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A Proof of the Manhattan Lines Orientation in Cubemap

Proposition. Given a panoramic image of a 3D room, if the following two
assumptions holds:

1. The Manhattan world assumption, i.e., all of the walls, the ceiling and the
floor must be perpendicular to each other, and all of the intersection lines of
them must be parallel with one of the coordinate axes of some orthogonal
coordinate space (named Manhattan space).

2. The input image must be aligned, i.e., the camera of each cubemap tile faces
precisely to one of the walls, and its optical axis is parallel with one of the
coordinate axes of the Manhattan space.

and the cubemap of the panoramic images is generated by making E2P transform
six times with azimuth angle u = 0°,90°,180°, —90°,0°,0° and elevation angle
v = 0°,0°,0°,0°,90°, —90° respectively and FoV= 90° for all cubemap tiles,
then for any of the lines in the wireframe of the 3D room, it must be either a
horizontal line (f = 0), a vertical line (¢ = 7/2) or a line passing the center
(p = 0) in the cubemap tiles.

(i) Preliminary. Coordinate Definition. Two coordinate space is defined:
the 3D space and the image space, as Fig. 1 shows. In the 3D space, the position
of the panoramic camera is the origin, the y axis is along the optical axis of the
camera, the z axis points to the ceiling vertically, and the = axis is orthogonal
to the y axis points to the right. In the image space, the center of the image is
the origin, the x axis points to the right and the y axis points to the bottom.
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(a) 3D Space (b) Image Space

Fig. 1: Coordinate space definition of 3D space and image space.

(ii) Proof. Coordinate Transform from the 3D Space to the Image
Space. Given a coordinate p in the 3D space, to get its coordinate ¢ in the image
space of a specific cubemap view, we can first apply the observation transform:

r= (Mqu)_l P (1)

in which M, is the rotation matrix representing rotation along the z axis by
angle u, and M, is the rotation matrix representing rotation along the = axis by
angle v:
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Then we can apply the projection:
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in which ¢ = (gq, qy)T is the coordinate in the image space, 14,y is the x,y com-
ponents of 7, ap, ay is the FoV in horizontal and vertical direction respectively,
and h,w is the height and width of the image.

Since ap, ay = 90°, from Eq. (1) (2) (3), we have

e = w P cos(u) + py sin(w)
N 2 —pg cos(v) sin(u) + py cos(v) cos(u) + p; sin(v) (4)
g = h —pe sin(v) sin(u) + py sin(v) cos(u) — p- cos(v)
2 —pg cos(v) sin(u) + py cos(v) cos(u) + p- sin(v)
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(iii) Conclusion. Manhattan Line Orientation. Take the cubemap tile at
the front of the camera, which corresponds to u = 0°,v = 0°, as an example. By
substituting « and v into Eq. (4), we get

U P
. =

2 py

_h —p. (5)
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For a horizontal wireframe line which is along the x axis in the 3D space,
take any two points p; = (pgﬂ,pyhpzl)—r and pg = (pgcg,pyhpzl)—r on the line
(Notice that the two points has the same y and z coordinates). By Eq. (5), we

— (w . Pzx h =P w  Pz2 h =P
have q1 =\3 pzivz' p,,zll) 42 = ( P21’2'ﬁ) g1 and qg have the same

cubemap tile.
For a vertical wireframe line which is along the z axis in the 3D space, take

any two points p3 = (pes,Pys;P=3) and py = (pa3,pys,pz4)’ . Similarly by

_ (w  pz3 h  —p23 _ w . Pz3 h | —Pza
Eq. (5), we have g3 = (2 P2 Tpes ) 4= Pys’ 2 ys

the same x and different y coordinate in the i 1mage space, so it is a vertical line
in the cubemap tile.
Finally, for a horizontal wireframe line which is along the y axis in the 3D

space, take any two points ps = (D5, Pys, P=5) | and ps = (Dus, Pys, P25) | - Sim-

3 — Pzs5 h  —P=zs — Pzs h =Pz
ilarly by Eq. (5), we have ¢5 = (% T2 ﬂ)’ g6 = (% pyz,§ . T;)
Naturally, we have Z’*" 8 = Zuhpllz: = qy" 0 , o the three points g5, g¢ and (0,0)

lie on the same line, i.e. the line passmg q5 and gg must be a line that passes
the center of the cubemap tile.

Similarly, the proposition can also be proved for the other cubemap tiles by
substituting the u and v into Eq. (4), and derive the point coordinates in the
image space for each of the three directions of lines in the 3D space.

) , which have

B Implementation Details

B.1 Hough Voting for Lines Passing the Center

Given a channel of the features of a cubemap tile X € R"**_in our implemen-

tation, the vector generated by Manhattan Hough Transform C e R2("+%)  with
each of the bins in C representing a line which starts at the center (x = 0,y = 0)
and ends at a bin on the border of the image (z = xo,y = ¥o), in which either
g =¥ 5,40 € Zor g € Z,yo = i . Note that in our experiment, h = w = 512.

For each line, if it intersects the border of the image on the left or the right,
i.e. Ay < Aw, the value in the bin of the Hough vector C is the sum of % values
correspondlng to 3 points whose coordinate x is integer. For each 1nteger xr, we
calculate the y coordlnate (which may not be integer). If y € Z, the value of
this point is naturally defined as the pixel X[z, y]. (The brackets “[ ]” denote
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Block Output Channels Output Size
blockl 32 256 x 256
block2 64 128 x 128
block3 128 64 x 64
block4 256 64 x 64
blockb 512 64 x 64

Table 1: Summary of the feature maps output by each block of the encoder.

the index of the feature map.) If y ¢ Z, the value of this point is defined as the
linear interpolation of the two pixel X[z, |y]|] and X[z, [y]].

When the line intersects the border of the image on the top or the bottom,
i.e. Ax < Ay, the definition is similar except that the points used for summation
is selected by coordinate y being integer.

B.2 Network Structure

Here we introduce our network structure in detail. Our Network can be divided
into three parts: feature extractor, Manhattan Hough Head and output modules.

Feature Extractor. In the following example, we take DRN-38[10] as the
encoder. The structure of the encoder blocks are summarized in Tab. 1.

Manhattan Hough Head. We extract multi-scale features from the encoder.
We obtain five feature maps of different scales and feed them into the corre-
sponding Manhattan Hough Head module. The network contains five separate
Manhattan Hough Heads. In Tab. 2, we take the output of blockl of the encoder,
i.e. encoder .blockl, as an example to introduce the structure of the Manhattan
Hough Head. The final three layers, convid H.2, convld V.2 and convid _C.2
generates the three output feature vectors H, V and C of the Manhanttan Hough
Head respectively.

Output Modules. The final module processes the three types of feature vectors
of H, V and C to obtain probabilities. We take the output module corresponding
to H as an example to introduce the detailed structure. Since feature vectors from
each Manhattan Hough Head have different size, they must be upsampled before
being concatenated. Specifically, the channels of the output by each Manhattan
Hough Head are 16,32, 64,128,256 respectively. Denote H] is the H feature
vectors output by the n-th Manhattan Hough Head after being upsampled, the
structure of the output module is shown in Tab. 3. Note that there are another
two separate output modules for V and C , whose structures are the same except
for output size.
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Layer Input Channels Output k p BN Act.
Size
conv2d H encoder.blockl 32—16 256x256 1x1 0 v ReLU
conv2d._V encoder.blockl 32—16 256 x256 1x1 0 v ReLU
conv2d_C encoder.blockl 32—16 256x256 1x1 0 v ReLU
MH_H conv2d_H 16—16 256
MHV conv2d V 16—16 256
MH_C conv2d_C 16—16 1024
convid H.1 MH_H 16—16 256 3 1 v ReLU
convid V.1 MHV 16—16 256 3 1 v ReLU
convid C.1 MHC 16—16 1024 3 1 v ReLU
convid H.2 convid H.1 16—16 256 3 1 v ReLU
convld V.2 convid V.1 16—16 256 3 1 v ReLU
convid C.2 convid C.1 16—16 1024 3 1 v ReLU

Table 2: Manhattan Hough Head Architecture. For all layers we show
the input and the number of channels. For convolution layers, we additionally
show the kernel size (k), the padding (p), batch normalization (BN), and the

activation function (Act.). The stride of convolution is set to 1.

Layer Input Channels Output p BN Act.
Size
concat H HI H] HI] HI H] 164+32+64+128+256=496 512
convid H.1 concat_H 496—248 512 1 v ReLU
convid H.2 convid H.1 248248 512 0 v ReLU
convid H.3 convid.H.2 248—1 512 0 Sigmoid

Table 3: Output Modules Architecture. For all layers we show the input
and the number of channels. For convolution layers, we additionally show the
kernel size (k), the padding (p), batch normalization (BN), and the activation
function (Act.). The stride of convolution is set to 1.

B.3 Post-processing

We explain the pipeline in Fig. 2 that can handle cuboid and non-cuboid rooms.

1. We convert probabilities to lines by finding the prominent peaks using
scipy.signal.find peaks.
2. Each camera-to-wall distance and room height, i.e. T', are optimized here.
The parameterized layout T, is transformed by projection 7 onto each tile to
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maximize the overall probability according to the network’s line probability
output S, i.e., E(T;S) = ||=(T) — S||.

3. Necessity: Each wall is overdetermined by the raw output (i.e. three types

of lines). We convert lines to room height and the camera-to-wall distances
T, to make the problem determined.

. For a MW room, we consider the room walls oriented in an x-y alternation.
As the input is axis-aligned, the orientations of other walls can be determined
successively, so there is no need for the additional plane normal parameter.

5. In Tab. 4, we add an ablation of different optimization steps to demonstrate

the necessity of post-processing.

]
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Fig. 2: Post-processing pipeline.

#0pt. Steps 3D 10U
PanoContext Stanford 2D-3D
0 83.65 81.66
10 84.72 83.04
50 85.30 84.36
100 85.48 84.93

Table 4: Ablation on number of post-processing optimize steps.

C More Baseline

C.1 Naive Baseline

An intuitive idea is to apply the classical Hough transform to line detection and
then estimate the room layout. However, our experiments demonstrate that this
trivial solution cannot solve the room layout estimation problem effectively.
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We propose two baselines based on classical Hough transform: Standard
Hough Transform (H7-S) [1] and Probabilistic Hough Line Transform (H7-
P) [6]. HT-P improves HT-S, its output format is line segment instead of
the whole line. Specifically, after getting the cubemap of the panoramic im-
age with E2P transform, we first turn the cubemap into a grayscale image
and use Canny [2] to detect edge. Then, the two classical Hough transform
methods are performed on the egde detection result to detect lines, with voting
threshold 100 for H7-S and 50 for H7-P. Though classical Hough transform
detect lines of every direction and offset, we only keep those which are horizon-
tal (|tan(d)| < 0.05), vertical (] cot(d)| < 0.05) or passing the center (p < 5).
Since the lines may be too many to perform post-processing, we filter the lines
by categorizing them into 8 groups according to their possible position in the 3D
space, and keeping only the line with the highest Hough voting value for each
group.

The quantitative result in the PanoContext dataset[L1] is shown in Tab. 5.
The qualitative result is shown in Fig. 3. Though classical Hough transform
methods are possible to detect the intersection lines of the walls in the room,
they may detect more false-positive lines. The lines not only have no benefits to
layout estimation but also make the post-processing module fail to give correct
estimation result. In contrast, our proposed DMH-Net uses Deep Manhattan
Hough Transform which can learn semantic information from the image and
make more accurate detection of the intersection lines of the walls in the room
rather than detecting all lines equally.

Method PanoContext
3DIoU CE PE
HT-S [1] 23.83 7.01 21.49
HT-P [0] 21.78 6.50 17.20
DMH-Net 85.48 0.73 1.96

Table 5: Quantitative results of cuboid room layout estimation evaluated on the
PanoContext dataset [11]. CE means Corner Error, and PE means Pixel Error.

C.2 Baseline Discussion

In the main text, we compare multiple baseline algorithms. To ensure fair com-
parisons, we use the train/test split that most algorithms use commonly. Since
the algorithms proposed in the Zou et al. [13] and LGT-Net [5] both use addi-
tional data in PanoContext and Stanford 2D-3D experiments, we do not quan-
titatively compare such methods for fairness.
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Qualitative results. For HT-S and ‘H7T-P: “Candidate Lines” visualizes

the raw output, and the blue lines are the outputs of Hough transform on the
Canny edge map. “Prediction Lines” visualizes the lines filtered by the thresh-
old. The blue lines represent all the lines, and the red lines represent the line
that meets the threshold. For our method: “Confidence Map” visualizes the raw
output of network. The colored heatmap represents the probability of the Man-
hattan lines (described in Sec. A). “Final Result” visualizes the room layout.
The green lines are ground truth layout while the red lines are estimated.
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D More Model Analysis

D.1 Voting bin size

The number of bins, i.e. bin size, affects the performance. The line predictions
will be coarser when the number of bins is reduced. We add an ablation study
with 1/2 and 1/4 bins in Tab. 6.

4 Bins 3D 10U
PanoContext Stanford 2D-3D
x1 85.48 84.93
x1/2 84.73 83.43
x1/4 83.77 78.81

Table 6: Ablation on number of bins.

D.2 Speed analysis

We provide time profiling per cuboid room sample on a PC with an Intel i7-
8700 CPU and a single NVIDIA 2080Ti GPU. Pre-processing: 0.297s. Network
inference: 0.155s. Post-processing: 0.643s.

E Failure Cases and Limitations

Two failure cases are given in Fig. 4. Though our method can effectively estimate
the 3D room layout for most cases, it also has some limitations. Firstly, our model
predict confidence vectors which varies continuously in the Hough space. Thus,
it is challenge for our method to distinguish two very near parallel lines in the
cubemap tile, as is shown in the cumbmap tile at line 2, column 4 of Fig. 4 (a).
Secondly, our method is still lack of interaction between different cubemap tiles
during training. Finally, when the wall-wall intersection line is less salient than
other lines on the wall, our method may predict incorrect lines, which leads to a
layout estimation error. For example, in Fig. 4 (b), our method predict the lines
between the blue part and the white part as the wall-ceiling intersection lines of
the room.

F More Qualitative Results

F.1 Qualitative Results Compared with Baselines

For thorough comparison with our baselines, we show additional qualitative re-
sults. As illustrated in Fig. 5 and Fig. 6, we provide the qualitative comparison
results with LayoutNet [12,13] and HorizonNet [3] on Stanford 2D-3D dataset [1],
PanoContext dataset [11] and Matterport3D dataset [3].
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Fig. 4: Failure cases of our model. (a) is a non-cuboid sample in the Matterport3D
dataset [3], (b) is a cuboid sample in the PanoContext dataset [11]. The green,
red and blue lines heatmap in cubemap represents the probabilities of Manhattan
line as described in Sec. A. The thin white line in cubemap represents ground
truth. The green lines in equirectangular panorama are ground truth layout and
red lines are predictions.

F.2 Room Layout Comparison with Other Baselines

In addition, we provide the qualitative comparison results with HoHoNet [9] and
AtlantaNet [7] on the Matterport3D dataset [3], as illustrated in Fig. 7.

F.3 3D Visualization

We also show 3D layout visualizations of our predictions to demonstrate the per-
formance of our proposed method. Specifically, Fig. 8 shows the results of Mat-
terport3D dataset [3], and Fig. 9 shows the results of Stanford 2D-3D dataset [1]
and PanoContext dataset [11].
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HorizonNet LayoutNet

Stanford 2D-3D PanoContext
HorizonNet LayoutNet Ours

Ours

HorizonNet LayoutNet

Matterport 3D

Ours

Fig.5: More qualitative results of both cuboid and non-cuboid layout estima-
tion (1). The green lines are ground truth layout while the pink, blue and red
lines are estimated by LayoutNet [12], HorizonNet [8] and our DMH-Net.
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HorizonNet LayoutNet

Matterport 3D Stanford 2D-3D PanoContext
HorizonNet LayoutNet Ours  HorizonNet LayoutNet Ours

Ours

Fig.6: More qualitative results of both cuboid and non-cuboid layout estima-
tion (2). The green lines are ground truth layout while the pink, blue and red
lines are estimated by LayoutNet [12], HorizonNet [8] and our DMH-Net.
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HoHoNet AtlantaNet Ours

Fig. 7: The qualitative results of Matterport3D [3]. The green lines are ground
truth layout while the pink, blue and red lines are estimated by HoHoNet [9],
AtlantaNet [7] and our DMH-Net.
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Fig.8: The 3D visualization results of Matterport3D dataset [3].
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Fig.9: The 3D visualization results of PanoContext dataset [11] and Stanford
2D-3D dataset [1].



16

Y. Zhao et al.

References

10.

11.

12.

13.

. Armeni, I.; Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-semantic data for indoor

scene understanding. arXiv preprint arXiv:1702.01105 (2017) 9, 10, 15

Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679-698 (1986) 7

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3D: Learning from RGB-D data in indoor
environments. Proc. of the International Conf. on 3D Vision (3DV) pp. 667676
(2017) 9, 10, 13, 14

Hough, P.V.: Method and means for recognizing complex patterns (Dec 18 1962),
uS Patent 3,069,654 7

Jiang, Z., Xiang, Z., Xu, J., Zhao, M.: Lgt-net: Indoor panoramic room layout
estimation with geometry-aware transformer network. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 1654-1663 (2022) 7
Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive
probabilistic hough transform. Computer vision and image understanding 78(1),
119-137 (2000) 7

Pintore, G., Agus, M., Gobbetti, E.: Atlantanet: Inferring the 3d indoor layout
from a single 360° image beyond the manhattan world assumption. In: Proc. of
the European Conf. on Computer Vision (ECCV). pp. 432-448 (2020) 10, 13
Sun, C., Hsiao, C.W., Sun, M., Chen, H.T.: Horizonnet: Learning room layout with
1d representation and pano stretch data augmentation. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). pp. 1047-1056 (2019) 9, 11,
12

Sun, C.,; Sun, M., Chen, H.T.: Hohonet: 360 indoor holistic understanding with
latent horizontal features. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). pp. 2573-2582 (2021) 10, 13

Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 636-644 (2017)
4

Zhang, Y., Song, S., Tan, P., Xiao, J.: Panocontext: A whole-room 3d context
model for panoramic scene understanding. In: Proc. of the European Conf. on
Computer Vision (ECCV). pp. 668-686 (2014) 7, 9, 10, 15

Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: Reconstructing the 3d
room layout from a single rgb image. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). pp. 2051-2059 (2018) 9, 11, 12

Zou, C., Su, J.W., Peng, C.H., Colburn, A., Shan, Q., Wonka, P., Chu, HK.,
Hoiem, D.: Manhattan room layout reconstruction from a single 360° image: A
comparative study of state-of-the-art methods. International Journal of Computer
Vision (IJCV) 129(5), 1410-1431 (2021) 7, 9



	Supplementary Materials for3D Room Layout Estimation from a Cubemap of Panorama Image via Deep Manhattan Hough Transform

