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1 Overview

This supplementary document is structured as follows: In Section 2 we provide
a formal description of our viewpoint regularization; In Section 3 we provide
more experimental results on Pix3D [12]; In Section 4 we empirically quantify
the value of using category labels as opposed to multi-view supervision; In Sec-
tion 5 we present additional SOTA comparison on ShapeNet-13; In Section 6 we
analyze the benefits of multi-category learning over category-specific learning;
In Section 7 we give implementation and training details for our model; In Sec-
tion 8 we discuss the limitations of our approach and in Section 9 we present
additional qualitative results on our large-scale ShapeNet-55 renderings.

2 Viewpoint regularization via cycle-consistency

In this section, we provide a more detailed description of our viewpoint regular-
ization. To regularize the viewpoint predictor, we require the viewpoint predic-
tor to accurately predict the viewpoint of randomly rendered images. Different
from real images, we can render an arbitrary number of images by sampling
viewpoints with a given shape and texture. This can be thought of as creating
pseudo data-label pairs for the viewpoint predictor.

Formally, given shape fS , texture field fT and a random viewpoint vr, we
render an image Î = R(fS ,fT ,vr). The goal is to minimize the distance between
vr and v̂r = V (Î). With the trigonometric function representation, we maximize
the cosine similarity between vr and v̂r by minimizing

Lcam = 1− ⟨vr , v̂r⟩ = 1− ⟨vr ,V (R(fS ,fT ,vr))⟩, (1)

where ⟨· , ·⟩ denotes dot product. In practice, we apply this regularization on
the reconstructed image Irecon and the randomly rendered image Irnd, together
with the viewpoints that render them. This is computationally efficient as both
images are also used in adversarial regularization. We use Lcam only to regularize
the viewpoint prediction module, as we stop the gradients from Lcam to shape,
texture and rendering modules.



2 Z. Huang et al.

Predicted Viewpoint
Random Viewpoint

Texture 𝒇𝒇𝑻𝑻Shape 𝒇𝒇𝑺𝑺

𝓛𝓛𝑐𝑐𝑐𝑐𝑐𝑐

Rendering in
Random Pose

Fig. 1: Viewpoint regularization of our method. With a given shape and tex-
ture field, we sample a random viewpoint and render an image as the input to
our viewpoint predictor. The viewpoint predictor is then supervised with the
randomly sampled viewpoint, which forms a consistency cycle.

3 Additional Experiments on Pix3D

We additionally evaluate our methods on Pix3D [12]. For Pix3D, we use 4 cat-
egories including bookcase, chair, table and wardrobe. We split the data with a
70/10/20 percentage into training, validation and testing similar to our experi-
ments on ShapeNet. We compare our method to SDF-SRN [5] and Ye et al. [15]
on Pix3D, as shown in Table 1 and Fig. 2. Again, it is clear that our method
outperforms the SOTA methods quantitatively and qualitatively. These results
further verify the effectiveness of our proposed method.

Input Ye et al. SDF-SRN Ours GT

Fig. 2: Qualitative comparison on Pix3D. Our method learns both better global
3D structure and shape details on various categories.
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Table 1: Quantitative result measured by CD and F-score on Pix3D. Our method
performs favorably to other SOTA methods.

Methods F-Score@1.0↑ F-Score@5.0↑ F-Score@10.0↑ CD↓
SDF-SRN [5] 0.1370 0.5622 0.7996 0.625
Ye et al. [15] 0.1325 0.5308 0.7994 0.585
Ours 0.1745 0.6604 0.8988 0.421

4 Quantifying the value of category labels

We further quantify the value of category label for the Multi-Category Single-
View (MCSV) reconstruction task in this section. Our goal is to compare our
method with category-guided shape metric learning with a model trained with
multi-view supervision (more than a single view available per object instance).
In this section, we train all models without adversarial regularization or the
viewpoint predictor. We assume the viewpoint is known in this set of experi-
ments. The baseline models are trained using an additional view as supervision.
We follow a similar training process as [9] by randomly sampling a view per
object for each epoch. To empirically determine the value of category labels, we
vary the portion of the data that has multi-view annotations and compare that
to our single-view category guided model. The quantitative results are shown in
Figure 3. As shown in the figure, having access to category labels can roughly
lead to the reconstruction accuracy using 15% to 20% two-view annotation, mea-
sured by Chamfer Distance. Given the availability of category label compared
to multi-view data, we believe that this is a promising finding.

5 Additional Comparison on ShapeNet-13

In this section, we provide additional comparison to SDF-SRN, Ye et al. [15]
and MCMR [11] on ShapeNet-13.

We first compare our method to Ye et al. and MCMR using our original
setting, where viewpoints are unknown during training. We train Ye et al. in
their category-specific way (13 different models). We train MCMR with category
labels as supervision, where we also attach a viewpoint predictor to their model
(the predictor use the same trigonometric representation as ours). The results
in table 2 show that our method outperforms Ye et al. and MCMR significantly.
In our experiments with unknown viewpoints, MCMR fails to disentangle shape
from viewpoint, where most shapes only explain input views.

We provide further comparison to SDF-SRN and MCMR under known view-
points, where we assume the viewpoints are given during training (similar to
the setup in original SDF-SRN and MCMR). With this setup, we do not use
viewpoint predictor or adversarial regularization in our model because the shape-
viewpoint entanglement is not present anymore. As shown in table 3, our method
still outperforms SDF-SRN and MCMR significantly.
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Fig. 3: We evaluate the value of category label in MCSV reconstruction with
camera pose. Under this quantitative evaluation, we show the category label
will lead to similar performance of having access to around 15% to 20% two-
view annotation.

Table 2: Additional comparison measured by CD and F-score on ShapeNet-13.
Methods F-Score@1.0↑ F-Score@5.0↑ F-Score@10.0↑ CD↓
MCMR [11] 0.0977 0.4054 0.6354 0.941
Ye et al. [15] 0.1349 0.5419 0.7777 0.669
Ours 0.2005 0.7168 0.8949 0.430

6 Benefit of multi-category shape learning

In this section we analyze the benefits of multi-category (MC) learning over
category-specific (CS) learning. There are 3 reasons we advocate for MC learning:
1) MC learning is the key to avoiding the limitation of linear scaling in the
number of models w.r.t. number of categories; 2) Learning category-agnostic
features benefits shape generalization to unseen classes; 3) Although learning
MC shapes in a single model is more challenging, effective category guidance
can enable MC models to outperform CS models on seen classes as well.

We perform additional experiments on ShapeNet-13 to support these bene-
fits. We train both MC and CS models on 3 major categories (car, chair and
plane). When tested on the same categories, MC outperforms CS (table 4), even
though CS requires extra category labels during inference and three times the
memory. We further evaluate generalization performance of both models on 2
unseen categories, bench and vessel. We use oracle for CS models, where we se-
lect the best-performing model separately for each unseen category. In table 5,
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Table 3: Additional comparison measured by CD and F-score on ShapeNet-13
with known viewpoints.

Methods F-Score@1.0↑ F-Score@5.0↑ F-Score@10.0↑ CD↓
MCMR w/ V [11] 0.2529 0.7338 0.9025 0.418
SDF-SRN w/ V [5] 0.2695 0.7742 0.9217 0.364
Ours w/ V 0.3162 0.8162 0.9410 0.324

Table 4: MC vs. CS models on seen categories.
Methods F-Score@1.0↑ F-Score@5.0↑ F-Score@10.0↑ CD↓
CS 0.2339 0.7634 0.9366 0.362
MC 0.2777 0.8120 0.9399 0.331

the superior performance of MC on unseen categories demonstrates that MC
learning can benefit generalization.

Table 5: MC vs. CS models on unseen categories.
Methods F-Score@1.0↑ F-Score@5.0↑ F-Score@10.0↑ CD↓
CS 0.1536 0.6022 0.8478 0.540
MC 0.1901 0.6676 0.8718 0.479

7 Implementation details

In this section, we provide more details about our architecture, loss function,
training and evaluation.

7.1 Network architecture

Our architecture of image encoder, shape/texture module as well as the differen-
tiable renderer share a similar design to SDF-SRN [5], while shape and texture
modules are made more lightweight for computational efficiency. The image en-
coder and the viewpoint predictor are based on ResNet18 [2]. The hypernetwork
that generates the weights of shape and texture field from latent code is a set
of 6-layer MLPs of hidden dimension 512. Each MLP in this set generates the
weights of a single layer of either shape or texture. The MLP representing fS

also has a 6-layer structure, with first 4 hidden layer 64 neurons and last hidden
layer 32 neurons. The texture MLP has 2 layers, with a hidden dimension of 128.
It is conditioned on the shape embedding following [14]. Note that both shape
and texture MLPs use Positional Encoding [8] to encode input coordinates for
better details. The differentiable renderer we use is from SDF-SRN [5], where a
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LSTM [3] learns to perform the ray marching steps. The LSTM predicts a step
length for each rendering step based on local implicit feature as input and previ-
ous steps encoded as hidden state. We follow IDR [14] (equation 7) to render the
extra alpha channel, where we use the negative minimum SDF value on each ray
with Sigmoid to represent the alpha value. In practice, we use the minimum SDF
value from the ray-marcher steps instead of sampling numerous depths for each
ray, and the SDF value is scaled by 30 before Sigmoid to increase the sharpness
of the mask.

7.2 Loss function

Our overall loss function is a weighted summation of the reconstruction loss,
regularization losses and the losses that facilitate the learning of the renderer
and the shape field as in SDF-SRN [5]:

Ltotal = Lrecon + λ1Lmetric + λ2Lgan + λ3Lcam + λ4LSDF−SRN (2)

In our experiments, we set λ2 = 0.2, λ3 = 0.03, λ4 = 1 for all datasets. We
use a λ1 of 0.1 for ShapeNet-55 and Pix3D, 0.05 for ShapeNet-13 and 0.03 for
Pascal3D+. Lrender itself is a weighted summation of several losses as well, we
refer to [5] for more details. Since we render an extra alpha channel, we also use
the commonly used soft IOU loss [6] to supervise the predicted soft masks with
GT masks.

7.3 Training and inference

To train our model, we iterate between the reconstruction step and the adver-
sarial step. In the reconstruction step, the whole model except the discriminator
is updated to minimize Ltotal. All the regularizations are activated during this
step. In the adversarial step, only the discriminator is updated by maximizing
λ1Lgan, with all other losses disabled. For viewpoint sampling, we follow uni-
form distributions for azimuth, with a range of [0◦, 360◦] across all datasets. The
elevation is also sampled uniformly within [20◦, 40◦] on ShapeNet-55. We sample
elevation and tilt following Gaussian distributions on Pascal3D+ and treat mean
and standard deviation as hyperparameters, similar to [15]. Please see Fig. 4 for
the comparison between our prior distribution and the GT camera distribution.

We use a learning rate of 0.0001 for both steps, and the optimizer is Adam [4]
with β1 = 0, β2 = 0.9 and a batch size of 12. We did not use weight decay,
learning rate scheduling or data augmentations. Our model is trained on a single
NVIDIA GTX TITAN V for 40 to 80 epochs, depending on the dataset size. The
shape field is pretrained with the SDF values of a sphere for a better initialization
as in SDF-SRN [5]. During inference, we only keep the image encoder and the
shape prediction module. We implement our method in PyTorch [10].
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Fig. 4: Comparison between our prior camera distribution (green) for training
and the GT (blue) distributions on Pascal3D+.

7.4 Evaluation details

We use the Marching Cubes algorithm [7] to convert the implicit representation
to meshes prior to computing the metrics. Specifically, we sample SDF values
with a 1283 spatial grid and extract the 0-isosurface for marching cubes. We
further sample 100000 points from each mesh for calculating the metrics. To
align the predicted and GT shapes under the same canonical space, we transform
both shapes to view-centered frames.

Specifically, when training our models on Pascal3D+ and Pix3D, we assume
weak-perspective cameras, and perform center crop and scaling over the input
images. Since we do not know where the center of each GT shape is located w.r.t.
the cropped and scaled image under a weak perspective camera, we align the
meshes by registering shape predictions to the ground truth using the Iterative
Closest Point (ICP) algorithm. This is in line with prior works such as SDF-
SRN [5].

7.5 License

We develop our code based on the code of SDF-SRN 3 under the MIT license. We
use ShapeNetV2 [1], of which the license is specified at https://shapenet.org/terms.
We use Pascal3D+ [13] under a MIT license and Pix3D [12] under a Creative
Commons Attribution 4.0 International License.

8 Limitations

We discuss more limitations of our method in this section with qualitative ex-
amples. When our model fails to reconstruct accurate shapes for some samples
we observe it is primarily due to 3 reasons: 1) concavity, 2) class imbalance and
3) complex topology.
Concavity. As discussed in the experiments, our method cannot model highly
concave shapes such as bowls or hats. The masks for such shapes do not provide
any information that reveals concavity. On the other hand, our method does not

3 https://github.com/chenhsuanlin/signed-distance-SRN
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Fig. 5: Illustration of limitation on con-
cavity modeling. Our model fails to
reconstruct concave regions for these
samples.
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Fig. 6: Illustration of limitation with
class imbalance. Our model fails to re-
construct the shape of these rare cate-
gories accurately.

have access to explicit lighting or shading information. These factors make the
learning of concavity hard. We demonstrate this issue in Fig. 5 with examples
from ShapeNet-55, including bowls, bath tubs and trash bins. We think it will be
interesting to explore the explicit modeling of lighting/shading for future works.
Class imbalance. We see a strong class imbalance on ShapeNet-55, where sev-
eral classes have 500 samples while some only have 40 samples. Such an imbal-
ance makes the learning challenging for some categories, as the gradient update
within a minibatch can be dominated by major categories. We illustrate this in
Fig. 6 by showing the reconstruction on 3 rare categories. We think it will be
interesting to systematically explore the imbalance issue for 3D reconstruction.
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Fig. 7: Illustration of complex topolo-
gies. For samples that have complex
topologies, our model can only recon-
struct a rough global structure.

Complex topologies. Due to the
lack of 3D or multi-view supervision,
it is still quite challenging to learn
accurate shapes when the topologies
are complex. We illustrate this issue
in Fig. 7 by showing three shelves
from ShapeNet-55. We believe it is
still an open problem to learn accu-
rate shapes for such examples under
the challenging multi-category, single-
view (MCSV) setting without view-
point supervision.

We hope these limitations are ben-
eficial observations to inform and
guide future research under similar
challenging settings. On the other
hand, despite these limitations, our method can reconstruct accurate shapes
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for the majority of images or categories. We believe this is a significant step
toward fully unsupervised shape learning.

9 Additional Qualitative Results.

In this section, we show more qualitative results of our model on ShapeNet-55
across various categories, as in Fig. 8, Fig. 9, Fig. 10 and Fig. 11.
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Fig. 8: Additional qualitative results on ShapeNet-55.
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Fig. 9: Additional qualitative results on ShapeNet-55.
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Fig. 10: Additional qualitative results on ShapeNet-55.
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Fig. 11: Additional qualitative results on ShapeNet-55.



Category-guided 3D shape learning without any 3D cues 13

References

1. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Lin, C.H., Wang, C., Lucey, S.: Sdf-srn: Learning signed distance 3d object recon-
struction from static images. arXiv preprint arXiv:2010.10505 (2020)

6. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 7708–7717 (2019)

7. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

8. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean Conference on Computer Vision. pp. 405–421. Springer (2020)

9. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 3504–3515 (2020)

10. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32, 8026–8037 (2019)

11. Simoni, A., Pini, S., Vezzani, R., Cucchiara, R.: Multi-category mesh reconstruc-
tion from image collections. In: 2021 International Conference on 3D Vision (3DV).
pp. 1321–1330. IEEE (2021)

12. Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J.B.,
Freeman, W.T.: Pix3d: Dataset and methods for single-image 3d shape modeling.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

13. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: A benchmark for 3d object
detection in the wild. In: IEEE winter conference on applications of computer
vision. pp. 75–82. IEEE (2014)

14. Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Basri, R., Lipman, Y.:
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. arXiv preprint arXiv:2003.09852 (2020)

15. Ye, Y., Tulsiani, S., Gupta, A.: Shelf-supervised mesh prediction in the wild. arXiv
preprint arXiv:2102.06195 (2021)


