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Abstract. This paper studies the discontinuity preservation problem in
recovering a surface from its surface normal map. To model discontinu-
ities, we introduce the assumption that the surface to be recovered is
semi-smooth, i.e., the surface is one-sided differentiable (hence one-sided
continuous) everywhere in the horizontal and vertical directions. Under
the semi-smooth surface assumption, we propose a bilaterally weighted
functional for discontinuity preserving normal integration. The key idea
is to relatively weight the one-sided differentiability at each point’s two
sides based on the definition of one-sided depth discontinuity. As a re-
sult, our method effectively preserves discontinuities and alleviates the
under- or over-segmentation artifacts in the recovered surfaces compared
to existing methods. Further, we unify the normal integration problem in
the orthographic and perspective cases in a new way and show effective
discontinuity preservation results in both cases1.

Keywords: Normal integration, discontinuity preservation, semi-
smooth surface, one-sided differentiability, photometric shape recovery

1 Introduction

Photometric shape recovery aims at high-fidelity three-dimensional (3D) surface
reconstruction by exploiting the shading information. Representative methods
include photometric stereo [29] and shape from polarization [17]. These methods
typically estimates shape in the form of a surface normal map (Fig. 1(a)). To
recover the 3D surface, it is needed to integrate the surface normals, which is
called the normal integration problem [24]. Therefore, the normal integration
plays a key role in photometric surface recovery.

Despite the importance, most normal integration methods are limited to re-
covering smooth surfaces. Namely, the target surface is assumed differentiable
(hence continuous) everywhere [3,24,33]. However, this assumption is violated
when the depths abruptly change at the occlusion boundaries, as shown in
Fig. 1(b) and (c). In such a case, applying a method with the smooth surface
assumption [3] yields distorted surfaces, as shown in Fig. 1(d).
1 Source code is available at https://github.com/hoshino042/bilateral_normal_
integration.
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Fig. 1. The discontinuity preservation problem in normal integration. (a) RGB color-
coded normal map rendered by a perspective camera2. (b,c) Corresponding ground
truth surface (front and side views). The red box highlights the depth gap at occlu-
sion boundary. (d) Under the smooth surface assumption [3], the integrated surface
is wrongly connected at occlusion boundary. (e) Under the semi-smooth surface as-
sumption, our method preserves large depth gaps at occlusion boundary even in the
perspective case.

Unfortunately, preserving the discontinuities in normal integration remains
an open problem. So far, several assumptions on the discontinuities have been
introduced to ease the problem. By assuming that discontinuities exist sparsely,
robust estimators-based methods have been studied [2,7]. By assuming that dis-
continuity locations are short curves in the integration domain, the Mumford-
Shah weighted approach has been proposed [25]. However, these methods can be
fragile depending on scenes as they only statistically model the discontinuities,
while the distribution of discontinuity locations of real surfaces can be arbitrary.

This paper instead introduces the semi-smooth surface assumption, which
models the depth discontinuity directly from its definition. We assume that even
if the surface is discontinuous at a point, it is discontinuous at only one side
but not both sides of the point. To determine the discontinuous side for each
point, we design a weight function based on the definition of one-sided depth
discontinuity. Intuitively, if the depth gap at one side of a point is much larger
than the other side, then the side with a larger depth gap is more likely to
be discontinuous. We will show that this weight function design idea can be
naturally derived from the semi-smooth surface assumption.

Under the semi-smooth surface assumption, we propose a bilaterally weighted
functional for discontinuity preserving normal integration. In our functional, we
approximate the normal vector observed at a point from that point’s two sides
in each of the horizontal and vertical directions. Using our weight functions,
the unreliable approximation from the discontinuous side is ignored, while the
reliable approximation from the continuous side is kept. In this way, the surface

2 “The Thinker by Auguste Rodin” CC BY 4.0. https://sketchfab.com/3d-models/
the-thinker-by-auguste-rodin-08a1e693c9674a3292dec2298b09e0ae.
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can be accurately recovered without being affected by discontinuities. As our
functional considers and compares the two sides of each point, we term our
method as “bilateral” normal integration (BiNI).

Experimental results show that our method can faithfully locate and preserve
discontinuities over the iterative optimization. Our method also reduces the num-
ber of hyperparameters that are needed in existing methods [2,25] to only one,
which makes it easy to use in practice. In addition, we present a new unification
of the normal integration problem in the orthographic and perspective cases,
which allows us to treat the two cases in the same manner by our bilaterally
weighted functional. While existing discontinuity preservation methods focus on
the orthographic case [2,25,31], we confirm effective discontinuity preservation
results for the first time in the perspective case, as shown in Fig. 1(e).

In summary, this paper’s contributions are

– a bilaterally weighted functional under the semi-smooth surface assumption,
– its numerical solution method, which can effectively preserve the discontinu-

ities, and
– new unified normal integration equations that cover both orthographic and

perspective cases.

2 Proposed method

The goal of normal integration is to estimate the depth or height map of a
surface given its normal map and corresponding camera projection parameters.
In this section, we first derive the unified partial differential equations (PDEs)
relating the depth map to its normal map in the orthographic and perspective
cases in Section 2.1. We then describe our semi-smooth surface assumption and
present the bilaterally weighted functional in Section 2.2. Finally, we present in
Section 2.3 the solution method for the proposed functional. We will discuss our
method’s differences to the related work in Section 3.

2.1 Unified normal integration equations

Let p = [x, y, z]⊤ ∈ R3 be a surface point in a 3D space, and n(p) =
[nx, ny, nz]

⊤ ∈ S2 ⊂ R3 be the unit surface normal vector at the surface point p.
When the surface is observed by a camera, the surface point and its normal vector
are projected in the image plane with coordinates u = [u, v]⊤ ∈ R2. Therefore,
we can parameterize the surface and its normal map as vector-valued functions
p(u) = [x(u), y(u), z(u)]⊤ and n(u) = [nx(u), ny(u), nz(u)]

⊤ respectively. By
definition, the normal vector n(u) is orthogonal to the tangent plane to the sur-
face at the point p(u). Hence, n(u) is orthogonal to the two tangent vectors in
the tangent plane at p(u):

n⊤∂up = 0 and n⊤∂vp = 0. (1)

Here, ∂u and ∂v are partial derivatives with respect to u and v, and we omit the
dependencies of p and n on u for brevity.
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We consider the normal maps observed on a closed and connected subset Ω in
the image plane (i.e., u ∈ Ω ⊂ R2) under orthographic or perspective projection.
We now discuss the problem formulation in these two cases.

Orthographic case: Under orthographic projection,

p(u) =

 u
v

z(u)

 , ∂up =

 1
0

∂uz

 , and ∂vp =

 0
1

∂vz

 . (2)

Inserting Eq. (2) into Eq. (1) results in a pair of PDEs

nz∂uz + nx = 0 and nz∂vz + ny = 0. (3)

Perspective case: Let f be the camera’s focal length and [cu, cv]
⊤ be the

coordinates of the principal point in the image plane, the surface is then
p(u) = z(u) [(u− cu)/f, (v − cv)/f, 1]

⊤. The two tangent vectors are

∂up =

[
1
f ((u−cu)∂uz+z)

1
f (v−cv)∂uz

∂uz

]
and ∂vp =

[
1
f (u−cu)∂vz

1
f ((v−cv)∂vz+z)

∂vz

]
. (4)

Similar to [6,7,24], we introduce a log depth map z̃(u) satisfying z(u) =
exp(z̃(u)) to unify the formulations. By chain rule, we have

∂uz = z∂uz̃ and ∂vz = z∂v z̃. (5)

Plugging Eq. (5) into Eq. (4) leads to

∂up = z

[
1
f ((u−cu)∂uz̃+1)

1
f (v−cv)∂uz̃

∂uz̃

]
and ∂vp = z

[
1
f (u−cu)∂v z̃

1
f ((v−cv)∂v z̃+1)

∂v z̃

]
. (6)

Further plugging Eq. (6) into Eq. (1) cancels out z. Rearranging the remaining
terms yields {

(nx(u− cu) + ny(v − cv) + nzf)∂uz̃ + nx = 0

(nx(u− cu) + ny(v − cv) + nzf)∂v z̃ + ny = 0
. (7)

Denoting ñz = nx(u− cu) + ny(v − cv) + nzf simplifies Eq. (7) as

ñz∂uz̃ + nx = 0 and ñz∂v z̃ + ny = 0, (8)

which are in the same form as the orthographic counterpart Eq. (3). We can pre-
compute ñz from the normal map and camera parameters. Once the log dpeth
map z̃ is estimated, we can exponentiate it to obtain the depth map z.

We have unified the PDEs in the orthographic and perspective cases as
Eqs. (3) and (8). In Sections 2.2 and 2.3, we will not distinguish between ortho-
graphic and perspective cases.
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2.2 Bilaterally weighted functional

We now describe our bilaterally weighted functional for discontinuity preserving
normal integration. The proposed functional can be applied to either Eq. (3) or
(8) depending on the camera projection model. Without loss of generality, we
will use the notations in Eq. (3) hereafter. To pave the way for the bilaterally
weighted functional under the semi-smooth surface assumption, we first discuss
the traditional quadratic functional under the smooth surface assumption.

When assuming a smooth surface, the target surface is differentiable every-
where, i.e., the partial derivatives ∂uz and ∂vz exist everywhere. We can therefore
minimize the quadratic functional to find the depth map

min
z

∫∫
Ω

(nz∂uz + nx)
2
+ (nz∂vz + ny)

2
du dv. (9)

When a function is differentiable at a point, it is also one-sided differentiable at
the point’s two sides. The one-sided partial derivatives hence exist at both sides
of the point horizontally (∂+

u z and ∂−
u z) and vertically (∂+

v z and ∂−
v z), and are

equal to the partial derivative, i.e., ∂+
u z = ∂−

u z = ∂uz and ∂+
v z = ∂−

v z = ∂vz.
Therefore, the quadratic functional (9) under the smooth surface assumption is
equivalent to

min
z

∫∫
Ω

0.5(nz∂
+
u z + nx)

2 + 0.5(nz∂
−
u z + nx)

2

+0.5(nz∂
+
v z + ny)

2 + 0.5(nz∂
−
v z + ny)

2 du dv,

(10)

where the one-sided partial derivatives are defined as

∂+
u z = lim

h→0+

z(u+h,v)−z(u,v)
h , ∂−

u z = lim
h→0−

z(u+h,v)−z(u,v)
h ,

∂+
v z = lim

h→0+

z(u,v+h)−z(u,v)
h , ∂−

v z = lim
h→0−

z(u,v+h)−z(u,v)
h .

(11)

Considering the one-sided differentiability at a point’s two sides leads to our
semi-smooth surface assumption. We assume a semi-smooth surface can be in-
differentiable (hence discontinuous) at and only at one side of a point in each of
the horizontal and vertical directions. As illustrated in Fig. 2, this assumption
contains three cases. At differentiable points, a semi-smooth surface is also guar-
anteed to be both left- and right-differentiable (Fig. 2 (a), both ∂+

u z and ∂−
u z

exist). Unlike a smooth surface, a semi-smooth surface can be one-sided indiffer-
entiable at one-sided discontinuous points (Fig. 2 (b) and (c), either ∂+

u z or ∂−
u z

exists)3. On the other hand, a semi-smooth surface does not contain any point
that is indifferentiable from its both sides in the horizontal or vertical direction
(Fig. 2 (d) and (e), the case neither ∂+

u z nor ∂−
u z exists is not allowed).

3 This requirement is stricter than jump discontinuity, which requires the one-sided
limits exist but are unequal at a point’s two sides. Fig. 2 (b), (c), and (e) are jump
discontinuity examples, but a semi-smooth surface allows only Fig. 2 (b) and (c).



6 X. Cao et al.

𝑧

𝑢

𝜕!"𝑧 𝜕!#𝑧

𝑧

𝑢

𝜕!"𝑧

𝜕!#𝑧❌
𝑧

𝑢

𝜕!"𝑧

𝜕!#𝑧 ❌

𝑧

𝑢

𝜕!"𝑧 𝜕!#𝑧❌ ❌

𝑧

𝑢

𝜕!"𝑧

𝜕!#𝑧❌

❌

(a) (b) (c) (d) (e)

Fig. 2. A semi-smooth surface allows and only allows a point to be indifferentiable at
one side. At a point, a semi-smooth surface can be (a) left and right differentiable, (b,c)
only left or right differentiable, but cannot be (d,e) neither left nor right differentiable.
Black dots indicate the function values; black circles indicate the one-sided limits; red
cross indicate the non-existence of the one-sided partial derivatives.

Under the semi-smooth surface assumption, we propose the bilaterally
weighted functional

min
z

∫∫
Ω

wu(nz∂
+
u z + nx)

2 + (1− wu)(nz∂
−
u z + nx)

2

+wv(nz∂
+
v z + ny)

2 + (1− wv)(nz∂
−
v z + ny)

2 du dv,

(12)

where wu and wv indicate the one-sided differentiability at each point’s two sides:

wu =


1 (only right diff.)
0.5 (left & right diff.)
0 (only left diff.)

and wv =


1 (only upper diff.)
0.5 (upper & lower diff.)
0 (only lower diff.)

. (13)

The bilaterally weighted functional (12) states that, for example, when the
depth map is left but not right differentiable at a point, the data term is kept at
the left side but ignored at the right side. When the depth map is differentiable
at a point, the data terms at the two sides are equally weighted. This relative
weighting thus covers all possible cases at every point in a semi-smooth surface.

Now, the problem is how to determine the surface’s one-sided differentiability
at each point. To this end, we use the fact that one-sided differentiability requires
one-sided continuity. For example, a function being right (in)differentiable at a
point must be right (dis)continuous at that point. A function being one-sided
continuous at a point requires the function value at that point to be equal to the
limit approached from the corresponding side. Formally, denote the differences
between the function value and one-sided limits at a point as

∆+
u z = z(u, v)− lim

h→0+
z(u+ h, v), ∆−

u z = z(u, v)− lim
h→0−

z(u+ h, v),

∆+
v z = z(u, v)− lim

h→0+
z(u, v + h), ∆−

v z = z(u, v)− lim
h→0−

z(u, v + h).
(14)

The function is right continuous if ∆+
u z = 0 or right discontinuous if ∆+

u z ̸= 0;
so for the left, upper, and lower continuity. To further judge which side of a point
is discontinuous by one function, we can compare the one-sided continuity at the
point’s two sides. As detailed in Fig. 3, the surface is continuous at a point if



Bilateral normal integration 7

𝑧

𝑢

lim
!→#!

𝑧(𝑢 + ℎ)lim
!→#"

𝑧(𝑢 + ℎ)
𝑧(𝑢)

𝑧

𝑢

lim
!→#!

𝑧(𝑢 + ℎ)

lim
!→#"

𝑧(𝑢 + ℎ)

𝑧(𝑢)

𝑧

𝑢

𝑧(𝑢)

lim
!→#!

𝑧(𝑢 + ℎ)

lim
!→#"

𝑧(𝑢 + ℎ)

∆−
u z = 0, ∆+

u z = 0 ∆−
u z = 0, ∆+
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H[(∆−
u z)2 − (∆+
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Fig. 3. Our weight function wu = H[(∆−
u z)

2 − (∆+
u z)

2] compares the one-sided conti-
nuity at a point’s two sides and can indicate all three cases in a semi-smooth surface.
(a) wu = 0.5 when left and right continuous. (b) wu = 0 when left continuous and
right discontinuous. (c) wu = 1 when left discontinuous and right continuous.

(∆−
u z)

2 − (∆+
u z)

2 = 0, only left continuous if (∆−
u z)

2 − (∆+
u z)

2 < 0, and only
right continuous if (∆−

u z)
2 − (∆+

u z)
2 > 0. By wrapping this difference with a

Heaviside step function H(x) = {1 if x > 0; 0.5 if x = 0; 0 if x < 0}, we have our
weight functions in the horizontal and vertical directions:

wu = H((∆−
u z)

2 − (∆+
u z)

2) and wv = H((∆−
v z)

2 − (∆+
v z)

2). (15)

It can be verified that the weight functions Eq. (15) take values as Eq. (13).

2.3 Solution method

This section presents the discretization of the bilaterally weighted functional (12)
and the weight functions Eq. (15) and derives a solution method given the normal
map observed in the discrete pixel domain, i.e., Ω ⊂ Z2. In the following, we
will not distinguish the symbols between the continuous and discrete cases.

Discretization: We first discretize the one-sided partial derivatives Eq. (11) by
forward or backward differences, i.e., plugging h = 1 or −1 into Eq. (11):

∂+
u z ≈ z(u+ 1, v)− z(u, v), ∂−

u z ≈ z(u, v)− z(u− 1, v),

∂+
v z ≈ z(u, v + 1)− z(u, v), ∂−

v z ≈ z(u, v)− z(u, v − 1).
(16)

We then approximate the one-sided limits by the depth values at adjacent pixels,
and Eq. (14) becomes

∆+
u z ≈ nz(z(u, v)− z(u+ 1, v)), ∆−

u z ≈ nz(z(u, v)− z(u− 1, v)),

∆+
v z ≈ nz(z(u, v)− z(u, v + 1)), ∆−

v z ≈ nz(z(u, v)− z(u, v − 1)).
(17)

Here, the depth differences are scaled by nz to measure the difference along the
normal direction at the point. To avoid the step function always taking binary
values in the discrete domain (i.e., treating every pixel as one-sided discontinu-
ous), we approximate the step function by a sigmoid function:

H(x) ≈ σk(x) =
1

1 + e−kx
, (18)
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where the parameter k controls the sharpness of the sigmoid function. Combining
Eqs. (16) to (18) together, we have the discretized bilaterally weighted functional

min
z(u,v)

∑
Ω

σk

(
(∆−

u z)
2 − (∆+

u z)
2
)
(nz∂

+
u z + nx)

2

+σk

(
(∆+

u z)
2 − (∆−

u z)
2
)
(nz∂

−
u z + nx)

2

+σk

(
(∆−

v z)
2 − (∆+

v z)
2
)
(nz∂

+
v z + ny)

2

+σk

(
(∆+

v z)
2 − (∆−

v z)
2
)
(nz∂

−
v z + ny)

2.

(19)

In (19), we use the sigmoid function’s property 1 − σk(x) = σk(−x) to make it
more compact. Intuitively, the optimization problem (19) states that if the depth
difference at one side of a pixel is much larger than the other side, then the larger
side is more likely to be discontinuous, and correspondingly the quadratic data
term is less weighted at the discontinuous side.

Optimization: The optimization problem (19) is non-convex due to the weights
being non-linear sigmoid functions of unknown depths. To solve (19), we use it-
eratively re-weighted least squares (IRLS) [12]. To describe the iteration process,
we first prepare the matrix form of (19).

Let z, nx, ny, and nz ∈ Rm be the vectors of z(u), nx(u), ny(u), and
nz(u) from all |Ω| = m pixels serialized in the same order. Let diag(x) be
the diagonal matrix whose i-th diagonal entry is the i-th entry of x, and denote
Nz = diag(nz). We can write the optimization problem (19) in the matrix form
as

min
z

(Az− b)⊤W(z)(Az− b) (20)

with

A =


NzD

+
u

NzD
−
u

NzD
+
v

NzD
−
v

 , b =


−nx

−nx

−ny

−ny

 , and W(z) = diag




wu(z)
1−wu(z)
wv(z)

1−wv(z)


 , (21)

where

wu(z) = σk

[
(NzD

−
u z)

◦2 − (NzD
+
u z)

◦2] ,
wv(z) = σk

[
(NzD

−
v z)

◦2 − (NzD
+
v z)

◦2] . (22)

Here, the four matrices D+
u , D−

u , D+
v , and D−

v ∈ Rm×m are discrete partial
derivative matrices. The i-th row either contains only two non-zero entries −1
and 1 or is a zero vector if the adjacent pixel of i-th pixel is outside the domain
Ω; more details can be found in [25]. Besides, 1 ∈ Rm is an all-one vector, σk(·)
is now the element-wise version of the sigmoid function Eq. (18), and (·)◦2 is an
element-wise square function on a vector.

At each step t during the optimization, we first fix the weight matrix W(z(t))
and then solve for the depths z:

z(t+1) = argmin
z

(Az− b)⊤W(z(t))(Az− b). (23)
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When W(z(t)) is fixed, Eq. (23) boils down to a convex weighted least-squares
problem. We can find z(t+1) by solving the normal equation of Eq. (23)

A⊤W(z(t))Az = A⊤W(z(t))b. (24)

The matrix A is rank 1 deficient; the 1D nullspace basis is an all-one vector,
corresponding to the offset ambiguity in the result. In the perspective case, the
offset ambiguity becomes scale ambiguity after exponentiating the result. In our
implementation, we use a conjugate gradient method [11] to solve Eq. (24).

We initialize z(0) as a plane, or equivalently, initialize all weights as 0.5.
The estimated depth map at the first step z(1) is then the same as the one es-
timated under the smooth surface assumption, i.e., using the functional (10).
Denoting the energy of the objective function at step t as Et = (Az(t) −
b)⊤W(z(t))(Az(t) − b), we terminate the iteration once the relative energy
|Et − Et−1|/Et−1 is smaller than the user-provided tolerance or the maximum
number of iterations is exceeded.

3 Related work

This section briefly reviews related works and discusses the differences between
our method and existing methods.

Unified normal integration equations: Since the emergence of the normal inte-
gration problem [13,16], the majority of the methods estimates the depth map
based on the PDEs

∂uz − p = 0 and ∂vz − q = 0, (25)

where [p, q]⊤ = [−nx

nz
,−ny

nz
]⊤ is the gradient field computed from the normal

map. By introducing the log depth map z̃, we can unify the PDEs in the
perspective case as the same form as Eq. (25), with a different gradient field
[p̃, q̃]⊤ = [−nx

ñz
,−ny

ñz
]⊤ [6,7,24]. The normal integration problem is therefore also

called shape/height/depth from gradient [2,8,9,10,14,19,21,26].
Equation (25) is derived from the constraint that a normal vector should be

parallel to the cross product of the two tangent vectors n ∥ ∂uz × ∂vz. Alter-
natively, Zhu and Smith [33] derived the PDEs from the orthogonal constraint
Eq. (1) and found it benefits numerical stability. However, Zhu and Smith [33]
derived inconsistent PDEs in the orthographic and perspective cases. In the
perspective case, Zhu and Smith [33] solves a homogeneous system using sin-
gular value decomposition, which can be more time consuming than solving an
inhomogeneous system in the orthographic case.

We combine the strength of both derivations. Like Zhu and Smith [33],
we derive the PDEs from the orthogonal constraint for numerical stability.
Like [6,7,24], we introduce the log depth map to unify the formulations. In this
way, we can solve the normal integration problem in the two cases in the same
manner while being numerically more stable4.
4 See experiments in the supplementary material.



10 X. Cao et al.

Discontinuity preserving surface recovery: We now discuss two strategies for
discontinuity preservation: Robust estimator-based and weighted approaches.

As the residuals of Eq. (25) become large at discontinuous points, robust
estimator-based methods apply robust functions ρ to the data terms as

min
z

∫∫
Ω

ρ (∂uz − p) + ρ (∂vz − q) du dv. (26)

Properly designed ρ-functions that can suppress the influence of large residu-
als are expected to preserve the discontinuities. Lorentzian function [6], total
variation [23], and triple sparsity [2] have been studied.

Instead of applying robust functions, weighted approaches assign the weights
to quadratic residuals of PDEs to eliminates the effects of discontinuities:

min
z

∫∫
Ω

wu (∂uz − p)
2
+ wv (∂vz − q)

2
du dv. (27)

If the data terms at discontinuous points are appropriately assigned smaller
weights, then the discontinuities are expected to be preserved.

A class of weighted approaches detects discontinuous points as a preprocess-
ing step before optimizing (27). The major differences among these works are
the clues used for discontinuity detection. Karacali and Snyder [18] detect the
discontinuity based on the residuals of Eq. (25). Wu and Tang [30] use the expec-
tation–maximization algorithm to estimate a discontinuity map from the normal
map. Wang et al. [28] detect a binary discontinuity map using both photometric
stereo images and the normal map. Xie et al. [31] handcraft features from the
normal map. The one-time detection can be fragile as there is no scheme to
correct possibly wrong detection in the optimization afterward.

A more effective type of weighted approach iteratively updates the weights.
Alpha-surface method [1] first creates a minimal spanning tree from the integra-
tion domain, then iteratively adds to the spanning-tree the edges that are treated
continuous. Anisotropic diffusion [1,25] applies diffusion tensors to the gradient
field. Quéau et al. [25] design the diffusion tensors as functions of depths, and
the diffusion tensors are iteratively updated during optimization. Mumford-Shah
integrator [25] bypasses the detection by jointly optimizing for the weights and
depths by assuming that discontinuities are short curves in the domain.

Our method can be categorized as the weighted approach. Unlike previous
methods, we assume a semi-smooth target surface and relatively weight the one-
sided differentiability at each point’s two sides. Our weights are iteratively up-
dated during the optimization, which is different to the methods determining the
weights once before the optimization [28,30,31]. Further, unlike most methods
determining the weights without depth information, our weights are functions of
unknown depths and thus are adaptively determined during the optimization.

4 Comparison

To verify our method’s effectiveness, this section compares our method to exist-
ing ones using synthetic and real-world normal maps in orthographic and per-
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spective cases. Readers can find more experimental analysis and the discussion
on the limitations of our method in the supplementary material.

4.1 Experimental settings

Baselines: We compare our method to six methods. The first one assumes
smooth surfaces and uses inverse plane fitting (IPF) [3]. The remaining five
methods all aim at discontinuity preservation using triple sparsity (TS) [2], total
variation (TV) [25], robust estimator (RE)5 [25], Mumford-Shah (MS) [25], and
anisotropic diffusion (AD) [25].

Implementation: We use the publicly available official implementations6 of
IPF [3] and the four discontinuity preservation methods presented in [25]. We
use the five-point version of IPF, and there is no hyperparameter. For the hy-
perparameters of TV, RE, MS, AD methods, we follow the suggestions in [25]:
α = 0.1 in TV, γ = 0.5 and β = 0.8 in RE, µ = 45 and ϵ = 0.01 in MS, and
µ = 0.2 and ν = 10 in AD. We implement TS [2] by ourselves and following the
hyperparameter setup in the paper [2]. For our method, there is one hyperpa-
rameter k in the objective function, and we set k = 2. The maximum iteration
number and stopping tolerance of IRLS are set as 100 and 1×10−5, respectively.

Metric: When the ground-truth (GT) surfaces are available, we show the ab-
solute depth error maps and report the mean absolute depth error (MADE)
between the integrated and GT depth maps. To remove the offset ambiguity in
the orthographic case, we shift the integrated surfaces such that the L1 norm
between the shifted and the GT depth maps is minimal. We similarly remove
the scale ambiguity by scaling the integrated surfaces in the perspective case.

4.2 Results in the orthographic case

Figure 4 shows quantitative comparisons on synthetic orthographic normal maps.
The first normal map (top rows) is analytically computed, while the second
one (bottom rows) is rendered from the object “Reading” in DiLiGenT-MV
dataset [20] by the Mitsuba renderer [22]. Restricted by the smooth surface
assumption, the IPF method [3] only recovers smooth surfaces as expected.
When the target surface contains large depth gaps, the recovered surfaces by
the IPF method [3] are heavily distorted. Compared to the IPF method [3], the
TS [2] and TV method [25] marginally improve the result. The TS [2] and TV
method [25] under-segments the surface and cannot faithfully locate all discon-
tinuities. On the other hand, both the RE and MS methods [25] can identify
unnecessary or incorrect discontinuity locations and thus introduce the over-
segmentation artifacts into the recovered surfaces. The AD method [25] performs
5 The method we call robust estimator is called non-convex estimator in [25].
6 https://github.com/hoshino042/NormalIntegration
https://github.com/yqueau/normal_integration

https://github.com/hoshino042/NormalIntegration
https://github.com/yqueau/normal_integration
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GT surface &
normal map IPF [3] TS [2] TV [25] RE [25] MS [25] AD [25] BiNI (Ours)

high

low

1

0
0.254 0.256 0.255 0.252 0.249 0.220 0.001

high

low

1

0
0.229 0.216 0.216 0.214 0.221 0.166 0.018

Fig. 4. Quantitative comparison using an analytically computed and a Mitsuba-
rendered normal map as input. The odd and even rows display the integrated surfaces
and absolute depth error maps, respectively. Numbers underneath are MADEs.

better at identifying discontinuity locations but suffers from the distortion prob-
lem. The distortion is clear in Fig. 4 (top). The ideally straight stripes recovered
by the AD method [25] are still bent, although the discontinuities are well lo-
cated. In contrast, our method locates discontinuity and reduces the under- or
over-segmentation artifacts in the surfaces. As a result, our method achieve the
smallest MADEs among all compared methods on both surfaces.

Figure 5 shows a qualitative comparison on real-world orthographic normal
maps obtained in three applications. The first normal map is estimated by pho-
tometric stereo [15] on the real-world images from Light Stage Data Gallery [4];
the second one is estimated by shape from polarization [5]; and the third one is
inferred from a single RGB human image by learning-based method [32]. Con-
sistent with the trends for synthetic normal maps, the results by the baseline
methods suffer from under- or over-segmentation artifacts. Our method can still
preserves discontinuities reasonably well for noisy real-world normal maps. This
experiment demonstrates the wide application of our method.

In addition, our method can be easier to use in practice. Compared to ex-
isting discontinuity preservation methods, our method reduce the number of
hyperparameter from six [2] or two [25] to only one.

4.3 Results in the perspective case

Figure 6 shows the quantitative comparison on a Mitsuba-rendered normal map
with a perspective camera model. The TV, RE, MS, and AD methods [25] all
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Input normals IPF [3] TS [2] TV [25] RE [25] MS [25] AD [25] BiNI (Ours)

Fig. 5. Qualitative comparison of surfaces integrated from real-world noisy normal
maps, which are estimated by (1st row) photometric stereo [15] (2nd row) shape
from polarization [5]. (3rd row) a deep network inferred from a single RGB human
image [32]. Best viewed on screen.

GT surface &
normal map IPF [3] Init. [25] TV [25] RE [25] MS [25] AD [25] BiNI (Ours)

high

low

5

0
3.08 4.02 4.02 4.01 4.02 4.03 0.45

Fig. 6. Quantitative comparison using synthetic perspective normal maps rendered
from Stanford Bunny. We additionally show the initialization (3rd column) for the TV,
RE, MS, and AD methods [25]. The four methods do not improve the initialization
and do not preserve discontinuities in the perspective case.

initialize the surface by solving the quadratic Poisson equation [25], as shown in
the third column in Fig. 6. However, we can barely see the difference between
the initialization and final results of the four methods. As the four methods [25]
are all based on the traditional unified formulations Eq. (25), it is likely that
the traditional formulation Eq. (25) is unsuitable for the discontinuity preserva-
tion methods in the perspective case. In contrast, based on our unified formula-
tion Eq. (8), our bilaterally weighted functional still preserves discontinuities in
the perspective case.

Figure 7 shows integration results from the GT perspective normal maps
in DiLiGenT benchmark [27]. We again observe that the TV, RE, MS, and
AD methods [25] do not improve the initialization; therefore, we only display
the results from the IPF method [3] and our method. Compared to the IPF
method [33], our method preserves the discontinuities and largely reduces the
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Fig. 7. Quantitative comparison on DiLiGenT benchmark [27]. (1st & 2nd rows) The
input perspective normal maps and GT surfaces. Viewpoints of surfaces are adjusted to
emphasize discontinuities. (3rd & 4th rows) Surfaces integrated by IPF method [3]
and absolute depth error maps. The colormap scale is the same for the first eight
objects. (5th & 6th rows) Surfaces integrated by our method and absolute depth
error maps. Numbers underneath are MADEs [mm].

distortion. The MADEs are within 1 mm except for two objects (“Harvest” and
“Goblet”). Especially, we achieve 0.07mm MADE for the object “Cow.” To our
knowledge, our discontinuity preservation method is the first to be effective in
the perspective case.

5 Conclusions

We have presented and evaluated bilateral normal integration for discontinu-
ity preserving normal integration. Compared to existing methods, our method
preserves discontinuities more effectively and alleviates the under- or over-
segmentation artifacts. The effectiveness of our method relies on the bilaterally
weighted functional under the semi-smooth surface assumption. Further, we have
unified the normal integration formulations in the orthographic and perspec-
tive cases appropriately. As a result, we have first shown effective discontinuity
preservation results in the perspective case.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Num-
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