-H [46] 0.0376 81.9 205.8 0.0317 0.9788 0.9947 0.9981

PENet [21] 0.0680 120.3 233.9 0.0321 0.9743 0.9926 0.9980

GuideNet [21] 0.0689 144.2 239.3 0.0418 0.9711 0.9954 0.9987

M3PT 0.0144 34.1 127.2 0.0165 0.9944 0.9985 0.9995

Table 5. Quantitative comparisons of panoramic depth completion on three datasets.
The best and the second best results are highlighted in bold and underline, respectively.

different baselines, Figure 7 further shows the influence of additional sparse
depth information and proposed M3PT on the recovery of panoramic depth.

(1) Quantitative results.

Overall, as illustrated in Table 5, the proposed M3PT is consistently superior
to other methods in all metrics on three datasets.

(i)OnMatterport3D dataset, M3PT greatly exceeds the second-best HoHo-R
by 53.8%, 51.7%, and 37.9% in MRE, MAE, and RMSElog, severally. Compared
with the suboptimal GuideNet in RMSE, the error is reduced from 192.9mm to
138.9mm, improving the performance nearly by 28.0%. Besides, M3PT achieves
the highest accuracies in δi with different thresholds, outperforming the second-
best method by 1.21, 0.29, and 0.09 percent point in δ1, δ2, and δ3, respectively.

(ii) On Stanford2D3D dataset, M3PT is superior to the suboptimal Uni-
Fuse with 44.0% improvement in MRE. Also, the MAE, RMSE, RMSElog is
severally reduced by 42.6%, 24.3%, and 30.8% when comparing M3PT with the
second-best GuideNet. In addition, the accuracy metric verifies the effectiveness
of M3PT again, which plays a prominent role in all approaches.

(iii) On 3D60 dataset, M3PT surpasses the second-best HoHo-R with large
margins, improving it by 57.4% in MRE, 54.9% in MAE, 35.4% in RMSE, and
43.9% in RMSElog, severally. Furthermore, M3PT is more accurate than other



12 Yan et al.

UniFuse GuideNet Our M3PT GTColor image

M
at

te
rp

or
t3

D
St

an
fo

rd
2D

3D
3D

60

Fig. 6. Qualitative comparison of different methods, including UniFuse [23], GuideNet
[47], and our M3PT. More visualizations can be found in our supplementary material.

approaches and prevail over the suboptimal methods with 1.26, 0.31, and 0.08
percent point in δ1, δ2, and δ3, respectively.

(iv) Last but not least, apart from GuideNet that has been reported in Table
5, we further employ UniFuse, HoHo-R, and HoHo-H as baselines to see the
influence of the additional sparse depth data and proposed mask strategy on the
recovery of panoramic depth. As shown in Figure 7, gray bar: only using RGB,
orange bar: only using sparse depth, light orange bar: using both RGB and its
sparse depth, and blue bar: using RGB and sparse depth with the proposed mask
strategy M3PT. We can find that the error of only using sparse depth is much
lower than that of only using RGB. Also, adding sparse depth data can benefit
models with very large margins. Specifically, comparing light orange bar with
gray bar, the errors of UniFuse, HoHo-R, and HoHo-H are severally reduced by
55.8%, 41.5%, and 50.5% on average on three datasets. What’s more, adopting
M3PT contributes to their significant improvements of 27.0%, 25.4%, and 26.3%
on average compared with the orange bars on three datasets. These facts indicate
sparse depth information has great reference value for depth recovery, and also
prove that the panoramic depth completion is a potentially valuable task.
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Fig. 8. Visual results of UniFuse [23] with different-modal input data and M3PT.

(2) Qualitative results.

(i) As shown in Figure 6, our M3PT can recover more detailed objects and
precise depth with reasonable visual effect. For example, for one thing, as il-
lustrated in the first, fourth, and seventh rows, M3PT succeeds in predicting
clearer edges of doors, tables, chairs, windows, etc. For another thing, as shown
in the fifth and sixth rows, although the color images of Stanford2D3D do not
have pixels at both the top and bottom, M3PT can still predict more accurate
depth values in the invisible areas. It strongly demonstrates the effectiveness
and generalization of the proposed masked pre-training strategy via corrupting
RGB-D data. In addition, M3PT is also good at distinguishing from background
and foreground, e.g., the furniture can be clearly discriminated from the wall.

(ii) As illustrated in Figure 8, based on only color images (PDE), the depth
predicted by UniFuse is extremely blurry that the corresponding 3D reconstruc-
tion introduces plenty of wrong location information, which causes negative de-
formation, especially nearby walls. By contrast, adding sparse depth data (PDC)
vastly improves the visual effect of both depth recovery and 3D reconstruction.
Furthermore, when deploying the proposed M3PT with RGB-D data as input,
both objects’ structures and details tend to be more clear and abundant.



14 Yan et al.

Method RMSE MAE iRMSE iMAE

S2D [35] 858.02 311.47 3.07 1.67

+M3PT 844.16 267.64 3.01 1.51

GuideNet [47] 777.78 221.59 2.39 1.00

+M3PT 761.57 217.68 2.26 1.00

ACMNet [64] 789.72 216.65 2.32 0.96

+M3PT 774.63 209.31 2.25 0.93

Table 6. Performances of M3PT with different baselines on KITTI validation split.

4.5 Generalization Capability

In this subsection, we further verify the generalization capability of M3PT on
KITTI depth completion benchmark, whose sparse depth data is obtained by a
64-line LiDAR, and the RGB-D pairs have limited field of vision. As reported
in Table 6, M3PT consistently improves the performances of S2D, GuideNet,
and ACMNet. For example, M3PT reduces RMSE/MAE by 15.05mm/18.36mm
averagely, indicating that our M3PT possesses robust generalization capability.

5 Conclusion

In this paper, we introduced a potentially valuable task, i.e., panoramic depth
completion, to help with dense panoramic depth recovery and 3D reconstruction
from monocular 360◦ RGB-D data. Furthermore, we proposed the multi-modal
masked pre-training (M3PT) framework to handle this task. It was the first
time we showed that the masked pre-training could be very effective in model-
ing multi-modal tasks for vision, instead of the single-modal image recognition
which was popularized by the masked autoencoders (MAE). As a result, compre-
hensive evaluations demonstrated the superiority of M3PT on three benchmark
datasets. At last, we hope our exploration in this paper can facilitate future
studies concerned with multi-modal vision tasks. In the future, we are going to
extend M3PT to related topics such as depth denoising and super-resolution.
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