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Abstract. Reconstructing a 3D shape based on a single sketch image
is challenging due to the large domain gap between a sparse, irregular
sketch and a regular, dense 3D shape. Existing works try to employ the
global feature extracted from sketch to directly predict the 3D coordi-
nates, but they usually suffer from losing fine details that are not faithful
to the input sketch. Through analyzing the 3D-to-2D projection process,
we notice that the density map that characterizes the distribution of
2D point clouds(i.e., the probability of points projected at each location
of the projection plane) can be used as a proxy to facilitate the recon-
struction process. To this end, we first translate a sketch via an image
translation network to a more informative 2D representation that can be
used to generate a density map. Next, a 3D point cloud is reconstructed
via a two-stage probabilistic sampling process: first recovering the 2D
points(i.e., the x and y coordinates) by sampling the density map; and
then predicting the depth(i.e., the z coordinate) by sampling the depth
values at the ray determined by each 2D point. Extensive experiments
are conducted, and both quantitative and qualitative results show that
our proposed approach significantly outperforms other baseline methods.

1 Introduction

Sketching is an intuitive approach for humans to express their ideas, and it
has been adopted for 3D modeling for decades. With the rapid development of
deep learning and virtual reality (VR) techniques, sketch-based 3D modeling has
attracted increasing attention from both academia and industry [12,29,13,4,15],
showing great potential in designing, animation, and entertainment.

In recent years we have witnessed great progress in sketch-based 3D modeling.
Motivated by the success of image-based single-view 3D reconstruction (SVR),
most sketch-based 3D modeling approaches follow a well-known pipeline of SVR
[6,22], which firstly encodes a sketch into a feature vector with a convolution
neural network (CNN), and then utilizes multilayer perception (MLP) based
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Fig. 1: The motivation of our work. We can see: 1) a 2D point cloud can be
generated by projecting a 3D shape onto an image plane. On the projection
plane, some locations have more than one 2D point with different depth values.
2) The distribution of 2D points can be characterized by a density map, where
the value at each location indicates the probability of points projected at that
location. ‘Red’ color indicates higher density. 3) The density map is spatially
rough-aligned with the sketch.

decoders to generate a fixed number of 3D coordinates that define the point cloud
of a 3D shape. Considering that sketch is usually sparse and ambiguous, global
feature is a reasonable sketch representation [31], as it summarizes the sketch
in a coarse level(e.g., semantic category and its conceptual shape). However, it
is hard for a model to reconstruct a 3D shape with fine details from a global
feature due to the huge domain gap between a sketch and a 3D shape.

Fig. 1 illustrates a 2D point cloud projected from a 3D shape. Note that on
the projection plane, there could exist more than one 2D points with different
depth values at the same location because of occlusions. The distribution of a 2D
point cloud can be characterized by a density map, indicating the probability of
points projected at each location. In other words, if we have a density map, we
can infer the corresponding 2D point cloud. It is interesting to see that a sketch
is spatially rough-aligned with the density map. Considering that both sketch
and density map are 2D images, their domain gap is supposed to be smaller than
that between sketch and 3D shape. This motivates us to introduce the density
map as the proxy to facilitate sketch-to-3D reconstruction. Namely, given an
input sketch, the reconstruction model first generates a density map to recover a
2D point cloud (i.e., x and y coordinates) and then predicts the depth value for
each 2D point (i.e., z coordinate). From a probabilistic view, this reconstruction
process can be interpreted as predicting the joint distribution of x, y, z coordi-
nates from a 3D shape, which defines a two-stage sampling process. Specifically
it firstly samples x, y coordinates from the distribution of P (X,Y |I) generated
from the sketch I, and secondly samples z coordinate for each (x, y) location
from the distribution of P (Z|x, y, I). Note that the distribution of P (X,Y |I) is
a 2D point cloud to be generated from a sketch.
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However, considering the sparsity and ambiguity characteristics of sketch,
there is also a domain gap between a sketch and a density map. As displayed in
Fig. 1, the visible and occluded object surfaces, and the vacancy between surfaces
can all be shown as blank in a sketch. We thus adopt an image translation
model [10] to complete the missing information while preserving the spatial
information in a sketch before predicting the density map.

In this work, we present a new method for sketch-based SVR, which con-
sists of two components: a sketch translator and a point cloud generator. The
sketch translator adopts a CNN-based encoder-decoder network, where the en-
coder network extracts features from the input sketch and the decoder network
infers target 3D information and outputs a more informative 2D representation.
Based on the output of the sketch translator, our point cloud generator aims to
reconstruct a point cloud of the corresponding 3D shape. It first predicts the
density map which can be used as guidance to recover 2D point clouds, and then
samples along a ray determined by each 2D projected point to predict depth
values, where the point with farther depth values means it is occluded by the
point with nearer depth values.

It is worth noting that a sketch may exhibit different levels of deformation
and abstraction. Here we focus on sketches with reliable shape and fine-grained
details, i.e., sketches with significant deformation or only expressing conceptual
ideas are not considered in this work. To demonstrate the effectiveness of our
proposed model, we train and test it on a newly rendered dataset, Synthetic-
LineDrawing. The contributions of this work are three-fold:

– First, we present a novel method for sketch-based single-view 3D reconstruc-
tion, in which a 3D shape is recovered in two easier but indispensable steps,
sketch translation and point cloud generation;

– Second, we formulate the point generation process as a two-stage probabilis-
tic sampling process, where the density map is introduced as a guidance.
Besides, an image translation model is used for sketch translation to pre-
serve the spatial information in a sketch and to further reduce domain gap;

– Third, the proposed model can reconstruct a 3D shape faithful to the sketched
object. Its effectiveness has been demonstrated through extensive experi-
ments on both synthetic and hand-drawn sketch datasets.

2 Related Works

2.1 Deep Sketch-based 3D Modeling

Sketch-based modeling is a problem that has been studied for a long time. The
earlier methods predicted local geometric properties from hand-crafted rules
and then inferred the 3D shape from the geometric properties [33,32]. In recent
years, some deep learning based methods have been proposed for sketch-based
3D modeling. Wang et al introduced a method to reconstruct 3D shapes based
on retrieval [23]. The work [22] proposed to generate point clouds from a single
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hand-drawn image. They enhanced the PSGN [6] method with a viewpoint esti-
mation module. To alleviate the deformation of sketches, they proposed a sketch
standardization module to alleviate the deformation problem of sketches. The
work [32] discussed the additional challenges of line drawings in comparison with
images in 3D reconstruction. In [33], sketches from two viewpoints were used as
the input to perform 3D reconstruction, and they collected two datasets, ProS-
ketch and AmateurSketch. Sketch2model [31] alleviated the ambiguity in sketch
modeling by decoupling view code and shape code. Sketch2mesh [9] used an en-
coder/decoder architecture to learn a latent representation of an input sketch
and refined it by matching the external contours of the reconstructed 3D mesh
to the sketch during the inference process. While achieving good performance,
this approach is time-consuming. Most deep sketch modeling methods encode a
sketch as a latent code and then apply a decoder to convert the latent code to a
3D shape. However, these approaches fail to preserve spatial details in a sketch.

2.2 3D Reconstruction from Single RGB Image

3D reconstruction is a problem that has been widely studied in computer vi-
sion. Reconstructing a 3D shape from a single image is an ill-posed problem
that requires strong prior knowledge. In recent years, with the development of
deep learning, neural networks can be used to extract useful features for 3D
reconstruction [27,28,19,6]. The early works focus on reconstructing 3D shapes
represented by regular voxels [3,26,24]. MarrNet [26] and 3DensiNet [24] resorted
to intermediate representations (i.e., 2.5D sketches and density heat-map) to fa-
cilitate reconstruction. In this work, we introduce the density map as a proxy,
which reflects the probability of points projected at each location of the image
plane. Unlike MarrNet and 3DensiNet that directly reconstruct 3D shapes based
on the intermediate representations, we use the density map as the guidance for
2D points sampling, from which the depth value will be further predicted.

However, voxel reconstruction is inefficient because the information of 3D
shape is distributed only on the surface of an object. Therefore, some meth-
ods [6,25] attempted to recover the surface information of 3D shapes, such as
point clouds or meshes. Nevertheless, the surface of a 3D shape is sparse and
irregular, posing great challenges for shape recovery. Some works [25,7] use the
coarse-to-fine and feature pooling strategies to alleviate this problem. In addi-
tion to reconstructing a 3D shape based on explicit representations, recent ap-
proaches [30,16,1] explore 3D reconstruction based on implicit surface learning.
But these methods require post-processing to obtain explicit 3D shapes.

3 Methodology

As shown in Fig. 2, our sketch-based modeling framework mainly consists of two
components: a sketch translator and a point cloud generator. Given an input
sketch I, the sketch translator first translates it to a feature map F . Next, the
point cloud generator produces a point cloud S based on the given feature
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Fig. 2: Overview of our proposed method. It consists of sketch translation and
point cloud generation. During sketch translation, missing information such as
surface and occlusions are implicitly compensated. The resultant feature maps
are used to predict the density map. When generating 3D points, a 2D point
cloud is first sampled based on the density map, followed by sampling the depth
values at each given 2D point.

map F . When recovering the point cloud, a 2D density map is first predicted,
from which 2D points are sampled; then the depth of each 2D point is predicted
by using the proposed conditional depth generator. Note that in line with [9,18],
we adopt the commonly used “viewer-centered” setting [21], in which we assume
the image space and the 3D space are aligned.

3.1 Sketch Translation

The goal of the sketch translator is to fully exploit the spatial information in a
sketch and generate suitable features for 3D shape prediction. It is non-trivial
because there is a large information discrepancy between a sketch and a 3D
shape: 1) a sketch is sparse and mainly preserves structural framework of a cor-
responding 3D shape. The object surface, occluded object surface, and vacancy
between surfaces can all be shown as blank in a sketch. 2) most depth informa-
tion in a 3D shape is also lost in a sketch image. Therefore, the sketch translator
aims to complement the missing information. For example, inferring whether a
blank area belongs to an object, or which pixels are on the same surface.

Specifically, we adopt an encoder-decoder based CNN network for sketch
translation. Firstly, an encoder network is used to extract features from the input
sketch with multiple down-sampling blocks. This is to increase the receptive field
of the neurons to acquire an overview of the input sketch. A decoder network
consisting of multiple upsampling blocks is then used to gradually infer the
information of the 3D shape with increased spatial resolution. Instead of using
the last feature map Fn for point cloud generation, we use a similar idea [14]
that leverages the feature maps at all scales by upsampling the feature map at
each individual scale F i to the size of Fn and concatenating them together to
produce the final feature F .

After sketch translation, the response of the feature map F is much denser
than the input sketch while the spatial alignment and resolution are roughly
maintained. It will facilitate the prediction of point clouds of with fine details,
which will be explained below.
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3.2 Point Cloud Generation

The point cloud generator aims to recover the point cloud of the corresponding
3D shape S from the translated feature maps F . To utilize the spatial information
of the input sketch, we decompose the point could generation process into two
steps: 1) predicting the 2D point cloud which is the projection of the 3D point
cloud into the image plane; 2) inferring the depth of each 2D point.

For generating a 2D point cloud, the point cloud generator predicts the joint
distribution of the coordinates from the projected points p(X,Y |I), where X,Y
are random variables corresponding to the x, y axis respectively. Sampling from
P (X,Y |I) will generate the 2D point cloud. Fig. 1 shows an example of project-
ing a 3D shape into the image plane and its corresponding density map. The
probabilistic density at each location varies because it depends on how many
surfaces are being passed by the ray centered at this location.

After a 2D point cloud is generated, the point cloud generator predicts the
depth distribution of each point p(Zi|xi, yi, I), where xi, yi is the location of
the i-th point in the image plane. Sampling from P (Zi|xi, yi, I) gives the depth
of each point. Combining x, y coordinates from density map sampling and z
coordinate from depth sampling, the overall 3D point cloud can be generated.

From a probabilistic view, this process actually models the shape of a 3D ob-
ject as a joint distribution of x, y, z coordinates. Our generation process assumes
a factorization process over projection and conditional independency between
different locations for depth prediction, i.e., P (X,Y, Z|I) = P (X,Y |I)P (Z|X,Y, I).
The first term and the second respectively correspond to the process of generat-
ing a 2D point cloud and the process of predicting depth given a 2D point cloud
and a sketch.

2D Point Cloud Generation. As all valid locations must lay inside the
image, we firstly model the distribution of projected points in pixel coordinates.
The image coordinates can be seen as quantizing the x, y location into W ×H
bins, where Pu,v = P (X = u, Y = v) is the probability of a projected point
inside the (u, v)-th bin.

We use a mask prediction head to directly predict the density map M ∈
RW×H, where Mv,u = Pu,v. It takes the translated sketch feature F as the input,
and resizes the feature map to the size of W ×H by using bilinear interpolation.
The interpolated feature map is then passed to three convolutional layers for
density prediction. The hyper parameters W and H control the resolution of the
point clouds.

To generate a 2D point cloud, we can see P (X,Y ) as a multinomial distribu-
tion over W×H locations. We firstly sample a specific number of locations with
the probabilities defined by the density map M , and then use the column and
row indices u, v as x, y coordinates. We normalize the coordinate to the range of
[−1, 1] 4 to produce the coordinate in the image plane (xI , yI). It then converts
the points to world coordinates by using the camera parameters. As we use the

4 x = 2u
W−1

− 1, y = 2v
W−1

− 1, where u = 0, 1, ...,W − 1, v = 0, 1, ...,H− 1
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orthogonal projection model to produce the rendered sketches, the x, y coordi-
nates are linearly mapped from that of the 3D point clouds. That is the x, y
coordinates of a point in the raw 3D point cloud, and (x, y) can be computed
as (xI/s, yI/s), where s is a preset parameter of the projection model. Similar
mapping functions can be drawn for other projection models.

Conditional Depth Estimation. After producing the 2D coordinates (x, y)
of the 3D points, the next step is to predict their z coordinates. Given its x, y
location, we assume estimating the depth for each individual point to be inde-
pendent, so we predict the conditional depth distribution P (Zi|xi, yi) separately
for each 2D location. Given a x, y location, the depth distribution P (Zi|xi, yi)
can be multimodal and the number of modes tends to be varied, as there may
be one or multiple points from different surfaces sharing the same 2D location.
It is hard to explicitly define the probabilistic function of P (Zi|xi, yi).

Inspired by the Generative Adversarial Networks [8,17,10], we use an implicit
approach and adopt the generator network design to model P (Zi|xi, yi). It takes
a noise variable N ∈ Rd and the local feature fx,y as input, and predict a scalar
of depth z, where N is sampled from the uniform distribution U(0, 1) and fx,y
is obtained by extracting from the feature map F at the corresponding location.
Note that the depth generator can output different depth values given the same
feature and different noise variables. It takes a multi-layer perceptron (MLP) as
the backbone and its parameters are shared at all (xi, yi) locations.

For inference, we randomly sample a noise vector ni by following the uniform
distribution for each point (xi, yi) in the predicted 2D point cloud, and then pre-
dict the corresponding zi. Putting the 2D location (xi, yi) and depth prediction
zi together will generate the final point cloud S. Note that the sampled random
noise ni controls which mode the predicted depth zi falls in if the corresponding
P (Zi|xi, yi, I) is multimodal. Together with 2D point cloud sampling, the two-
stage process can be seen as sampling from the joint distribution that defines
the coordinates of a 3D shape. The detailed process of point cloud generation is
listed in Algorithm 1. Note that our proposed method is compatible with both
orthogonal projection and perspective projection. It can be controlled by the
‘invproj’ function in Algorithm 1.

3.3 Loss Function

A key role in our proposed approach is the density map. Fortunately, we can
freely produce the ground-truth density map from a 3D shape by a customized
renderer, i.e., counting the number of points that occurred when projecting a
ray from a 3D point onto an image plane followed by normalization. To provide
supervision information for the learning process of the density map, we use the
L1 loss as a constraint, as shown in Eq. (1).

LD =
∑
xi,yi

∥p̂(xi, yi)− p(xi, yi)∥1. (1)
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Algorithm 1 Point Cloud Generation Process

Input: total number of points N , the predicted density map M , feature map F , and
depth generator T .

Output: the reconstructed point clouds of the sketch S.
1: Let S = ∅
2: while |S| ≤ N do
3: sample a location from the multinomial distribution defined by M , i.e. (u, v) ∼

Mult(x, y;M).
4: convert u, v to the image plane coordinate xI , yI

5: sample the noise vector n ∼ U(0, 1).
6: inference the depth at u, v: zc = T (n, Fuv)
7: convert (xI , yI , zc) to the world coordinate: (x, y, z) = invproj(xI , yI , zc)
8: S = S ∪ {(x, y, z)}
9: end while
10: return S

To provide supervision information for the learning process of the conditional
generator, we constrain the distance between the output point cloud and the
ground-truth point cloud. We use the Chamfer distance as the loss function
during the training process. Given two point clouds S, Ŝ ⊆ R3, the Chamfer
distance is defined as Eq. (2). The final loss function is shown in Eq. (3), and λ1

and λ2 are the weights of LCD and LD, respectively.

LCD =
1

|S|
∑
p∈S

min
q∈Ŝ

∥p− q∥22 +
1

|Ŝ|

∑
q∈Ŝ

min
p∈S

∥q − p∥22 (2)

L = λ1LCD + λ2LD, (3)

As shown in Fig. 2, during the training process, the feature maps from the
encoder-decoder network are fed into two paths: 1) the convolutional layers to
predict the density map; 2) the fully-connected layers to predict the depth value.
Correspondingly, the L1 loss in Eq. (1) and the Chamfer loss in Eq. (2) are com-
puted, and the gradients from these two losses will be separately backpropagated
along two different paths back to the encoder-decoder network.

4 Experiment

In this section, we first introduce the datasets and evaluation metrics used in
our experiments and provide implementation details (Sec. 4.1). We then compare
our proposed method with the baseline methods on the Synthetic-LineDrawing
dataset (Sec. 4.2) and three hand-drawn sketch datasets (Sec. 4.3). Ablation
studies are conducted to show the effectiveness of individual modules (Sec. 4.4).
We also evaluate our model on unseen classes (Sec. 4.4).
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4.1 Experimental Setup and Evaluation Metrics

Synthetic-LineDrawing dataset. Publicly available large-scale paired sketch-
3D datasets are rare. So we contribute a new dataset, the Synthetic-LineDrawing
dataset, by rendering sketch images from 3D models of the ShapeNet dataset [2].
Specifically, we use a subset of ShapeNet-core, which consists of around 50k 3D
models spanning 13 classes. We select 5 random views for each object to render,
resulting in 218,915 sketch images and corresponding 43,783 3D objects. We fol-
low the conventional train/test splits as in [3], i.e., 4/5 and 1/5 for training and
test, respectively.

Except the synthetic sketch dataset, we also conduct experiments on three
hand-drawn sketch datasets:

– ShapeNet-Sketch [31] is a dataset consisting of 1, 300 free-hand sketches
and their corresponding ground-truth 3D models, belonging to the same 13
categories of the ShapeNet dataset. All sketch images are drawn by volun-
teers with different drawing skills.

– AmateurSketch [33] contains 3, 015 sketch images of 500 chair models and
1,665 sketch images of 555 lamp models. Each 3D model is drawn from 3
different viewpoints.

– ProSketch-3DChair [33] contains 1, 500 professional sketches of 500 chair
models, and each 3D model is drawn from 3 different viewpoints: front, side
and 45 degree.

Implementation Details. We use a CNN-based encoder-decoder network [10]
as the sketch translator. For density map prediction, we use ReLU followed by
normalization to ensure the sum of the values from all spatial positions of the
density map is 1. When estimating the depth information, an MLP with residual
connections is used. λ1 and λ2 are set to be 1 and 104, respectively. The model is
trained for 30 epochs with an initial learning rate of 10−3. Adam optimizer [11]
is used for optimization. The ground-truth density map is obtained by counting
the number of points that occurred when a ray projects from a 3D point onto
the image plane.

Evaluation Metrics. We employ four evaluation metrics to measure the
reconstruction performance on the above four datasets: Chamfer Distance (CD),
Earth Mover’s Distance (EMD), voxel Intersection over Union (Vox-IoU), and
Fréchet Point cloud Distance (FPD). CD is a widely used as the evaluation
metric for 3D generation and reconstruction tasks. Similar to CD, EMD is
also used to evaluate the similarity between two point clouds. But it is more
sensitive to the local details and density distribution. FPD is similar to FID,
which calculates the 2-Wasserstein distance between the real and fake samples in
the feature space extracted by a pre-trained PointNet. Voxel-IoU measures the
coverage percentage of two volumetric models. Further details of these evaluation
metrics are explained in Supplementary.
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Fig. 3: Reconstruction results on the Synthetic-LineDrawing Dataset.

sketch view #1 #2 #3 #4 #5 #6 #7 #8

Fig. 4: Our reconstructed 3D shapes that are rendered under different viewpoints.
The results show that the generated 3D point clouds are consistently accurate
and faithful under all viewpoints.

4.2 Results on Synthetic-LineDrawing Dataset

Baseline methods. We first compare our approach with three state-of-the-
art methods for sketch-based single-view 3D reconstruction (SVR):

Sketch2Mesh [9]: Given an input sketch, this method also utilizes an encoder-
decoder network to produce a 3D mesh estimate. It learns a compact feature rep-
resentation and recovers the 3D shape by minimizing the 2D Chamfer distance
between the 3D shape’s projected contour and the input sketch.

Sketch2Model [31]: This method is proposed to reconstruct a 3D shape
represented by a mesh. It employs an encoder-decoder network. To address the
ambiguity problem of sketch, it introduces an additional encoder-decoder to de-
compose a sketch image to the view and shape space. During the inference pro-
cess, each 3D shape is reconstructed based on an input sketch and the estimated
viewpoint.

Sketch2Point [22]: This method is proposed to reconstruct a 3D point cloud
from a sketch. It is built on PSGN [6], in which the key component is a stan-
dardization module used to handle sketches with various drawing styles.

We also compare our method with two image-based SVR methods:
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Table 1: Results on the Synthetic-LineDrawing Dataset.
Categories

mean
airplane bench cabinet car chair display lamp speaker rifle sofa table phone boat

Chamfer Distance(↓) ×10−3

Sketch2Mesh[9] 0.910 4.533 2.735 1.417 3.002 3.119 9.054 4.685 0.846 2.633 2.732 2.005 2.524 3.092
Sketch2Model[31] 1.814 6.404 3.010 2.720 3.997 6.976 6.617 5.579 1.495 5.721 4.632 2.723 2.755 4.188
Sketch2Point[22] 2.229 14.747 3.239 1.610 3.883 7.047 6.663 6.611 4.056 7.132 5.772 4.392 1.255 5.280
PCDNet[18] 0.571 1.151 1.480 1.002 1.664 1.389 3.104 2.120 0.621 1.416 1.647 1.207 1.051 1.417
DISN[30] 0.845 3.573 1.839 1.340 3.181 2.640 9.203 3.340 2.000 1.797 3.371 2.080 2.215 2.879
Ours 0.389 0.729 1.153 0.866 1.033 0.959 1.907 1.561 0.428 1.050 0.949 0.957 0.780 0.982

Earth Mover’s Distance(↓) ×10−2

Sketch2Mesh[9] 3.914 5.732 5.441 4.645 6.032 5.301 11.188 7.005 5.113 5.297 5.328 4.133 4.804 5.687
Sketch2Model[31] 5.587 7.460 5.852 5.662 6.867 7.436 10.615 7.109 6.297 7.035 7.206 4.679 6.529 6.795
Sketch2Point[22] 6.893 13.907 7.102 5.875 9.913 10.799 15.212 9.736 10.556 10.143 9.263 8.652 5.880 9.533
PCDNet[18] 7.114 8.723 9.745 7.420 10.948 9.493 16.054 10.465 7.464 10.121 10.450 7.880 7.255 9.472
DISN[30] 3.823 6.234 4.911 4.569 7.136 5.893 10.469 6.063 5.513 4.706 6.990 4.053 5.037 5.800
Ours 3.178 3.978 5.032 4.240 5.293 4.553 6.722 5.690 3.436 4.662 4.421 3.762 3.969 4.534

Fréchet Point Cloud Distance(↓) ×10

Sketch2Mesh[9] 2.030 8.253 3.346 1.147 3.214 3.287 10.771 2.608 1.577 3.436 1.624 3.647 7.565 4.039
Sketch2Model[31] 1.524 13.900 5.546 1.121 3.220 9.622 2.887 6.364 3.494 20.001 4.393 3.188 5.490 6.212
Sketch2Point[22] 11.415 22.056 6.466 6.973 25.730 12.369 6.903 11.431 27.448 13.391 21.120 14.425 3.322 14.081
PCDNet[18] 0.991 1.117 0.760 1.107 0.846 0.892 1.657 1.177 0.916 0.957 1.050 0.760 1.313 1.042
DISN[30] 1.838 5.097 1.037 0.285 2.752 1.662 12.211 1.294 3.867 1.729 3.143 2.734 2.595 3.096
Ours 0.516 0.542 0.358 0.427 0.454 0.519 1.082 0.734 0.635 0.561 0.633 0.347 0.729 0.580

Voxel-IOU(↑)

Sketch2Mesh[9] 0.693 0.506 0.383 0.515 0.442 0.469 0.355 0.280 0.691 0.418 0.493 0.596 0.553 0.492
Sketch2Model[31] 0.499 0.220 0.338 0.341 0.308 0.250 0.320 0.229 0.511 0.245 0.269 0.535 0.422 0.345
Sketch2Point[22] 0.427 0.174 0.172 0.335 0.204 0.231 0.209 0.125 0.263 0.184 0.137 0.293 0.514 0.251
PCDNet[18] 0.634 0.506 0.367 0.502 0.386 0.478 0.359 0.307 0.603 0.395 0.439 0.572 0.557 0.470
DISN[30] 0.698 0.464 0.407 0.521 0.397 0.462 0.332 0.325 0.683 0.437 0.426 0.627 0.547 0.487
Ours 0.736 0.619 0.467 0.563 0.535 0.577 0.510 0.412 0.713 0.500 0.597 0.654 0.638 0.578

PCDnet [18]: This method can generate a 3D point cloud of arbitrary size
based on a single image. It extracts the global shape feature(i.e., a feature vector)
from a sketch and predicts the 3D point cloud via a deformation network.

DISN [30]: This work proposes a signed distance fields (SDF) predictor,
where both global and local features are used for prediction. It can produce a
3D shape with fine details since it exploits local features sampled from image
feature maps. However, this approach works slowly during the inference process.

We follow their original works of Sketch2Model and Sketch2Mesh to train an
individual model for each category. See more details in Supplementary.

Qualitative Results. The results of different methods are illustrated in
Fig. 3. For point cloud based methods, Sketch2Point and PCDNet perform
badly where the generated 3D shape can even fall into an incorrect category,
e.g., the produced 3D point cloud of a plane is more like a rifle. For those whose
class labels are correct, the shapes are still considerably different from the input
sketches. These observations indicate that special designs are required for accu-
rate and generalizable sketch-based SVR models. Note that the point cloud pro-
duced by PCDNet still exhibits more details than Sketch2Point, which demon-
strates the benefit of using local features. Sketch2Mesh and Sketch2Model
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Table 2: Results on the hand-drawn sketch datasets. *”ShapeNet-S.” is short for
ShapeNet-Sketch and ”ProSketch” is short for ProSketch-3DChair.

ShapeNet-S. ProSketch AmateurSketch ShapeNet-S. ProSketch AmateurSketch

Chamfer Distance(↓) ×10−3 Fréchet Point Cloud Distance(↓) ×10

Sketch2Mesh[9] 12.324 6.317 14.739 14.997 6.089 14.785
Sketch2Model[31] 10.355 5.628 11.288 14.449 5.464 14.600
Sketch2Point[22] 11.176 8.019 10.547 35.864 38.991 24.794
Ours 9.515 3.868 9.657 11.665 4.799 12.727

Earth Mover’s Distance(↓) ×10−2 Voxel-IOU(↑)

Sketch2Mesh[9] 9.947 7.921 13.164 0.195 0.283 0.217
Sketch2Model[31] 9.256 7.432 10.506 0.205 0.244 0.199
Sketch2Point[22] 13.443 13.179 16.506 0.163 0.185 0.166
Ours 9.626 6.963 9.994 0.244 0.294 0.219

are mesh based methods. As they are trained for each class separately, there
is no confusion between different categories. The surface of Sketch2Mesh is of-
ten disconnected on sketch with thin strokes. Regularized by view constraint,
the continuity of Sketch2Model becomes better, but it tends to generate over-
smoothed meshes. DISN is a SDF based method and it could generate almost
accurate 3D reconstruction results. However, limited by the resolution of 3D
grids and the use of SDF, small object parts and thin lines in a sketch are
missing in the reconstruction results.

Our method outperforms all competitors. The reconstructed point clouds are
correct in terms of category labels and also exhibit notable level of details, even
though our model is trained only once for all categories (i.e., class-agnostic).
The overall layout of the point clouds are well aligned with the input sketches.
Even small parts, e.g., the electric wire and the leg of the table, are depicted
faithfully in the 3D point clouds. It suggests that our two-stage strategy is better
in generalizing across different categories and capturing fine-details of sketch.
The Reconstruction results from different views are also provided in Fig. 4.

Quantitative Results. The quantitative results are shown in Table 1 and we
observe a similar trend with the qualitative results. Although the performance
ranking of these models varies under different evaluation metrics, our method
consistently performs the best in terms of all metrics. Moreover, our model even
performs the best over almost all categories (except the cabinet class based on
the EMD metric and the car class based on the FPD metric). It suggests that
our reconstructed 3D shape captures both global structure and the local details.
Notably, all methods perform considerably worse on the lamp class than other
classes, where the sketches contain many thin strokes with fine structures(see
Fig. 3). Nevertheless, our methods still achieves reasonable results. A possible
explanation is that the proposed 2D point cloud generation strategy ensures the
points can be sampled even from very thin strokes, with which the 3D point
cloud could be successfully generated.
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sketch [9] [31] [22] Ours GT sketch [9] [31] [22] Ours GT

Fig. 5: Reconstruction results of different methods on hand-drawn sketches.

sketch SimEnc Homo Ours Oursreal GT

(a)

CD(↓) EMD(↓) FPD(↓)
Vox-IOU(↑)×10−3 ×10−2 ×10

SimEnc 1.193 4.779 1.075 0.534
Homo 1.106 5.021 0.841 0.551
Ours 0.982 4.534 0.580 0.578
Oursreal 0.907 4.194 0.562 0.591

(b)

Fig. 6: Reconstruction results of our method and different variants. Oursreal is a
variant method which uses the ground-truth density maps.

4.3 Results on Hand-drawn Sketches

In this section, we test the generalization ability of our model on three hand-
drawn sketch datasets ShapeNet-Sketch [31], AmateurSketch [33], and ProSketch-
3DChair [33] without finetuning or domain adaptation. The three baseline meth-
ods which are specifically proposed for this task are used for comparison, in-
cluding Sketch2Mesh, Sketch2Model, and Sketch2Point. The quantitative and
qualitative results are shown in Table 2 and Fig. 5. Unlike the other baseline
methods where the produced 3D shape and the input sketch are aligned only
at the semantic level, the 3D shapes generated by our method are much more
faithful to the input sketch. However, as shown in Fig. 5, a sketch can be inac-
curate. For example, the second chair’s leg seems to have shifted. Our method
tends to be faithful to the sketch rather than generating an object by simply fol-
lowing categorical shape prior. We argue that there is often a trade-off between
faithfulness and rationality. In this work, we focus on faithfulness.

4.4 Ablation Studies

Effectiveness of Sketch Translator. We use an encoder-decoder structure
which is widely used for image translation to complement the information of
an input sketch. Thanks to the translation module, we can produce a more
informative feature map, so that a better 3D prediction can be achieved. To
validate this design, we propose a comparative baseline model Simple-Encoder
(‘SimEnc’). When compared to our model, SimEnc removes the sketch decoder
module. For a fair comparison, we increase the number of parameters of the depth
estimator in SimEnc accordingly so that the amount of parameters in SimEnc
is roughly the same as ours. As shown in Fig. 6, we can see the performance of
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Fig. 7: Our reconstruction results on unseen classes.

SimEnc drops significantly. We suppose that the feature map produced by our
sketch translation module is more informative. Using the encoder network, we
cannot preserve much information to help predict reasonable 3D shape.

Effectiveness of Density-guided Sampler. During point generation, our
method uses a density map as guidance for sampling x, y coordinates. Taking
into account that the inhomogeneous distribution of 3D information in 2D space
can make modal transformation more effective, we compare our sampler with
an alternative one denoted as homo-sampler, which treats 3D information as
homogeneous distribution in two dimensions. Specifically, the homo-sampler only
distinguishes between foreground and background, in which the same number
of points is sampled at each position in the foreground. We use the points with
p(x, y) predicted by our method greater than 0 as the foreground for the homo-
sampler method. The experimental results are shown in Fig. 6(see the second
row ‘Homo’). A homogeneous sampling strategy does not allow the sampler to
perceive the difference in the distribution of p(Zxy | X,Y ) at different locations.
We can see that the reconstruction performance when using a homo-sampler is
worse than ours, as shown in Fig. 6.

Generalization on Unseen Classes. We evaluate the proposed method
on unseen classes to verify its generalization ability. We randomly choose some
sketches from the Sketchy database [20] (Fig. 7(Left)) and TU-Berlin sketch
dataset [5] (Fig. 7(Right)) for testing. We can see that although our model is
trained on rigid object classes, it also performs well on non-rigid objects.

5 Conclusion

In this work, we have proposed a new method for sketch-based single-view 3D
reconstruction. During sketch translation, an informative feature map is derived
from an input sketch via an image translation model, which is then used to
predict a density map for point cloud generation. The point cloud generation
process is implemented by two-stage sampling strategy: with the guidance of
the density map, the x and y coordinates are first recovered; and then based on
the conditions of x and y coordinates and the input sketch the z coordinate is
further predicted by sampling. Experimental results have demonstrated that our
proposed method can significantly outperform the baseline methods.
Acknowledgement: This work is supported by the National Natural Science
Foundation of China (No. 62002012 and No. 62132001) and Key Research and
Development Program of Guangdong Province, China (No. 2019B010154003).
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