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Abstract. Birds-eye-view (BEV) semantic segmentation is critical for
autonomous driving for its powerful spatial representation ability. It is
challenging to estimate the BEV semantic maps from monocular im-
ages due to the spatial gap, since it is implicitly required to realize both
the perspective-to-BEV transformation and segmentation. We present a
novel two-stage Geometry PrIor-based Transformation framework named
GitNet, consisting of (i) the geometry-guided pre-alignment and (ii) ray-
based transformer. In the first stage, we decouple the BEV segmentation
into the perspective image segmentation and geometric prior-based map-
ping, with explicit supervision by projecting the BEV semantic labels
onto the image plane to learn visibility-aware features and learnable ge-
ometry to translate into BEV space. Second, the pre-aligned coarse BEV
features are further deformed by ray-based transformers to take visibility
knowledge into account. GitNet achieves the leading performance on the
challenging nuScenes and Argoverse Datasets.
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1 Introduction

The birds-eye-view (BEV) semantic map is a compact representation of the sur-
rounding environment for autonomous driving, which provides both the layout
of road elements and the occupancy of objects. Such representations are useful
for downstream tasks such as path planning, collision avoidance. In this work,
we focus on BEV map estimation from monocular images.

The BEV semantic segmentation is particularly challenging for two reasons.
First, the BEV segmentation implicitly involves two coupled tasks: mapping
from perspective view to the birds-eye-view, and pixel-wise classification. Most
existing methods [13, 7, 9, 10, 8, 16] learn to convert the image features from the
perspective view to the BEV and then perform segmentation. The training pro-
cess is supervised by the loss function defined in the BEV space alone, and
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thus the learning procedure of mapping and pixel-wise classification is coupled
in these approaches. How to explicitly incorporate the geometry prior knowl-
edge to decouple the feature for mapping and classification remains unexplored.
Secondly, a fundamental difference between monocular image segmentation and
BEV segmentation lies in that the latter requires inferring the labels of occluded
objects behind foreground objects, which places a tremendous difficulty for the
network to learn effective feature representation to differentiate the invisible from
the visible. In the previous IPM-based methods [18, 22, 12], the features of fore-
ground visible objects occupy the invisible regions in the BEV space. Since the
visibility of pixels is not encoded in the features, it is tough for a convolutional
neural network to recover the missing information in the invisible regions.

To address the aforementioned concerns, we derive a novel two-stage trans-
formation from the perspective space to the BEV space. In the first stage, we
leverage the proposed Geometry-guided Pre-Alignment (GPA) to obtain coarse
pre-aligned BEV features. In the GPA, we decouple the BEV segmentation into
the perspective image segmentation and geometric prior-based mapping, with ex-
plicit supervision by projecting the BEV semantic labels onto the image plane.
As the projected labels reflect all ground regions including visible and invisible
ones in the perspective view, while the perspective image appearance features
only reflect the visible regions, we obtain the visibility-aware image features by
fusing the information of projected labels and appearance features. We warp the
visibility-aware features into BEV space via the learnable geometry.

In the second stage, the pre-aligned BEV features are further enhanced by
the proposed Ray-based Transformer (RT), which adopts the efficient ray-based
attention mechanism that we compute the attention map in a single column so
as to keep the high-resolution of feature maps. The pre-aligned BEV features
conveying appearance and visibility information, along with BEV positional en-
coding, work as Queries, and the augmented perspective features serve as Keys
and Values. Cooperating with the projected labels, the novel Depth-Aware Dice
loss is proposed to alleviate the dominant effect by closer instances in perspec-
tive view. Besides, since those pixels that have easily-classified appearances or
follow a simple perspective-to-BEV mapping, such as most road regions, com-
prise the majority of the loss, we present a Self-Weighted Dice loss to balance
the easy-hard samples among categories. To sum up, the main contributions of
our work are as follows:

– We propose a novel two-stage transformation from perspective view to birds-
eye-view. In the first stage, we decouple the BEV segmentation into the
perspective image segmentation and geometric prior-based mapping, and
provide visibility-aware and pre-aligned BEV features. In the second stage,
the warped features are deformed by aggregating appearance information.

– We introduce a Depth-aware Dice loss that removes the perspective effect
on the perspective image segmentation and a Self-weighted Dice loss to re-
weight the easy-hard samples.

– Our framework presents new state-of-the-art performance on two large-scale
datasets including nuScenes and Argoverse.
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2 Related work

Most BEV segmentation works follow the similar pipeline to first extract features
from the monocular image, and then convert the features from the perspective
view (PV) to the birds-eye-view (BEV). Based on different PV-BEV transfor-
mation strategies, the methods can be grouped into four categories as follows:

IPM-based Methods: An early work [18] performs semantic segmentation in
the image plane and then transforms the semantic results into the BEV space via
a homography. This approach works well for predicting flat road layout but fails
for objects such as cars that stand above the ground plane. [22] alleviates this
problem by training a generative adversarial network to refine the predictions
from the IPM. More recently [12] transforms the image features into BEV, which
is then fed into a deep segmentation network for further refinement.

Depth-based methods: The depth-based methods are one of the main streams
in this field. [5] adopts RGB-D images to learn an implicit representation for 3D
localization. [17] leverages an in-painting CNN to infer the semantic labels and
depths of the scene to obtain the BEV map by projecting the produced semantic
point cloud onto the ground plane. EPOSH [4] first performs monocular depth
estimation and then exploits depth maps to transform 2D image features to
the BEV space. [10, 11, 6, 16] learn a depth distribution within pixels to lift 2D
images to 3D point clouds, and then project the point clouds onto BEV space.

Bottleneck-based methods: VED [7] uses the fully-connected bottleneck to
realize the transformation, which loses the spatial information. Therefore the
output is fairly coarse and fails to segment small objects. VPN [9] predicts
the semantic BEV map from a stack of surround-view images, via a fully-
connected view-transformer module. PON [13] proposes a column-wise fully-
connected layer to realize the transformation of features from image space to
BEV space.

Attention based methods: The attention-based methods are attracting in-
creasing attention. NEAT [3] proposes a novel representation termed neural at-
tention fields, which compresses 2D image features into the BEV representation
based on the attention map. TIM [15] transforms image columns to BEV polar
rays via cross-attention. Though similar to our work, the BEV features are ini-
tialized to constant, and the geometric prior is not exploited in their method,
which limits the capacity of reasoning in 3D space.

3 Method

In this section, we first briefly present our GitNet approach, which learns the
birds-eye-view (BEV) segmentation map from a monocular image I ∈ RH×W×3.
The predicted BEV semantic map S ∈ RZ×X×C is in the ego camera coordinate,
with Z and X are the spatial dimensions of the regular lattice grid in BEV space
and C is the number of semantic categories including road layout and objects.
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Fig. 1. The overview of the GitNet framework to predict the BEV semantic map
from the perspective image. The multi-level pyramid image features extracted
by the FPN are transformed to the BEV features by our two-stage transfor-
mation pipeline, which includes the Geometry-guided Pre-Alignment (GPA) and
Ray-based Transformer (RT ). The explicit supervision is enforced to the GPA
Stage guided by the learnable camera height to learn visibility-aware features,
which are then converted to pre-aligned BEV features. The RT column-wisely
refines the PV features and pre-aligned BEV features with the mechanism of
attention. The refined BEV features are fed into the BEV segmentation layers,
which output C pixel-wise binary classification.

3.1 Overview

The goal of our network is to predict the semantic map of the scene on the birds-
eye-view space from a monocular perspective image. The challenge of predicting
the BEV semantic map lies in that the input and output representations exist
in different spaces and thus the network is acquired to learn the transformation
from perspective image view to orthographic BEV space. As depicted in Fig.
1, our framework is a two-stage pipeline that transforms the perspective view
(PV) to the birds-eye-view. It mainly consists of four modules, (i) the feature
pyramid network (FPN) for multi-scale perspective feature representation, (ii)
Geometry-guided Pre-Alignment that transfers features into BEV space based on
the learnable camera height, (iii) the ray-based transformer module for attention-
based feature enhancement before BEV segmentation, and (iv) the specially
designed loss functions for re-weighting different pixels.

In our network, the core design is the two-stage transformation from the per-
spective space to the BEV space. Firstly we leverage the geometric guidance to
provide appearance and visibility for initializing the transformed BEV features.
To solve the ambiguity caused by the mounting height of the camera, we spe-
cially learn the height for better alignment between the perspective space and the
birds-eye-view space. After obtaining the pre-aligned BEV features, we further
adopt the ray-based transformer module based on the column-wise attention for
further enhancing the feature deformation in BEV space for conducting seman-
tic segmentation. The explicit supervision is enforced to the GPA Stage guided
by the learnable camera height to learn visibility-aware features, which are then
converted to pre-aligned BEV features. In addition, to alleviate the perspective
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Fig. 2. Geometry-guided Pre-Alignment Module. The pyramid image features
are first fed into the segmentation head to predict the BEV-consistent probability
maps enforced by the Occlusion-free DA loss with projected labels. The BEV-
consistent probability maps and the perspective features are further encoded by
pixel-wise fusion to extract visibility-aware features. In the other branch, the
smallest-scale features F 5 are used to predict the offset w.r.t. to the empirical
predefined height. Then the learned camera height is applied to inversely project
the visibility-aware perspective features to BEV features, which serve as initial
queries of the follow-up transformer stage.

effect caused by the imaging, we organize the projected supervision loss in a
depth-aware manner and further propose the Self-Weighted Dice (SW-Dice) loss
to re-weight the easy-hard samples. We will introduce the detailed design of each
component in the following parts.

3.2 Geometry-guided Pre-Alignment

In this section, we introduce the first stage, i.e., the Geometry-guided Pre-
Alignment module. We first present the geometric relation between the per-
spective view and BEV. Then we detail the consistency between image features
and projected BEV labels, and describe our visibility-aware feature learning
method. Finally, we describe geometry-based warping to obtain the pre-aligned
BEV features. The detailed pipeline of this module is depicted in Figure 2.
Learnable Geometric Relation. The transformation from perspective view
(PV) to BEV can be given by a projection matrix P . We first introduce the co-
ordinate systems: a certain point in the camera coordinate system is represented
by xc = [xc, yc, zc]

T ∈ R3. The ground space is by setting the y-coordinate of the
camera coordinate system to h and a certain point lying on the ground plane
turns out to be xc = [xc, h, zc]

T , where h denotes the height of the mounted
camera from the ground. The BEV coordinates simply remove the y-dim and
can be denoted as xB = [xc, zc]

T ∈ R2. In the following, we do not particu-
larly distinguish the BEV space from the ground space in the camera coordinate
system. The homogeneous image coordinates xi = [xi, yi, 1]

T have a one-to-one
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correspondence with the ground coordinates, which can be expressed by:

P (xc −→ xi) : xi = Kxc/zc = K[xc/zc, h/zc, 1]
T (1)

where K is the camera intrinsic matrix: K = [[fx, 0, cx], [0, fy, cy], [0, 0, 1]]
T , and

the inverse transformation from image to ground coordinates is formulated as:

P (xi → xc) :

{
xc =

(xi−cx)zc
fx

zc =
fyh

yi−cy

(2)

Based on the geometric correspondences illustrated in the Equation (1) and
(2), we are able to transform from the perspective space to the BEV. In this way,
we are able to recover the coarse ground coordinates given the image coordinates
and the camera height. However, as is acknowledged in [13], the camera height h
is unavailable for a real monocular perception system. Alternatively, we enforce
the network to learn the camera height parameters. The image features F5 with
the scale of ×1/128 are compressed into a vector by global average pooling and
followed by an MLP to leverage the global context for predicting the offset of
the camera height to the empirically predefined height.
Visibility-aware Perspective Feature Learning. The BEV semantic seg-
mentation is an implicit mapping-segmentation coupling task. Here we decouple
the BEV segmentation into the geometric prior-based mapping and perspective
segmentation. The latter is supervised by an explicit segmentation loss with pro-
jecting the BEV GT labels onto the image plane following the transformation
P (xc −→ xi) in the Equation (1) to generate the projected labels PV proj

gt . PV proj
gt

reflects the whole perspective-view ground including visible or invisible regions.
However, the perspective features extracted from images only reflect the visible
foreground regions. Therefore, the projected labels PV proj

gt can be used to obtain
the visibility-aware image features by fusing the information of projected labels
and image features. In specific, the pyramid features F{1,2,3,4} ∈ RHi×Wi×64 are
separately fed into the weight-shared segmentation head to generate the corre-
sponding probability maps P{1,2,3,4} ∈ RHi×Wi×C under the supervision of our
depth-aware Dice (DA-Dice) segmentation loss with projected labels. We con-
catenate the feature maps and the corresponding probability maps, and learn
the visibility-aware features Ai with pixel-wise fusion (MLP) by:

Am = MLP(Fm,Pm) (3)

Geometry-based Warping. From the Equation (2), we can derive that zc/xc =
fx/(xi − cx), which indicates that pixels of perspective view lying on the same
column (i.e., with the same x-coordinate xi) map onto the same polar ray in BEV
space with a slope of fx/(xi − cx). Following the transformation P (yi −→ zc) in
Equation (2), the j-th column of augmented image features Aj

m are warped into
the BEV space with the learned camera height h by inverse projection. That is:

Sj
m = Warp(Aj

m;P (yi −→ zc)) (4)
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Fig. 3. Ray-based Transformer. The pyramid perspective features, along with
the positional encoding in perspective view, are fed into the transformer encoders
to integrate the knowledge within the same column. In the next decoder module
where the inter-column cross-attention is conducted, the output features of en-
coder serve as Key and Value, and the pre-aligned BEV features, along with the
BEV positional encoding, work as Query. The initial queries S̃m are refined by
N× stacked decoder layers. Finally, the refined BEV features S̃m ∈ RZm×Wm×64

are warped to Mm ∈ RZm×X×64 in the X-Z coordinate system, all of which are
concatenated along with Z axis to output the BEV feature map M .

where {S1
m, S2

m, ..., SWm
m } are computed in parallel in our implementation, and

are concatenated to output the tensor Sm ∈ RZm×Wm×64. The warped BEV
features take advantage of both the appearance from multi-scale perspective-
view features and the visibility with BEV projected-to-PV labels guidance. The
geometry-guided transformation module provides initial queries for the follow-
up transformer stage for further tuning the features for the BEV segmentation
task.

3.3 Ray-based Transformer

The second step of our two-stage transformation pipeline is the ray-based trans-
former, which is depicted in the Fig. 3. In this stage, we extend the common
multi-head attention [20] into our Ray-based Transformer (RT). The multi-head
attention needs three inputs of queries (Q), keys (K), and values (V ), which is
denoted as MultiHead(Q,K,V ). We refer the reader to the literature [20] and
see the appendix for more detailed descriptions. Since our BEV semantic seg-
mentation task requires high-resolution feature maps, computing the attention
of a full image, like most existing works, will bring high computation complexity
and GPU memory. As derived in Sec. 3.2, pixels of perspective view lying on
the same column correspond to the same polar ray of birds-eye-view. This mo-
tivates us to compute attention in a single column or ray, which greatly reduces
the complexity of attention.
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Differences with the Original Transformer. Our method draws on the
core idea of Transformer, i.e., employing the multi-head attention mechanism.
But we have two new designs for our BEV segmentation task. Firstly, We use
column-wise attention so that we can perform on high-resolution feature maps,
which is indispensable in our pixel-wise recognition. Secondly, we introduce the
pre-aligned features encoding the appearance and visibility, along with BEV
positional encoding, as queries in the cross attention. The ablation study in the
Sec. 4.3 validates the superiority of our designs. In the following part, we detail
two attention mechanisms in our transformer, and omit other components such
as normalization for the sake of simplicity. The complete structure can be seen
in our supplementary material.
Column Context Augment(CCA) in Encoder. As illustrated in Fig.3, the
inputs for the transformer encoders are perspective features {F 1,F 2,F 3,F 4}
extracted from the FPN, where Fm has a spatial resolution of Hm×Wm. In the
CCA, each pixel adaptively integrates the information from other pixels of the
same column, by using multi-head self-attention. We further introduce spatial
positional encodings Pm to the input Fm to distinguish the positions of the
input features. We use a sine function to generate spatial positional encoding.
Let F j

m, P j
m ∈ RHm×64 denote the j-th column of Fm and Pm, respectively.

The mechanism of CCA can be summarized as

F̃ j
m = F j

m +MultiHead(F j
m + P j

m,F j
m + P j

m,F j
m),

F̃m = CCA(Fm) = Concat(F̃ 1
m, F̃ 2

m, ..., F̃Wm
m )

(5)

Ray-based Cross-Attention (RCA) in Decoder. RCA in the transformer
decoder aims to refine the output of pre-alignment block, {S1,S2,S3,S4}, based
on the augmented image features {F̃1, F̃2, F̃3, F̃4}. As depicted in Fig.3, the
RCA receives the pre-aligned BEV feature as Query, the augmented features
built from the encoder as Key and Value. Similar to CCA, spatial positional
encoding P ′

m is also adopted in RCA. The difference is that P ′
m represents the

position in the BEV, while Pm is on the image plane. The mechanism of RCA
can be summarized as

S̃j
m = Sj

m +MultiHead
(
Sj
m + P ′j

m, F̃ j
m + P j

m, F̃ j
m

)
,

S̃m = RCA(Sm,Fm) = Concat(S̃1
m, S̃2

m, ..., S̃Wm
m )

(6)

Since the columns of S̃m are still in the image coordinate, we warp them to
rays in the camera coordinate following the transformation P (xi −→ xc) in the
Equation (2) to obtain {M1,M2,M3,M4}, which are responsible for different
depth ranges. We concatenate all features along the depth axis to obtain the
feature maps of the whole scene:

Mm = Warp(S̃m;P (xi −→ xc)),

M = Concat(M1,M2,M3,M4)
(7)
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The final BEV feature mapsM are fed to the downstream convolutional segmen-
tation network. Thanks to the CCA and RCA-based transformer, the network
take appearance and visibility knowledge into account, and further tunes the in-
visible regions of the pre-aligned BEV features, based on the context information
from the perspective features.

3.4 Loss functions

The Dice loss is commonly adopted in segmentation for alleviating the data
imbalance problem. The GT semantic label of i-th pixel in the BEV map is [y1i ,
y2i ,..., y

C
i ], and the predicted probability is [p1i , p

2
i ,..., p

C
i ], where y

k
i ∈ {0, 1} and

pki ∈ [0, 1], and C is the number of classes. The dice loss can be formulated as:

Ldice = 1− 1

C

C∑
k=1

2
∑N

i yki p
k
i∑N

i yki + pki + ϵ
(8)

where N is the number of pixels in a mini-batch and ϵ is a constant used to
prevent division by zero.

For the BEV semantic segmentation task which is actually an implicit multi-
task problem involving 3D location and segmentation, there are two problems
that can affect the performance. For one thing, due to the perspective projection
from the real world to the image plane, distant objects appear to be smaller than
nearer objects. In other words, the closer instances occupy much more pixels than
farther ones, which dominate the overall segmentation loss in the perspective
view. For another, those pixels that have easily-classified appearances or follow
a simple perspective-to-BEV mapping, such as most road regions, comprise the
majority of the loss.
Occlusion-free Depth-aware Dice Loss: As discussed in Sec. 3.2, we project
the BEV labels onto the image plane to generate the projected labels PV proj

gt ,
which supervises the segmentation on the perspective view. To tackle the first
problem caused by the domination of nearer objects in perspective images, we
propose the novel Depth-aware Dice loss by re-weighting the loss in a depth-
aware manner. In specific, the Jacobian determinant gives the ratio of the area
ratio between image ground plane (∆Ai) and the BEV ground plane (∆Ac) as:

RAc−→Ai =
∂Ai

∂Ac
= |J | =

∣∣∣∣∣
∂xi

∂zc
∂xi

∂xc

∂yi

∂zc

∂yi

∂xc

∣∣∣∣∣ =
∣∣∣∣∣
−fxxc

z2
c

fx
zc

−fyh
z2
c

0

∣∣∣∣∣ = fxfyh

z3c
(9)

We find that the area ratio is proportional to (1/zc)
3, thus we re-weight the

pixels with the weight z3c to solve the imbalance. The depth-aware dice loss is:

LDA dice = 1− 1

C

C∑
k=1

2
∑N

i z3ciy
k
i p

k
i∑N

i z3ci(y
k
i + pki ) + ϵ

(10)

Self-Weighted Dice Loss: To further alleviate the second problem, i.e., the
dominating influence from easy samples in training, we propose to associate
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training samples with dynamically adjusted weights to emphasize hard examples.
We first propose a weighting function Iki to adjust the hard-mining strength by
a parameter α in Equation (11) and then utilize Iki to reweight the Dice loss and
obtain the self-weighted dice loss in Equation (12).

Iki = 1 + α[yki (1− pki ) + (1− yki )p
k
i ]stop grad (11)

Lsw dice = 1− 1

C

C∑
k=1

2
∑N

i Iki y
k
i p

k
i∑N

i Iki (y
k
i + pki ) + ϵ

(12)

Note that we detach the weighting function Iki to stop the backward propa-
gation of the gradient in Equation (12). Otherwise, the term pki (1 − pki ) within
Iki y

k
i p

k
i will be maximized to make pki fall around the undesired value 0.5.

4 Experiments

4.1 Experimental Setup

Dataset We conduct extensive experiments on two large-scale datasets: The
nuScenes [1] and Argoverse [2] road-scene datasets. Since the two datasets are
predominantly collected for 3D object detection task rather than BEV semantic
segmentation task, we follow the data generation method in [13] to convert the
ground truth 3D bounding box annotations and the vectorized road maps into
GT semantic maps in BEV. In addition, for fair comparisons, we also follow the
same training and validation splits with other methods. The nuScenes includes
4 road layout categories and 7 object categories, and the Argoverse includes 7
object categories as well as drivable road. For both datasets, the ground truth
of birds-eye-view expands from 1m to 50m in front of the camera i.e., along
the z-direction and 25m to either side (i.e., along the x-direction). Due to the
greater diversity of nuScenes, we choose this dataset for all ablation studies.
Implementation details For fair comparisons, we adopt a pretrained ResNet-
50 with a feature pyramid on top as the backbone. We adopt a simplified HRNet
[21] as the BEV segmentation head. In our implementation, we use a simplified
HRNet32 by halving the number of blocks in each stage. We use two encoder
layers and four decoder layers in the Ray-based transformer. The hyperparameter
α in Equation 11 for the SW-Dice loss is set as 0.5. We adopt a similar depth-
interval assignment strategy with [13], but we only use the former four scales
of the FPN. The concatenated BEV feature maps from different depth intervals
are of 98× 100 pixels, with each pixel covering 0.5m. We obtain the final output
map with a resolution of 196×200 pixels by upsampling, which is consistent with
other methods. The model is trained using four Tesla V100 cards, each with 32G
memory. We optimize the network with Adam policy for gradients accumulated
over every 8 iterations and train for 40 epochs. The initial learning rate is set to
0.0002, with a weight decay of 0.99 and batch size 12.
Evaluation metric Our evaluation metric is the Intersection over Union (IoU)
score, which we compute by binarizing the output probability maps with the
threshold of 0.5. Invisible regions are ignored during evaluation following [13].
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Table 1. Results of IoU (%) on nuScenes validation set. “Mean” refers to the
average IoU over all classes. “Crossing”: Pedestrian Crossing, “C.V.”: Construc-
tion Vehicle, “Motor.”: Motorcycle, “Ped.”: Pedestrian, “Cone”: Traffic Cone.

Method
Layout Object

Mean
Drivable Crossing Walkway Carpark Bus Bike Car C.V. Motor. Trailer Truck Ped. Cone Barrier

IPM [13] 40.1 - 14.0 - 3.0 0.2 4.9 - 0.8 - - 0.6 - - -
Depth Unpr.[13] 27.1 - 14.1 - 6.7 1.3 11.3 - 2.8 - - 2.2 - - -
VED [7] 54.7 12.0 20.7 13.5 0.0 0.0 8.8 0.0 0.0 7.4 0.2 0.0 0.0 4.0 8.7
VPN [9] 58.0 27.3 29.4 12.3 20.0 4.4 25.5 4.9 5.6 16.6 17.4 7.1 4.6 10.8 17.5
Sim2real [12] 60.5 27.1 19.2 18.3 6.9 3.8 7.1 0.3 4.5 3.2 4.7 1.8 4.2 12.1 12.4
OFT [14] 62.4 30.9 34.5 23.5 23.2 4.6 34.7 3.7 6.6 18.2 17.3 1.2 1.1 12.9 19.6
PON [13] 60.4 28.0 31.0 18.4 20.8 9.4 24.7 12.3 7.0 16.6 16.3 8.2 5.7 8.1 19.1
STA-S [16] 71.1 31.5 32.0 28.0 22.8 14.6 34.6 10.0 7.1 11.4 18.1 7.4 5.8 10.8 21.8
EPOSH [4] 61.1 33.5 37.8 25.4 31.8 6.7 37.8 2.7 10.5 14.2 20.4 5.9 7.6 13.4 22.1

Ours 65.1 41.6 42.1 31.9 35.4 13.8 43.4 9.7 15.0 22.5 25.5 14.1 11.6 18.6 27.9

Image Ground Truth VED VPN PON STA Ours

Fig. 4. Qualitative results on the nuScenes validation set. We compare with the
published works and follow their colour scheme.

4.2 Main Results

We evaluate our method on nuScenes and Argoverse, and compare against the re-
cently published works which belong to different branches: (i) IPM-based meth-
ods: IPM [13], Sim2real [12]; (ii) Bottleneck-based methods: VED [7], VPN [9]
and PON [13]; (iii) Depth-based methods: Depth Unprojection-based (Depth-
Unpr.) [13], OFT [14], EPOSH [4] and STA-S [16]. All these works report the
results on nuScenes as shown in Table 1, or provide the results on Argoverse in
Table 2. Among all these methods, our method achieves the best performance
for most categories and our method surpasses the previous approaches with a
significant margin of mean IoU, 6.1% and 3.2% on nuScenes and Argoverse, re-
spectively. Fig. 4 further shows the visual comparisons against other methods
on the nuScenes Dataset. The two fully-connected bottleneck-based works, VPN
and VED, achieve a comparable IoU on the road drivable area, but they fail
to recognize the smaller objects such as vehicles due to the image features are
compressed into a vector. In contrast, our method leverages multi-scale spatial
information for different depth intervals to keep the fine details. For example, as
shown in Fig. 4, our approach accurately predicts the vehicles within all depth
ranges. Compared with other relatively better methods like PON and STA-S,
we exploit the geometric prior which helps to accurately locate and identify the
road elements, like walkway and pedestrian crossing, which is supported by the
qualitative results in Fig. 4.
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Table 2. Results of IoU (%) on the Argoverse validation set.

Method Drivable Vehicle Ped. Large veh. Bicycle Bus Trailer Motorcy. Mean

IPM [13] 43.7 7.5 1.5 - 0.4 7.4 - 0.8 -
Depth Unpr.[13] 33.0 12.7 3.3 - 1.1 20.6 - 1.6 -
VED [7] 62.9 14.0 1.0 3.9 0.0 12.3 1.3 0.0 11.9
VPN [9] 64.9 23.9 6.2 9.7 0.9 3.0 0.4 1.9 13.9
PON [13] 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0

Ours 67.1 35.9 9.8 15.7 4.9 31.7 11.3 6.2 20.2

Table 3. Effects of different key components. GPA and RT denote the Geometry-
guided Pre-Alignment and Ray-based Transformer, respectively. SW and DA
refer to the Self-Weight Dice loss and Depth-aware Dice loss.

Group
Network Loss mIoU (%)

GPA RT SW DA Layout Object Total

(a) 31.2 4.9 12.4
(b) ✓ 38.7 15.4 22.1
(c) ✓ 40.6 16.8 23.6
(d) ✓ ✓ 43.2 19.1 26.0
(e) ✓ ✓ ✓ 43.8 19.9 26.7
(f) ✓ ✓ ✓ 44.1 20.5 27.2
(g) ✓ ✓ ✓ ✓ 45.2 21.0 27.9

4.3 Ablation Study

We conduct ablation studies to evaluate the key designs in our method. Unless
otherwise specified, we evaluate on the nuScenes validation set. GPA denotes
Geometry-guided Pre-Alignment, and RT is the Ray-based Transformer for short.
Effects of different components. To analyze the effects of the key designs,
we try different combinations and summarize the ablation results in Table 3.

• Baseline. Group (a) is the baseline that is similar to [12]. We transform
the image features onto the ground plane via a homography matrix. The
difference between it and our GPA is that it adopts a fixed camera height
and is not supervised by the projected semantic maps. The transformed
features are further processed by a segmentation network that is the same
as our best model for fair comparisons. From Row 1 in Table 3, we can see
that the baseline achieves reasonable results in road layout areas, but fails
to distinguish the objects that standing above the road.

• Network. In Group (b), the GPA provides a reliable prior for feature trans-
formation and relieves the effects of occlusion by supervision of projection,
improving the mIoU by +9.7% in total. The RT (c) transforms the image
features to the BEV space by multi-scale column-based attention, which im-
proves the mIoU by +11.2% in total. If we combine the GPA and RT as
disscussed in Sec. 3.1, their joint effect (d) further enhances the performance
by +13.6% in total. It shows the geometric prior provides complementary
information for the RT.

• Loss. Groups (e)(f)(g) show the improvements in our proposed loss function.
The SW-Dice loss (e) automatically puts higher weights on these pixels that
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are hard to classify in birds-eye-view, improving the mIoU by +0.7% in
total. The DA-Dice loss (f) balances the pixels of different depth ranges in
the perspective view by reweighting the Dice loss under the guidance of the
cubic depth when learning the geometric prior-based pre-alignment module,
which improves the mIoU by +1.2% in total. The joint of both losses (g)
brings a further mIoU gain of +1.9% in total.

Table 4. Effects of components of GPA, where “learnable h” denotes learning
the jitter of camera height; “proj. sup.” denotes supervising the image features
with projected labels from BEV to image space; “pixel. fusion” denotes pixel-
wise fusion between image features and probability maps of segmentation.

Group learnable h proj. sup. pixel. fusion Layout Object Total

I 40.2 16.7 23.4
II ✓ 41.1 17.3 24.1
III ✓ ✓ 42.6 18.3 25.2
IV ✓ ✓ ✓ 43.2 19.1 26.0

Effects of components of GPA: Three key designs are presented in Geometry-
guided Pre-Alignment to better convert the perspective image features to BEV
features, including the learnable camera height, the projection supervision, and
pixel-wise fusion between probability maps and image features. Comparing Group
I and II, where we enforce the network to learn the offset of the camera height,
we observe a 0.7% mIoU gain. Group III leverages the projected labels from
BEV space to image space to supervise the feature learning procedure, which
further improves the performance by 1.1% mIoU. The further pixel-wise fusion
between perspective features and segmentation probability maps in Group IV
further lifts the performance, resulting in a total of 2.6% gain.
Effects of α in SW-Dice loss: The SW-Dice loss introduces the hyperpa-
rameter α to control the strength of the modulating term with respect to the
predicted probability. As is shown in Table 5a, α = 0 means our loss is equivalent
to the plain Dice loss. As α increases, the predicted probability gets dominant
in the weighting function. Under all settings of α, the proposed SW-Dice loss
stably outperforms the baseline (α = 0). With the best setting, the SW-Dice
loss yields a 0.7% improvement over the plain Dice loss.
Effects of decoder layers in RT: Table 5b shows the performance with vari-
ous number of decoder layers within the ray-based transformer. Our model can
yield 4.1% improvement even using one layer. The gain reflects that the pre-
aligned BEV features can provide a good initialization for the decoder. With the
decoder layers increasing, higher performance can be achieved. We observe that
it becomes saturated when adopting more than three layers.

4.4 Multiple Views Fusion

Due to the limited field of view (FOV) of a single camera, it is essential to make
full use of all surrounding cameras from multi-view to perceive the integrated
scope of the scene. For this purpose, we introduce a late-fusion technique based
on Bayesian filtering [13, 19]. Suppose that Ri ∈ R2×2 and ti ∈ R2×1 are the
BEV rotation and translation matrix of i-th camera with respect to the ego car
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Table 5. Effects of α in the proposed SW-Dice loss and the number of decoder
layers within the ray-based transformer module.

(a) Effects of hyperparameter α

α 0 0.25 0.5 1.0 2.0

Layout 44.1 44.2 45.2 45.3 45.1
Object 20.5 20.9 21.0 20.9 20.6
Total 27.2 27.5 27.9 27.9 27.6

(b) Effects of decoder layers in RT

layers 0 1 2 3 4

Layout 38.7 43.7 44.1 44.8 45.2
Object 15.4 19.2 20.8 21.2 21.0
Total 22.1 26.2 27.5 27.9 27.9

CAM_FRONTCAM_FRONT_LEFT CAM_FRONT_RIGHT

CAM_BACK_LEFTCAM_BACK_RIGHT CAM_BACK

Fig. 5. An example of late-fusion of six surrounding birds-eye-view semantic
maps, which predict consistent full 360◦ BEV semantic maps.

coordinates. Let Oi denote the predicted logits (before the sigmoid activation)
in i-th view. Oi is warped to the car coordinate system, and we sum over all
warped logits maps. The sum of logits are normalized by the sigmoid function
σ to output the fused probability map Pfuse. In Fig. 5, we give an example of
the fused 360◦ BEV semantic maps from six surround-view cameras. It validates
that our approach can be applied seamlessly to predict consistent maps across
views.

5 Conclusion

In this paper, we proposed a novel method GitNet for predicting semantic
birds-eye-view maps from monocular images. The GitNet leverages a two-stage
pipeline to transform the perspective view into the birds-eye-view, which first
performs geometry-guided pre-alignment and then further enhances the BEV
features based on ray-based transformers. Our approach can also be easily adapted
to multi-view scenarios to build a full-scene BEV map.
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