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Abstract. Can we relocalize in a scene represented by a single reference
image? Standard visual relocalization requires hundreds of images and
scale calibration to build a scene-specific 3D map. In contrast, we propose
Map-free Relocalization, i.e., using only one photo of a scene to enable
instant, metric scaled relocalization. Existing datasets are not suitable
to benchmark map-free relocalization, due to their focus on large scenes
or their limited variability. Thus, we have constructed a new dataset of
655 small places of interest, such as sculptures, murals and fountains,
collected worldwide. Each place comes with a reference image to serve as
a relocalization anchor, and dozens of query images with known, metric
camera poses. The dataset features changing conditions, stark viewpoint
changes, high variability across places, and queries with low to no visual
overlap with the reference image. We identify two viable families of ex-
isting methods to provide baseline results: relative pose regression, and
feature matching combined with single-image depth prediction. While
these methods show reasonable performance on some favorable scenes in
our dataset, map-free relocalization proves to be a challenge that requires
new, innovative solutions.

1 Introduction

Given not more than a single photograph we can imagine what a depicted place
looks like, and where we, looking through the lens, would be standing relative
to that place. Visual relocalization mimics the human capability to estimate
a camera’s position and orientation from a single query image. It is a well-
researched task that enables exciting applications in augmented reality (AR)
and robotic navigation. State-of-the-art relocalization methods surpass human
rule-of-thumb estimates by a noticeable margin [10,33,53,54,55,58], allowing cen-
timeter accurate predictions of a camera’s pose. But this capability comes with
a price: each scene has to be carefully pre-scanned and reconstructed. First, im-
ages need to be gathered from hundreds of distinct viewpoints, ideally spanning
different times of day and even seasons. Then, the 3D orientation and position
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Fig. 1: Standard relocalization methods build a scene representation from hun-
dreds of mapping images (a). For map-free relocalization (b), only a single photo
(cyan) of the scene is available to relocalize queries. We show ground truth poses
(purple) and estimated poses (yellow) in (b), and we use one estimate to render
a virtual hat on the statue. We achieve these results with SuperGlue [54] feature
matching and DPT [48] depth estimation.

of these images needs to be estimated, e.g., by running structure-from-motion
(SfM) [60,64,81,82] or simultaneous-localization-and-mapping (SLAM) [20,43]
software. Oftentimes, accurate multi-camera calibration, alignment against Li-
DAR scans, high-definition maps or inertial sensor measurements are needed
to recover poses in metric units, e.g., [58,59]. Finally, images and their camera
poses are fed to a relocalization pipeline. For traditional structure-based systems
[33,53,55,57], the final scene representation consists of a point cloud triangulated
from feature correspondences, and associated feature descriptors, see Fig. 1a).

The requirement for systematic pre-scanning and mapping restricts how vi-
sual relocalization can be used. For example, AR immersion might break if a user
has to record an entire image sequence of an unseen environment first, gathering
sufficient parallax by walking sideways, all in a potentially busy public space.
Furthermore, depending on the relocalization system, the user then has to wait
minutes or hours until the scene representation is built. We propose a new flavour
of relocalization, termed Map-free Relocalization. We ask whether the mapping
requirement can be relaxed to the point where a single reference image is enough
to relocalize new queries in a metric coordinate system. Map-free relocalization
enables instant AR capabilities at new locations: User A points their camera at
a structure, takes a photo, and any user B can instantly relocalize w.r.t. user
A. Map-free relocalization constitutes a systematic, task-oriented benchmark for
two-frame relative pose estimation, namely between the reference image and a
query image, see Fig. 1 b).

Relocalization by relative pose estimation is not new. For example, neural
networks have been trained to regress metric relative poses directly from two
images [4,42]. Thus far, such systems have been evaluated on standard relocal-
ization benchmarks where structure-based methods rule supreme, to the extent
where the accuracy of the ground truth is challenged [9]. We argue that we should
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strive towards enabling new capabilities that traditional structure-based meth-
ods cannot provide. Based on a single photo, a scene cannot be reconstructed by
SfM or SLAM. And while feature matching still allows to estimate the relative
pose between two images, the reference and the query, there is no notion of abso-
lute scale [32]. To recover a metric estimate, some heuristic or world knowledge
has to be applied to resolve the scale ambiguity which we see as the key problem.

Next to pose regression networks, that predict metric poses by means of su-
pervised learning, we recognize a second family of methods as suitable for map-
free relocalization. We show that a combination of deep feature matching [54,66]
and deep single-image depth prediction [48,40] currently achieves highest rela-
tive pose accuracy. To the best of our knowledge, this variant of relative pose
estimation has not gained attention in relocalization literature thus far.

While we provide evidence that existing methods can solve map-free relocal-
ization with acceptable precision, such results are restricted to a narrow window
of situations. To stimulate further research in map-free relocalization, we present
a new benchmark and dataset. We have gathered images of 655 places of interest
worldwide where each place can be represented well by a single reference image.
All frames in each place of interest have metric ground truth poses. There are
522,921 frames for training, 36,998 query frames across 65 places for validation,
and 14,778 query frames (subsampled from 73,902 frames) across 130 places in
the test set. Following best practice in machine learning, we provide a public
validation set while keeping the test ground truth private, accessed through an
online evaluation service. This dataset can serve as a test bed for advances in rel-
ative pose estimation and associated sub-problems such as wide-baseline feature
matching, robust estimation and single-image depth prediction.
We summarize our contributions as follows:

– Map-free relocalization, a new flavor of visual relocalization that dispenses
with the need for creating explicit maps from extensive scans of a new envi-
ronment. A single reference image is enough to enable relocalization.

– A dataset that provides reference and query images of over 600 places of in-
terest worldwide, annotated with ground truth poses. The dataset includes
challenges such as changing conditions, stark viewpoint changes, high vari-
ability across places, and queries with low to no visual overlap with the
reference image.

– Baseline results for map-free relocalization using relative pose regression
methods, and feature matching on top of single image-depth prediction. We
expose the primary problems of current approaches to guide further research.

– Additional experiments and ablation studies on ScanNet and 7Scenes datasets,
allowing comparisons to related, previous research on relative pose estima-
tion and visual relocalization.

2 Related Work

Scene Representations in Visual Relocalization: In the introduction, we
have discussed traditional structure-based relocalizers that represent a scene by
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an explicit SfM or SLAM reconstruction. As an alternative, recent learning-based
relocalizers encode the scene implicitly in the weights of their neural networks
by training on posed mapping images. This is true for both scene coordinate re-
gression [62,10,11,12,38,14] and absolute pose regression (APR) [37,36,77,15,61].
More related to our map-free scenario, some relative pose regression (RPR)
methods avoid training scene specific networks [4,73,80]. Given a query, they use
image retrieval [72,3,51,33,46,45,59] to look up the closest database image and
its pose. A generic relative pose regression network estimates the pose between
query and database images to obtain the absolute pose of the query. RPR meth-
ods claim to avoid creating costly scene-specific representations but ultimately
these works do not discuss how posed database images would be obtained with-
out running SfM or SLAM. ExReNet[80], a recent RPR method, shows that
the database of posed images can be extremely sparse, keeping as little as four
strategically placed reference images to cover an indoor room. Although only a
few images make up the final representation, continuous pose tracking is required
when recording them. In contrast, map-free relocalization means keeping only
a single image to represent a scene without any need for pose tracking or pose
reconstruction. The reference image has the identity pose.

Relative Pose by Matching Features: The pose between two images with
known intrinsics can be recovered by decomposing the essential matrix [32].
This yields the relative rotation, and a scaleless translation vector. The essential
matrix is classically estimated by matching local features, followed by robust es-
timation, such as using a 5-point solver [44] inside a RANSAC [26] loop. This ba-
sic formula has been improved by learning better features [41,52,21,74,8], better
matching [54,66] and better robust estimators [47,85,49,13,5,6,67], and progress
has been measured in wide-baseline feature matching challenges [35] and small
overlap regimes.

In the relocalization literature, scaleless pairwise relative poses between the
query and multiple reference images have been used to triangulate the scaled,
metric pose of a query [86,87,80]. However, for map-free relocalization only two
images (reference and query) are available at any time, making query camera
pose triangulation impossible. Instead, we show that estimated depth can be
used to resolve the scale ambiguity of poses recovered via feature matching.

Relative Pose Regression (RPR): Deep learning methods that predict the
relative pose from two input images bypass explicit estimation of 2D correspon-
dences [75,42,24,4,80,1]. Some methods recover pose up to a scale factor [42,80]
and rely on pose triangulation, while others aim to estimate metric relative
pose [4,24,1]. Both RelocNet [4] and ExReNet [80] show generalization of RPR
across datasets by training on data different from the test dataset.

Recently, RPR was applied in scenarios that are challenging for correspondence-
based approaches. Cai et al. [16] focus on estimating the relative rotation be-
tween two images in extreme cases, including when there is no overlap between
the two images. Similarly, the method in [18] estimates scaleless relative pose
for pairs of images with very low overlap. We take inspiration from the methods
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above to create baselines and discuss in more detail the different architectures
and output parameterizations in Section 3.2.

Single-image Depth Prediction: Advances in deep learning have allowed
practical methods for single-image depth estimation, e.g., [23,29]. There are two
versions of the problem: relative and absolute depth prediction. Relative, also
called scaleless, depth prediction aims at estimating depth maps up to an un-
known linear or affine transformation, and can use scaless training data such
as SfM reconstructions [39], uncalibrated stereo footage [83,50] or monocular
videos [88,30]. Absolute depth prediction methods (e.g., [48,40,29,79]) aim to
predict depth in meters by training or fine-tuning on datasets that have abso-
lute metric depth such as the KITTI [28], NYUv2 [63] and ScanNet [19] datasets.
Generalizing between domains (e.g., driving scenes vs. indoors) is challenging as
collecting metric depth in various conditions can be expensive. Moreover, gener-
alization of a single network that is robust to different input image resolutions,
aspect ratios and camera focal lengths is also challenging [25].

Recently, single-image depth prediction was leveraged in some pose estima-
tion problems. In [71], predicted depth maps are used to rectify planar surfaces
before local feature computation for improved relative pose estimation under
large viewpoint changes. However, that work did not use metric depth informa-
tion to estimate the scale of relative poses. Depth prediction was incorporated
into monocular SLAM [69,70] and Visual Odometry [84,17] pipelines to combat
scale drift and improve camera pose estimation. Predicted depths were used as
a soft constraint in multi-image problem, while we use depth estimates to scale
relative pose between two images.

3 Map-free Relocalization

Our aim is to obtain the camera pose of a query image given a single RGB ref-
erence image of a scene. We assume intrinsics of both images are known, as they
are generally reported by modern devices. The absolute pose of a query image
Q is parameterized by R ∈ SO(3), t ∈ R

3, which maps a world point y to point
x in the camera’s local coordinate system as x = Ry + t. Assuming the global
coordinate system is anchored to the reference image, the problem of estimat-
ing the absolute pose of the query becomes one of estimating a scaled relative
pose between two images. Next, we discuss different approaches for obtaining a
metric relative pose between a pair of RGB images. The methods are split into
two categories: methods based on feature matching with estimated depth, and
methods based on direct relative pose regression.

3.1 Feature Matching and Scale from Estimated Depth

The relative pose from 2D correspondences is estimated up to scale via the Es-
sential matrix [32]. We consider SIFT [41] as a traditional baseline as well as
more recent learning-based matchers such as SuperPoint + SuperGlue [54] and
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Fig. 2: Given the reference and query images, we obtain 2D-2D correspondences
using the feature matching method in [54] (a). Inlier correspondences for the
robust RANSAC-based essential matrix computation are visualized in green and
outlier correspondences in red. Estimated monocular depth maps using [48] are
shown in (b). The depth maps can be coupled with the 2D-2D correspondences
to obtain 3D-3D correspondences (c) or 2D-3D correspondences (d), which are
used in the geometric methods discussed in Section 3.1.

LoFTR [66]. To recover the missing scale, we utilize monocular depth estima-
tion. For indoors, we experimented with DPT [48] fine-tuned on the NYUv2
dataset [63] and PlaneRCNN [40], which was trained on ScanNet [19]. For out-
doors, we use DPT [48] fine-tuned on KITTI [28]. Given estimated depth and
2D correspondences we compute scaled relative poses in the following variants.
See also Fig. 2 for an illustration.

(2D-2D) Essential matrix + depth scale (Ess.Mat. + D.Scale): We
compute the Essential matrix using a 5-point solver [44] with MAGSAC++ [6]
and decompose it into a rotation and a unitary translation vector. We back-
project MAGSAC inlier correspondences to 3D using the estimated depth. Each
3D-3D correspondence provides one scale estimate for the translation vector, and
we select the scale estimate with maximum consensus across correspondences,
see the supplemental material for details.

(2D-3D) Perspective-n-Point (PnP): Using estimated depth, we back-
project one of the two images to 3D, giving 2D-3D correspondences. This al-
lows us to use a PnP solver [27] to recover a metric pose. We use PnP within
RANSAC [26] and refine the final estimate using all inliers. We use 2D features
from the query image and 3D points from the reference image.

(3D-3D) Procrustes: Using estimated depth, we back-project both images to
3D, giving 3D-3D correspondences. We compute the relative pose using Orthog-
onal Procrustes [22] inside a RANSAC loop [26]. Optionally, we can refine the
relative pose using ICP [7] on the full 3D point clouds. This variant performs
significantly worse compared to the previous two, so we report its results in the
supplemental material.
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Fig. 3: Overview of the network architecture for RPR. We use a Siamese network
(ResUNet [16]) to extract features from the two input images. Following [16,80],
we compute a 4D correlation volume to mimic soft feature matching. The cor-
relation volume is used to warp the features of the second image and a regular
grid of coordinates (positional encoding). These are concatenated channel-wise
with the first image’s feature map to create the global feature map. The global
volume is fed to four ResNet blocks followed by global average pooling, resulting
in a single 512-dimensional global feature vector. Finally, an MLP generates the
output poses. See supplement for details.

3.2 Relative Pose Regression

Relative pose regression (RPR) networks learn to predict metric relative poses
in a forward pass. We implement a baseline architecture following best practices
reported in the literature [87,80,89] – see Fig. 3, and the supplement for more
details. In the following, we focus on the different output parameterizations and
leave a discussion about losses and other design choices to the supplement.

RPR networks often parameterize rotations as quaternions [24,42,80] (de-
noted as R(q)). [89] argues that a 6D parameterization of rotation avoids
discontinuities of other representations: the network predicts two 3D vectors and
creates an orthogonal basis through a partial Gram-Schmidt process (denoted
as R(6D)). Finally, for rotation, we experiment with Discrete Euler angles
[16], denoted as R(α, β, γ). Following [16], we use 360 discrete values for yaw and
roll, and 180 discrete values for the pitch angle. For the translation vector we
investigate three parameterization options: predicting the scaled translation
(denoted as t), predicting a scale and unitary translation separately (de-
noted as s · t̂), and scale and discretized unitary translation. For the latter
we predict translation in spherical coordinates φ, θ with quantized bins of 1deg
as well as a 1D scale (denoted as s · t̂(φ, θ)). As an alternative which model rota-
tion and translation jointly, we adapt the method of [68] which predicts 3D-3D
correspondences for predefined keypoints of specific object classes. Here, we let
the network predict three 3D-3D correspondences (denoted as [3D − 3D]).
We compute the transformation that aligns these two sets of point triplets using
Procrustes, which gives the relative rotation and translation between the two
images. The models are trained end-to-end until convergence by supervising the
output pose with the ground truth relative pose. We experimented with different
loss functions and weighting between rotation and translation losses. For details,
see supplemental material.
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4 Map-free Relocalization Datasets

In this section, we first discuss popular relocalization datasets and their lim-
itations for map-free relocalization. Then, we introduce the Niantic map-free
relocalization dataset which was collected specifically for the task. Finally, we
define evaluation metrics used to benchmark baseline methods.

4.1 Existing Relocalization Datasets

One of the most commonly used datasets for visual relocalization is 7Scenes [62],
consisting of seven small rooms scanned with KinectFusion [34]. 12Scenes [76]
provides a few more, and slightly larger environments, while RIO10 [78] provides
10 scenes focusing on condition changes between mapping and query images. For
outdoor relocalization, Cambridge Landmarks [37] and Aachen Day-Night [58],
both consisting of large SfM reconstructions, are popular choices.

We find existing datasets poorly suited to benchmark map-free relocalization.
Firstly, their scenes are not well captured by a single image which holds true
for both indoor rooms and large-scale outdoor reconstructions. Secondly, the
variability across scenes is extremely limited, with 1-12 distinct scenes in each
single dataset. For comparison, our proposed dataset captures 655 distinct out-
door places of interest with 130 reserved for testing alone. Despite these issues,
we have adapted the 7Scenes dataset to our map-free relocalization task.

Regarding relative pose estimation, ScanNet [19] and MegaDepth [39] have
become popular test beds, e.g., for learning-based 2D correspondence methods
such as SuperGlue [54] and LoFTR [66]. However, both datasets do not feature
distinctive mapping and query sequences as basis for a relocalization benchmark.
Furthermore, MegaDepth camera poses do not have metric scale. In our exper-
iments, we use ScanNet [19] as a training set for scene-agnostic relocalization
methods to be tested on 7Scenes. In the supplemental material, we also provide
ablation studies on metric relative pose accuracy on ScanNet.

4.2 Niantic Map-free Relocalization Dataset

We introduce a new dataset for development and evaluation of map-free relo-
calization. The dataset consists of 655 outdoor scenes, each containing a small
‘place of interest’ such as a sculpture, sign, mural, etc, such that the place can
be well-captured by a single image. Scenes of the dataset are shown in Fig. 4.

The scenes are split into 460 training scenes, 65 validation scenes, and 130
test scenes. Each training scene has two sequences of images, corresponding to
two different scans of the scene. We provide the absolute pose of each training
image, which allows determining the relative pose between any pair of training
images. We also provide overlap scores between any pair of images (intra- and
inter-sequence), which can be used to sample training pairs. For validation and
test scenes, we provide a single reference image obtained from one scan and
a sequence of query images and absolute poses from a different scan. Camera
intrinsics are provided for all images in the dataset.
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Training Validation Test

(a)  (c) (b) Query images Query images Ref. imageRef. image

Fig. 4: Niantic map-free relocalisation dataset. (a) Dataset overview. Training
(460 scenes), validation (65) and test (130) thumbnails. Better seen in color
and magnified in electronic format. (b) Examples of training pairs sampled from
training scenes. (c) Reference frame (enclosed in blue) and an example of query
images. Query sequences have been sampled at relative temporal frames: 0%,
25%, 50%, 75% and 100% of the sequence duration.

The Niantic map-free dataset was crowdsourced from members of the pub-
lic who scanned places of interest using their mobile phones. Each scan con-
tains video frames, intrinsics and (metric) poses estimated by ARKit (iOS) [2]
or ARCore (Android) [31] frameworks and respective underlying implementa-
tions of Visual-Inertial Odometry and Visual-Inertial SLAM. We use automatic
anonymization software to detect and blur faces and car license plates in frames.
Scans were registered to each other using COLMAP [60]. First, we bundle ad-
just the scans individually by initializing from raw ARKit/ARCore poses. Then,
the two 3D reconstructions are merged into a single reconstruction by matching
features between scans, robustly aligning the two scans and bundle adjusting
all frames jointly. We then compute a scale factor for each scan, so that the
frames of the 3D reconstructions of each scan would (robustly) align to the
raw ARKit/ARCore poses. Finally, the 3D reconstruction is rescaled using the
average scale factor of the two scans. Further details are provided in supple-
mental material. Poses obtained via SfM constitute only a pseudo ground truth,
and estimating their uncertainty bounds has recently been identified as an open
problem in relocalization research [9]. However, as we will discuss below, given
the challenging nature of map-free relocalization, we evaluate at much coarser
error threshold than standard relocalization works. Thus, we expect our results
to be less susceptible to inaccuracies in SfM pose optimization.

The places of interest in the Niantic map-free dataset are drawn from a
wide variety of locations around the world and captured by a large number of
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Fig. 5: Niantic map-free dataset statistics. (a) Geographic location of scans. (b)
Time elapsed between two different scans from the same scene. (c) Visual overlap
between training frames estimated using co-visible SfM points, inspired by [54].
(d) Sample of different dataset trajectories seen from above. Each plot represents
one scene and shows two different trajectories corresponding to two different
scans, one in each color. The direction of the arrows represent the camera viewing
direction. Each trajectory has been subsampled for visualization. (e) Relative
pose distribution between reference image and query images in the test set.

people. This leads to a number of interesting challenges, such as variations in the
capture time, illumination, weather, season, and cameras, and even the geometry
of the scene; and variations in the amount of overlap between the scans. Fig. 5
summarizes these variations.

4.3 Evaluation Protocol

Our evaluation protocol consists of rotation, translation and reprojection errors
computed using ground truth and estimated relative poses that are predicted for
each query and reference image pair. Given estimated (R, t) and ground truth
(Rgt, tgt) poses, we compute the rotation error as the angle (in degrees) between
predicted and ground truth rotations, #(R,Rgt). We measure the translation
error as the Euclidean distance between predicted c and ground truth cgt camera
centers in world coordinate space, where c = −RT t.

Our proposed reprojection error provides an intuitive measure of AR con-
tent misalignment. We were inspired by the Dense Correspondence Reprojec-
tion Error (DCRE) [78] which measures the average Euclidean distance between
corresponding original pixel positions and reprojected pixel positions obtained
via back-projecting depth maps. As our dataset does not contain depth maps
we cannot compute the DCRE. Hence, we propose a Virtual Correspondence
Reprojection Error (VCRE): ground truth and estimated transformations are
used to project virtual 3D points, located in the query camera’s local coordinate
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system. VCRE is the average Euclidean distance of the reprojection errors:

VCRE =
1

|V|

�

v∈V

�

�π(v)− π(TT−1
gt v)

�

�

2
with T = [R|t], (1)

where π is the image projection function, and V is a set of 3D points in camera
space representing virtual objects. For convenience of notation, we assume all
entities are in homogeneous coordinates. To simulate an arbitrary placement of
AR content, we use a 3D grid of points for V (4 in height, 7 in width, 7 in depth)
with equal spacing of 30 cm and with an offset of 1.8m along the camera axis. See
supplemental material for a video visualisation, and an ablation showing that
DCRE and VCRE are well-aligned. In standard relocalization, best methods
achieve a DCRE below a few pixels [9]. However, map-free relocalization is more
challenging, relying on learned heuristics to resolve the scale ambiguity. Thus,
we apply more generous VCRE thresholds for accepting a pose, namely 5% and
10% of the image diagonal. While a 10% offset means a noticeable displacement
of AR content, we argue that it can still yield an acceptable AR experience.

Our evaluation protocol also considers the confidence of pose estimates. Con-
fidence enables the relocalization system to flag and potentially reject unreliable
predictions. This is a crucial capability for a map-free relocalization system to
be practical since a user might record query images without any visual overlap
with the reference frame. A confidence can be estimated as the number of in-
lier correspondences in feature matching baselines. Given a confidence threshold,
we can compute the ratio of query images with confidence greater-or-equal to
the threshold, i.e., the ratio of confident estimates or the ratio of non-rejected
samples. Similarly, we compute the precision as the ratio of non-rejected query
images for which the pose error (translation, rotation) or the reprojection er-
ror is acceptable (below a given threshold). Each confidence threshold provides
a different trade-off between the number of images with an estimate and their
precision. Models that are incapable of estimating a confidence will have a flat
precision curve.

5 Experiments

We first report experiments on the 7Scenes [62] dataset, demonstrating that
our baselines are competitive with the state of the art when a large number of
mapping images is available. We also show that as the number of mapping images
reduces, map-free suitable methods degrade more gracefully than traditional
approaches. Additional relative pose estimation experiments on ScanNet [19]
are reported in the supplement, to allow comparison of our baselines against
previous methods. Finally, we report performance on the new Niantic map-free
relocalization dataset and identify areas for improvement.

5.1 7Scenes

First, we compare methods described in Sec. 3.1 and Sec. 3.2 against traditional
methods when all mapping frames are available. Fig. 6a shows impressive scores
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Fig. 6: 7Scenes results. (a) Using all mapping frames. Dataset-specific (7Scenes)
methods in green, trained on SUNCG [65] in yellow, and trained on Scannet [19]
in blue. (b) 10 and 1 mapping frame scenarios: precision curves (top), cumulative
density of reprojection error (bottom). Dashed vertical lines indicate 1%, 5% and
10% of the image diagonal, correspondingly 8px, 40px and 80px.

of structure-based DSAC* [14] (trained with depth from PlaneRCNN [40]),
hLoc [53] and ActiveSearch [56,57]. When 5 reference frames can be retrieved
for each query using DenseVLAD [72] (following [87]), triangulation-based rela-
tive pose methods are competitive with structure-based methods, especially in
average median rotation error. See results for EssNet[87], ExReNet[86] and our
feature matching and triangulation baselines, denoted by △.

Closer to map-free relocalization, if for each query frame, we retrieve a sin-
gle reference frame from the set of mapping images, the accuracy of metric
relative pose estimation becomes more important, see the sections for relative
pose regression (RPR) and Feature Matching+D.Scale in Fig. 6a. Unsurprisingly,
methods in both families slightly degrade in performance, with Feature Matching
+ D.Scale methods beating RPR methods. However, all baselines remain com-
petitive, despite depth [40] and RPR networks being trained on ScanNet [19]
and evaluated on 7Scenes. High scores for all methods in Fig. 6a are partially
explainable by the power of image retrieval and good coverage of the scene.

In map-free relocalization, the query and reference images could be far from
each other. Thus, we evaluate the baselines on heavily sparsified maps, where
metric relative pose accuracy is more important. We find the K most representa-
tive reference images of each scene by K-means clustering over DenseVLAD [72]
descriptors of the mapping sequence. In Fig. 6b we show results for K = 10 and
K = 1, where K = 1 corresponds to map-free relocalization. We show precision
curves using a pose acceptance threshold of VCRE < 10% of the image diagonal
(i.e., 80px). We also plot the cumulative density of the VCRE. Unsurprisingly,
pose triangulation methods fare well even when K = 10 but cannot provide
estimates when K = 1. For K = 1, Feature Matching+D.Scale outperforms the
competition. Specifically, SuperGlue (Ess.Mat.+ D.Scale) recovers more than
50% of query images with a reprojection error below 40px.
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DSAC* remains competitive in sparse regimes, but it requires training per
scene, while the other baselines were trained on ScanNet. Both ScanNet and
7Scenes show very similar indoor scenes. Yet, single-image depth prediction
seems to generalize better across datasets compared to RPR methods, as Fea-
ture Matching+D.Scale methods outperform RPR baselines both with K = 10
and K = 1 scenarios. RPR methods perform relatively well for larger accuracy
thresholds but they perform poorly in terms of precision curves due to their lack
of estimated confidence. Further details on all baselines, qualitative results and
additional ablation studies can be found in the supplement.

5.2 Niantic map-free relocalization dataset

Fig. 7 shows our main results on the Niantic map-free dataset. As seen in Fig 7
a, b and c, this dataset is much more challenging than 7Scenes for all methods.
This is due to multiple factors: low overlap between query and reference images;
the quality of feature matching is affected by variations in lighting, season, etc;
and the use of single-image depth prediction networks trained on KITTI for
non-driving outdoor images.

In Fig. 7d and 7e we show results of the best methods in each family of
baselines: RPR with 6D rotation and scaled translation parameterization and
SuperGlue (Ess.Mat.+D.Scale). SuperGlue (Ess.Mat.+D.Scale) in Fig. 7e re-
ports a median angular rotation below 10◦ for a large number of scenes. In these
cases, the high variance of the median translation error is partly due to the
variance of depth estimates. Further improvement of depth prediction methods
in outdoor scenes should improve the metric accuracy of the translation error.
Qualitative examples in Fig 7f shows where depth improvements could produce
better results: both the angular pose and the absolute scale in the first row are
accurate, while the second row has good angular pose and bad absolute scale.

The RPR method in Fig. 7d exhibits a different behavior: the average an-
gular error is lower than for Feature Matching+D.Scale baselines, yet it rarely
achieves high accuracy. This is also evident in Fig. 7 c, where Feature Match-
ing+D.Scale methods outperform RPR methods for stricter thresholds, but de-
grade for broader thresholds. Indeed, when the geometric optimization fails due
to poor feature matches, the estimated scaleless pose can be arbitrarily far from
the ground truth. In contrast, RPR methods fail more gracefully due to adher-
ing to the learned distribution of relative poses. For example, in Fig. 7c allowing
for a coarser VCRE threshold of 10% of the image diagonal, the [3D − 3D]
and [R(6D)+ t] variants overtake all methods, including feature matching-based
methods. Hence, RPR methods can be more accurate than feature matching at
broad thresholds, but they offer lower precision in VCRE at practical thresholds.

RPR methods currently do not predict a confidence which prevents detecting
spurious pose estimates, e.g., when there is no visual overlap between images, as
illustrated in the supplement. Although feature matching methods can estimate
the confidence based on the number of inliers, the precision curves in Fig. 7a
show that these confidences are not always reliable. Further research in modeling
confidence of both families of methods could allow to combine their advantages.
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Fig. 7: Our dataset results. (a,b) Precision plots using pose error (a) and VCRE
(b) thresholds. (c) VCRE CDF, vertical lines indicate 1, 5 and 10% of the image
diagonal, corresp. 9px, 45px and 90px.(d,e) Scatter plot of median angular vs
translation error for each scene, estimated using RPR [R(6D)+t] (d) and SG [54]
Ess.Mat.+D.scale (e). Each point represents a scene, and the colormap shows
precision for pose error threshold 25cm, 5◦. (f) Qualitative results: the reference
frame and three queries are shown for two scenes. The top view shows the ground
truth (solid line, no fill) and estimated poses (dashed line, filled).

6 Conclusion and Future Work

We have proposed map-free relocalization, a new relocalization task. Through
extensive experiments we demonstrate how existing methods for single-image
depth prediction and relative pose regression can be used to address the task with
some success. Our results suggest some directions for future research: improve
the scale estimates by improving depth estimation in outdoor scenes; improve
the accuracy of metric RPR methods; and derive a confidence for their estimates.

To facilitate further research, we have presented the Niantic map-free relocal-
ization dataset and benchmark with a large number of diverse places of interest.
We define an evaluation protocol to closely match AR use cases, and make the
dataset and an evaluation service publicly available.

As methods for this task improve, we hope to evaluate at stricter pose error
thresholds corresponding to visually more pleasing results. A version of map-
free relocalization could use a burst of query frames rather than a single query
frame to match some practical scenarios. Our dataset is already suitable for this
variant of the task, so we hope to explore baselines for it in the future.
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Brian McClendon and their teams, for help with validating and anonymizing the
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20. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time globally consistent 3D reconstruction using on-the-fly surface reintegration.
ACM TOG (2017) 2

21. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-net: A trainable CNN for joint detection and description of local features. In:
CVPR (2019) 4

https://developer.apple.com/documentation/arkit/configuration\_objects/understanding_world_tracking
https://developer.apple.com/documentation/arkit/configuration\_objects/understanding_world_tracking


16 E. Arnold et al.

22. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transforma-
tions: A comparison of four major algorithms. Mach. Vision Appl. (1997) 6

23. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: NeurIPS (2014) 5

24. En, S., Lechervy, A., Jurie, F.: RPNet: An end-to-end network for relative camera
pose estimation. In: ECCVW (2018) 4, 7

25. Facil, J.M., Ummenhofer, B., Zhou, H., Montesano, L., Brox, T., Civera, J.: CAM-
Convs: Camera-aware multi-scale convolutions for single-view depth. In: CVPR
(2019) 5

26. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM (1981) 4, 6

27. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for
the perspective-three-point problem. IEEE TPAMI (2003) 6

28. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In: CVPR (2012) 5, 6

29. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: CVPR (2017) 5

30. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth prediction. In: ICCV (2019) 5

31. Google: ARCore, https://developers.google.com/ar/develop/fundamentals,
Accessed: 6 March 2022 9

32. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
university press (2003) 3, 4, 5

33. Humenberger, M., Cabon, Y., Guerin, N., Morat, J., Revaud, J., Rerole, P., Pion,
N., de Souza, C., Leroy, V., Csurka, G.: Robust image retrieval-based visual local-
ization using Kapture (2020) 1, 2, 4

34. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,
J., Hodges, S., Freeman, D., Davison, A., et al.: Kinectfusion: real-time 3D recon-
struction and interaction using a moving depth camera. In: ACM UIST (2011)
8

35. Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K.M., Trulls, E.: Image
Matching across Wide Baselines: From Paper to Practice. IJCV (2020) 4

36. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with
deep learning. CVPR (2017) 4

37. Kendall, A., Grimes, M., Cipolla, R.: Posenet: A convolutional network for real-
time 6-DOF camera relocalization. In: CVPR (2015) 4, 8

38. Li, X., Wang, S., Zhao, Y., Verbeek, J., Kannala, J.: Hierarchical scene coordinate
classification and regression for visual localization. In: CVPR (2020) 4

39. Li, Z., Snavely, N.: Megadepth: Learning single-view depth prediction from internet
photos. In: CVPR (2018) 5, 8

40. Liu, C., Kim, K., Gu, J., Furukawa, Y., Kautz, J.: PlaneRCNN: 3D plane detection
and reconstruction from a single image. In: CVPR (2019) 3, 5, 6, 12

41. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
4, 5

42. Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E.: Relative camera pose estimation
using convolutional neural networks. In: International Conference on Advanced
Concepts for Intelligent Vision Systems (2017) 2, 4, 7

43. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense
surface mapping and tracking. In: ISMAR (2011) 2

https://developers.google.com/ar/develop/fundamentals


Map-free Visual Relocalization 17

44. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE
TPAMI (2004) 4, 6

45. Pion, N., Humenberger, M., Csurka, G., Cabon, Y., Sattler, T.: Benchmarking
image retrieval for visual localization. In: 3DV (2020) 4
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