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This supplementary Appendix contains the following.

— Section 1:Dataset and Augmentation details used in our experiments.

— Section 2:Implementation details of our SSP3D framework.

Section 3:Implementation details of the 3D extensions of the image-based
baselines.

— Section 4:Additional qualitative examples from different datasets.

Section 5:Additional experiments and ablations.

1 Dataset-Details

ShapeNet The ShapeNet [2] dataset is a collection of 3D CAD models that are
organized according to the WordNet hierarchy. We use a subset of the ShapeNet
dataset which consists of 43,783 models and 13 major categories as in [3,10].
We follow the dataset split in Pix2Vox [10] with train, valid and test sets. On
the basis of Pix2Vox [10] dataset split, we randomly divide the training set into
supervised data and unlabeled data according to 1%, 5%, 10% and 20%. The
resolution of ShapeNet is 32 x 32 x 32. We adopt the same CenterCrop as in [10]
to crop the image size of 224 x 224 before inputting to the network.

Pix3D Pix3D [8] provides a large-scale dataset of real images and ground-truth
shapes with precise 2D-3D alignment. The dataset has 395 3D shapes of nine
object categories. Each shape associates with a set of real images, capturing the
exact object in diverse environments. Further, the 10,069 image-shape pairs have
precise 3D annotations, giving pixel-level alignment between shapes and their
silhouettes in the images. We follow the S1-split as in Mesh R-CNN [4] with
7,539 train images and 2,530 test images. Similarly, we randomly sample 10% of
each category in the training set as labeled data and use the remaining samples
as unlabeled data. The voxel resolution of Pix3D is 128 x 128 x 128.

Data Augmentations The data augmentation strategies in this paper con-
sist of strong augmentation and weak augmentation. We use the public code of
data augmentaions in Pix2Vox++ [11]. The strong augmentation stategy con-
tains RandomCrop, RandomBackground, ColorlJitter, RandNoise, RandomFlip,
RandomPermuteRGB, while the weak augmentation only contains CenterCrop,
RandomBackground and RandomNoise.
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2 Implementation Details

In this section, we provide additional information of implementation details of
different components in our SSP3D. We will introduce 3D Autoencoder, Im-
age Encoder, Shape Decoder, Prototype Attentive Module, Shape Naturalness
Module respectively.

3D AutoEncoder The 3D AutoEncoder is designed to extract volume feature
of 3D voxel for the next clustering task. We set the Autoencoder mainly the same
as [6]. The encoder contains four sets of 3D convolutional layers, maxpooling
layers and ReLU layers to encode 3D voxel, the kernel size are 53, 32, 33, 33. The
output channels of the four convolutional layers are 32, 64, 128, 256 respectively.
The decoder contains four sets of 3D transposed convolutional layers with batch
normalization and ReLU layers. The kernel size is 4% with stride of 22, and
paddding size of 1. We adopt the output of encoder as 3D feature, which is
applied for clustering (i.e., KMeans).

Image Encoder The encoder aims to compute image features for the decoder
to recover the 3D shape of the object. We adopt the same backbone as [11]. The
first three convolutional blocks of ResNet [5] are used to obtain a 512 x 282 feature
map from a 224 x 224 x 3 image. We adopt ResNet-50 [5] from Pix2Vox++ [11] as
baseline. ResNet is followed by three sets of 2D convolutional layers, batch nor-
malization layers, and ReLlU layers to embed semantic information into feature
maps. The kernel sizes of the three convolutional layers are 32, with padding of
1. There is a max pooling layer with a kernel size of 22 after the second and third
ReLU layers, the kernel size of the four convolutional layers are 52, 32, 32, 32
and the output of the convolutional layers are 32, 64, 128 and 256, respectively.

Shape Decoder The decoder is responsible for transforming information of
image feature and prior feature into 3D volumes. There are five 3D transposed
convolutional layers. Specically, the first four transposed convolutional layers are
of kernel sizes 43, with strides of 22 and paddings of 1. There is an additional
transposed convolutional layer with a bank of 13 filter. Each transposed convo-
lutional layer is followed by a batch normalization layer and a ReLU activation
except for the last layer followed by a sigmoid function. The output channel
numbers of the five transposed convolutional layers are 512, 128, 32, 8 and 1, re-
spectively. To generate 3D volumes at 128 resolution, there are seven transposed
convolutional layers in the decoder. The output channel numbers of the seven
transposed convolutional layers are 512, 128, 32, 32, 32, 8 and 1, respectively.

Prototype Attentive Module Prototype Attentive Module consists of 3D
Encoder that encode 3D voxel prototype and multi-head attention mechanism
that obtains prior feature of a query image. We will introduce them in detail
respectively. The 3D Encoder contains four sets of 3D convolutional layers, and
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ReLU layers to embed volume information into feature maps, the kernel size
of the four convolutional layers are 53, 33, 33, 3% respectively. The output of
the four convolutional layers are 32, 64, 128 and 256. The mulit-head attention
consists three linear layers to transform @, K,V the hidden size of the linear
layer is 2048, and the heads number of the attention mechanism is 2.

Shape Naturalness Module Shape Naturalness Module is a discrimina-
tor to judge if a voxel is true (goundtruth) or fake (predict volume). For the
ShapeNet [2] data with 323 resolution, the discriminator contains four sets of
3D convolutional layers, maxpooling layers and ReLU layers to embed volume
features, the kernel size of the four convolutional layers are 52, 33, 32, 33 and the
output of the convolutional layers are 32, 64, 128 and 256, respectively. As for
the Pix3D [8] dataset with 1283 resolution, we set five sets of 3D convolutional
layers and ReLU layers with kernel size of 33, stride size of 23 and padding size
of 1. Then two linear layers are proposed of hidden size of 128 and 1 with ReLLU
and Sigmoid activation function.

3 Image-based Baseline Details

This section provides implementations details of different baselines used in the
paper. We adhere to the base approach proposed in the original works of the
respective baselines for all our experiments. Note that, for a given image, same
set of augmentations have been applied to all images so that they go through
the same set of transformations. The initial learnging rate is set to le — 3 with
decay to le — 4 in all our baseline experiments unless stated otherwise. All the
baselines models are trained for 250 epochs unless otherwise specified.

Supervised We use the code made public by the authors in Pix2Vox [10] and
Pix2Vox++ [11] for the supervised baseline. It is trained using L,.. for 250
epochs and the initial learning rate is kept same as it. Other hyperparameters
are kept same as the ones used for the respective datasets in [10]. Note that for
simplicity compared, we only adopt the Encoder and Decoder in [11] as super-
vised baseline and remove the Merger and Refiner module which are particularly
designed for multi-view 3D reconstruction.

MeanTeacher The model is trained using the philosophy described in [9]. In
this scenario, we have two models, one is the student network and the other is
the teacher network. The teacher network has the same backbone architecture
as the student. The weights of the teacher network are exponential moving aver-
age weights of the student network. Consistency is ensured between the output
predicted by the teacher and the student for the unlabeled images. The labeled
data, in addition, is trained using L,,. We use L2 loss as the consistency cost
and warm up its weight from 0 to its final value during the first 80 epochs as
in [9].
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MixMatch We follow the approach in [1] to train our MixMatch baseline ap-
proach. We apply 3 different augmentations to unlabeled images set (U) and
then computed the average of the predictions across these augmentations. We
use the random strong data augmentations as described in subsection 1 in our
experiments. The average predictions of K different augmentations are used as
labels for the unlabeled images. Then, labeled (L) and unlabeled images with
their targets and predicted labels are shuffled and concatenated to form another
set W which serves as a source for modified MixUp algorithm defined in [12].
Then for each i** labeled image we compute MixUp(L;, W;) and add the result
to a set V’. It contains the MixUp of labeled images with W. Similarly for each
4" unlabeled image, we compute MixUp(U;, W; + |L|) and add the result to
another set U’. It contains the MixUp of unlabeled images with rest of W. A
L. loss between labels and model predictions from V’ and L2 loss between the
predictions and pseudo labels from U’ are used for training.

FixMatch For extending the FixMatch [7] baseline to 3D reconstruction meth-
ods, we primarily follow the same augmentation and consistency regularization
policies laid out in [7]. The images are passed through two different augmen-
tation pathways. In the first pathway, the input images are weakly augmented
and used to obtain the pseudo-labels. In the second pathway, the strongly aug-
mented version of the same images are trained for their representations to be
consistent with the corresponding pseudo-labels. Specifically, for the implemen-
tation of both weak augmentations and strong augmentations, we use the same
as in subsection 1.

4 Qualitative Examples

In the Main paper, we provide qualitative examples from ShapeNet and Pix3D
dataset. Here we have included some more samples from the two datasets to show
the superiority of our methods over the competing baseline methods. Fig. 1 and
Fig. 2 contain the example of single-view 3D reconstruction for ShapeNet and
Pix3D with 10% labelling ratios, respectively.

5 Additional Experiments

Ablation of Prototype Intuitively, increasing the number of prototypes may
help learn more powerful shape priors, but this increases the computational cost
of attention module. In our experiments we find that when gradually increasing
the number of prototypes from 3 to 10, the performance improvement of the
model is limited. Concretely, in the 1% labeling-ratio of ShapeNet setting, the
mloU varies from 46.83% to 47.22% with different number of prototypes, and
thus we set the number of prototypes to 3 for the efficiency.
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Table 1. The comparison of 50% labelling ratio (mIoU %).

‘ Supervised ‘ MeanTeacher ‘ FixMatch ‘ Ours

ShapeNet| 612 | 623 | 629 [64.2
Pix3D | 448 | 451 | 456 [47.5

Experiments of 50% label setting The experimental comparison under 50%
label is shown in Table 1. It is worth pointing out that since the amount of
available data (labeled plus unlabeled) is fixed, the number of unlabeled data
decreases as we increase the ratio of labeled data, so the gain of the model is not
as large as 10% setting.
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Fig. 1. Examples of single-view 3D Reconstruction on ShapeNet with 10% labels.
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Fig. 2. Examples of single-view 3D Reconstruction on Pix3D with 10% labels.



