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Abstract. We propose MHR-Net, a novel method for recovering Non-
Rigid Shapes from Motion (NRSfM). MHR-Net aims to find a set of rea-
sonable reconstructions for a 2D view, and it also selects the most likely
reconstruction from the set. To deal with the challenging unsupervised
generation of non-rigid shapes, we develop a new Deterministic Basis
and Stochastic Deformation scheme in MHR-Net. The non-rigid shape
is first expressed as the sum of a coarse shape basis and a flexible shape
deformation, then multiple hypotheses are generated with uncertainty
modeling of the deformation part. MHR-Net is optimized with reprojec-
tion loss on the basis and the best hypothesis. Furthermore, we design
a new Procrustean Residual Loss, which reduces the rigid rotations be-
tween similar shapes and further improves the performance. Experiments
show that MHR-Net achieves state-of-the-art reconstruction accuracy on
Human3.6M, SURREAL and 300-VW datasets.
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1 Introduction

Recovering 3D structures from multiple 2D views is a classic and important task
in computer vision. Non-Rigid Structure-from-Motion (NRSfM), which aims at
reconstructing deformable shapes, is a challenging task and has been studied for
decades.

The major difficulty of NRSfM is the ambiguity of solutions due to arbitrary
deformation of shapes. Most of the NRSfM methods are based on the assump-
tion of Bregler et al. [9] where the deformable shape is a linear combination of
a small number of atom shapes. This assumption greatly reduces the degree of
freedom in NRSfM, yet it is still not enough for researchers to reach a determin-
istic and closed-form solution. Prior work of Akhter et al. [25] reveals that the
local minimas grows exponentially with the basis number, and the reconstructed
shapes from most of local minimas deviate significantly from ground truth. And
Dai et al. [18, 16] demonstrate that the rank minimization method also leads to
multiple minimas in perspective cases. These reveal that there are usually multi-
ple solutions that all minimize the cost function of a “prior-free” NRSfM, but it
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is generally intractable to find all those solutions due to the inherent complexity
of NRSfM ambiguity.

Nevertheless, in most cases we only need to obtain several most reasonable
hypotheses since they are valuable in practical scenarios, while searching for
all ambiguous solutions exhaustively is not necessary. This leads us to focus on
finding multiple high-quality hypotheses for the NRSfM problem.

Multiple hypotheses are usually modeled with uncertainty or generative mod-
els like CVAE [59], MDN [36] or CGAN [37]. However, these conventional mod-
eling methods are supervised by 3D ground-truth, which is not available for a
NRSfM problem. Moreover, in NRSfM, a naive ensemble of independent models
is prone to decomposition ambiguity [18], and a variational autoencoder is also
found hard to train [66].

To overcome the above challenges, we propose a novel MHR-Net for Multiple-
Hypothesis Reconstruction of non-rigid shapes. Different from a standard model
which outputs one reconstruction for a single input, MHR-Net is capable to
produce multiple reasonable solutions and one best solution. We develop sev-
eral critical designs for the successful generation of multiple hypotheses. Firstly,
one non-rigid shape is expressed as the sum of a basis and a deformation. The
basis is the coarse and shared structure among all shapes, while the deforma-
tion accounts for the diverse and flexible parts of shapes. This shape expression
enhances the representation capability of MHR-Net when trained with an in-
termediate reprojection loss on the basis. Based on this expression, we further
propose a novel Deterministic Basis and Stochastic Deformation (DBSD) scheme
for multiple hypotheses generation. Specifically, MHR-Net estimates one basis
in a standard deterministic manner and multiple deformations in a stochastic
way. Then the multiple reconstructions are obtained by adding the basis and
deformations. To optimize MHR-Net, we adopt a pseudo “hindsight” loss which
is to select a hypothesis with the minimal reprojection error and calculates the
standard loss function on the selected hypothesis. In inference, the model pro-
duces the best hypothesis in the same way. The DBSD scheme not only enables
MHR-Net to produce multiple high-quality solutions of NRSfM, but also further
enhances the accuracy of the reconstruction.

Moreover, we develop a new Procrustean Residual Loss to regularize the
reconstruction and reduce undesirable rigid rotations in a differentiable and
efficient way. Experiments on Human3.6M, 300-VW and SURREAL datasets
demonstrate state-of-the-art reconstruction accuracy of MHR-Net. Finally, we
show that MHR-Net is capable to produce multiple possible solutions of 3D
human poses and largely-deforming regions of dense human body meshes.

We summarize our contributions as follows:

{ We propose the novel MHR-Net for NRSfM. To the best of our knowledge,
it is the first method that produces multiple high-quality hypotheses for
non-rigid shape reconstruction in one model.

{ We introduce a deterministic basis and stochastic deformation scheme to-
gether with a intermediate loss and a pseudo hindsight loss. These designs are
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Fig. 1. (a) A standard function-based NRSfM model maps the 2D input to a single
3D output. (b) The proposed MHR-Net is aware of the uncertainty of 2D-to-3D map-
ping. Given an extra noise vector, MHR-Net is capable to output multiple reasonable
reconstructions of the 2D input.

effective for the challenging unsupervised uncertainty modeling of multiple
3D shapes.

{ We develop a novel Procrustean Residual Loss for NRSfM regularization,
and it further improves the shape recovery accuracy of MHR-Net.

2 Related Works

NRSfM. Recovering the deforming 3D shape from multiple 2D views is known as
the Non-Rigid Structure-from-Motion problem (NRSfM), which is firstly put for-
ward by Bregler et al. [9]. NRSfM is a highly ambiguous problem, and therefore
enforcing correct constraints is key to solving this problem. Previous works pro-
pose various effective approaches to the non-rigid shape reconstruction, including
rank minimization [17, 41], smooth trajectories [7, 21, 20, 10], manifold [22, 31],
metric projection [42], sparsity-based methods [28], energy minimization [52, 57],
inextensibility [64, 15], isometry [43], deep models [28, 40, 47, 69], procrustean
normal distribution [34], consensus [13], hierarchical priors [61], force-based and
physic-based methods [3, 6], union of subspaces [70, 33, 5, 1, 4], piecewise meth-
ods [19, 60], and many other breaking-through methods [32, 11, 50, 2, 53, 49, 44,
24].

Much attention has been paid to the uniqueness and determinacy of NRSfM.
Xiao et al. [68] show that selecting a set of frames as the basis can lead to a
unique closed-form solution. Akhter et al. [25] argue that the orthogonal con-
straints of rotations is indeed sufficient for a unique solution except for a rigid
rotation and the major difficulty lies in the optimization. Dai et al. [17] pro-
pose a block-matrix rank-minimizing method and analyze whether their method
leads to a unique solution or multiple solutions. Park et al. [45] provide a geo-
metric analysis showing that the quality of sequential reconstruction is affected
by the relative motion of a point and the camera, and propose a novel measure
reconstructability to indicate the reconstruction quality. Valmadre et al. [62]
propose a deterministic approach to 3D human pose recovery by using the rigid
sub-structure of human body.
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Multiple-Hypothesis 3D Pose Estimation. The ambiguity of monocular 3D
human pose estimation has been noticed early [58]. Li et al. [36] use a mixture
density network or a Conditional GAN [37] to output a set of plausible 3D
poses from a 2D input. Sharma et al. [55] propose to solve the ill-posed 2D-to-
3D lifting problem with CVAE [59] and Ordinal Ranking. Wehrbein et al. [67]
use Normalizing Flows to model the deterministic 3D-2D projection and solve
the ambiguous inverse 2D-3D lifting problem. The major difference between our
work and multiple-hypotheses 3D pose estimation is that our model is trained
without 3D ground truth.

3 Preliminary

In the classic non-rigid structure-from-motion problem, given Nf frames 2D

observations fWig
Nf

i=1 of a deformable object as input, we are interested in fac-
torizing Wi 2 R2�Np into a camera matrix Mi 2 R2�3 and a shape matrix
Si 2 R3�Np such that:

Wi = MiSi: (1)

Here, we suppose that Si is centered at zero such that the translation term is
cancelled, and Np stands for the number of points. Mi is the composition of a
projection matrix Π 2 R2�3 and a rotation matrix Ri 2 SO(3) so that Mi = ΠRi.
For orthographic projection, Π is simply

�
I2 0

�
. In this work, we suppose that

the camera projection Π is known, allowing us to focus on the estimation of
rotation Ri.

In the recent progress of NRSfM [28, 40, 47], Mi and Si are modeled as func-
tions of the input Wi. One typical paradigm [40, 14] is to first extract features
from Wi using a backbone network H(Wi) like [39], and then to estimate the
Mi and Si with different network branches F0 and G subsequent to H:

Si = F0(H(Wi)); Mi = G(H(Wi)): (2)

Modeling the factorization as a function enables NRSfMmethods to be optimized
on large-scale datasets, and allows models to directly perform reconstruction on
unseen data. To train such models, the cost function usually contains a data
term and a regularization term, represented as:

L =

NfX
i=1

Ldata(Wi;Mi;Si) + Lreg(Mi;Si); (3)

where the data term Ldata is usually the reprojection error kWi �MiSik and
the regularization term is versatile.
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Fig. 2. An overview of the proposed MHR-Net. MHR-Net uses a backbone network H
to extract features from the 2D input Wi. The camera rotation Ri is estimated by the
rotation layer. Next, the basis shape SBi and its coefficients �i are estimated by 	B
and 	� respectively. To generate multiple hypotheses, beta layer 	� takes �i, H(Wi)
and random noise fz1; � � � ; zNmg as inputs, and outputs a set of deformation coeffi-
cients f�1

i ; � � � ; �Nm
i g. Then the deformation coefficients are passed to the deformation

layer 	D to produce deformations fSD;1i ; � � � ; SD;Nm
i g. By adding each deformation to

SBi , multiple hypotheses fS1
i ; � � � ; SNm

i g are obtained. Then, the hypothesis with the
smallest reprojection error is selected as the best hypothesis S∗

i . Loss functions are
calculated on SBi and S∗

i .

4 Proposed Method

4.1 Multiple Hypothesis Reconstruction Network - Overview

We aim to develop a prediction function F that can output Nm reconstructions
for a single input Wi:

F(Wi) = fS1i ;S2i ; � � � ;S
Nm
i g; (4)

and each of these reconstructions is supposed to minimize the cost function in
Eq. 3. As the inherent ambiguity of NRSfM is complex and there exists a large
number of poor ambiguous solutions [25], we also expect the hypotheses to be
as accurate as possible among all solutions.

However, generating multi-hypothesis reconstruction for NRSfM is challeng-
ing for several reasons: (1) Without 3D ground-truth as supervision, the am-
biguous 2D-to-3D mappings cannot be learned using standard generative models
like CVAE [59], Conditional GAN [37] or Normalizing Flow [67]. (2) Multiple
hypotheses easily suffer from the decomposition ambiguity of NRSfM [18], i.e.
multiple solutions are trivial if they are related by a certain rotation G inserted
in the decomposition Wi = MiGG�1Si.

We introduce a novel Multiple Hypothesis Reconstruction Network (MHR-
Net), which takes a step towards a multiple-hypothesis NRSfM model. MHR-
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Net overcomes the above difficulties in a simple and effective way, and is capable
to produce multiple accurate reconstructions and one best hypothesis. Next,
we describe the hypothesis generation scheme in Sec. 4.2, the optimization in
Sec. 4.3 and the regularization in Sec. 4.4.

4.2 Deterministic Basis and Stochastic Deformation for Hypothesis
Generation

Traditionally, the 3D shape Si is represented as a linear combination of Kb atom
shapes Bk 2 R3�Np :

Si =

KbX
k=1

(�i,k 
 I3)Bk; (5)

where �i,k is the weight of k-th atom shapes in Si, and 
 is the Kronecker prod-
uct. This widely-accepted representation implicitly assumes the low-rankness of
all estimated 3D shapes, and it is one of keys to successful recovery of non-rigid
shapes. However, the capacity of this shape representation is limited when ap-
plied to modern large-scale datasets since they usually contain millions of frames
or thousands of keypoints. A naive way is to enlarge the capacity by increasing
the dimension Kb, but it also bring undesirable degrees of freedom to the full
shape, leading to a regularization-flexibility dillema.

Inspired by previous works [1, 8, 57], we develop a new shape representation
for MHR-Net. We posit that the deformable shape is comprised of a basis SBi
and a deformation SDi , written as:

Si =

KbX
k=1

(�i,k 
 I3)Bk| {z }
SB

i

+

KdX
l=1

(�i,l 
 I3)Dl| {z }
SD

i

; (6)

where Dl 2 R3�Np denotes the l-th atom deformation, �i,l is the weight of Dl in
Si, andKb < Kd. Note that the mean shape for short sequences in [57] is a special
case of Eq. 6 with Kb = 1; �i = 1. This basis-deformation modeling enhances
the shape representation capability of MHR-Net with hierarchical flexibility.
Intuitively, SBi is used to capture the low-rank common part of the 3D shapes,
while SDi fits the diverse small deformations with higher flexibility.

Based on the basis-deformation expression of shapes, we now introduce a
novel Deterministic Basis and Stochastic Deformation (DBSD), which is the
core scheme for multiple hypothesis generation in MHR-Net. We assume that
the variation of Nm accurate hypotheses appears only in SDi . While Wang et
al. [66] find that introducing randomness to the estimation of full 3D shapes with
VAE [27] is not viable, the proposed partial uncertainty in SDi makes MHR-Net
overcome the training difficulty. More importantly, we find that DBSD can lead
to an even better recovery accuracy with the training strategy in Sec. 4.3.
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Specifically, MHR-Net generates multiple reconstructions by estimating one
basis in the standard deterministic way and multiple deformations with stochas-
tic variations. For the deterministic part, coefficients �i = [�i,1 � � ��i,Kb

]T are
estimated with a convolutional layer Ψα:

�i = Ψα(H(Wi)): (7)

For the stochastic deformation part, the coefficients �i = [�i,1 � � ��i,Kd
]T are

calculated by a convolutional layer Ψβ which takes features H(Wi), coefficients
�i and a noise vector z � N(0; I) as inputs:

�i = Ψβ(H(Wi); �i; z): (8)

By sampling Nm noise vectors fz1; � � � ; zNmg from the isotropic Gaussian with
dimension dimz and passing them to Ψβ , we have a collection f�1

i ; � � � ; �
Nm
i g.

Next, the basis and multiple deformations are produced by two following convo-
lutional layers ΨB and ΨD:

SBi = ΨB(�i); SD,m
i = ΨD(�m

i ): (9)

Note that the atoms Bk and Dl are learned as the parameters of ΨB and ΨD.
Finally, the multiple hypothesis reconstructions fS1i ; � � � ;S

Nm
i g are generated by:

Smi = SBi + SD,m
i ; (10)

where m = 1 � � �Nm.
For camera Ri estimation, we avoid the decomposition ambiguity by simply

estimating one rotation matrix for all hypothesis. We follow [40] to predict the
rotation matrix using Rodrigues’ Rotation Formula, which is parameterized by a
3 dimensional output of a convolutional layer built upon the extracted features.
Given Π, we obtain Mi = ΠRi.

4.3 Optimizing with Intermediate Loss and Best Hypothesis
Selection

We introduce two effective methods for optimizing MHR-Net on the data term
Ldata.
Intermediate Loss. First, we consider the optimization of a single hypothesis
Sm
i produced by MHR-Net from Wi. The proposed basis-deformation expres-

sion of shapes in Eq. 6 is the summation of two linear subspaces. In practice,
MHR-Net is prone to using only one flexible subspace SDi for shape expres-
sion if we adopt the standard reprojection loss kWi �MiS

m
i k. To make the

basis-deformation expression work as expected, we propose to add an extra re-
projection loss to the intermediate results of reconstruction, i.e. the basis SBi .
This enforces MHR-Net to produce a low-rank and coarse prediction SBi of the
3D shape, thus letting SDi focus on the small and diverse residuals. The extra
intermediate loss is written as



Wi �MiS
B
i



.
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Best Hypothesis Selection. Now we consider the optimization of all hypothe-
ses. There are several approaches to train a model with multiple predictions,
including minimizing losses of all predictions, selecting one hypothesis with mix-
ture density [36], etc. In MHR-Net, we choose to use a pseudo “hindsight”
loss [35, 51]. The original “hindsight” loss choose a prediction that is the closest
to the ground truth and then calculate the standard single-prediction loss. As in
NRSfM we do not have any 3D ground truth, we heuristically use the reprojec-
tion error as the criterion to select the best hypothesis among our predictions.
Together with the intermediate loss, Ldata is written as:

Ldata = �B


Wi �MiS

B
i



+ �F min
m
kWi �MiS

m
i k ; (11)

where �B ; �F are balancing factors and �B +�F = 1. Compared to other multi-
prediction training approaches, we find that the proposed strategy brings a better
reconstruction accuracy to all hypotheses. Moreover, when inferring a single
best reconstruction S�i of the input, S�i is naturally obtained with the same best
hypothesis strategy.
Discussion. (1) The insight of successful hypothesis generation in MHR-Net
is to constrain the norm of the flexible deformation subspace. Although the
proposed shape representation (Eq. 6) has a large degree of freedom (SDi could
cause a maximum of 29Kd local minimas [25]), Eq. 11 implicitly constrains the
norm of SDi to be relatively small compared to SBi when the balancing factors
are chosen as �B = 0:8; �F = 0:2. On the other hand, one can choose a smaller
�B and adding a diversity loss as in [37] for generating more diverse hypotheses.
(2) Moreover, we found that the model with DBSD has a slightly higher Ldata

and a lower Lreg compared to the deterministic model, which indicates that
DBSD leads to a better regularized model. The diverse hypotheses reduce over-
fitting of MHR-Net and enhance the generalization capability.

4.4 Procrustean Residual Loss for Regularization

In this section, we introduce a novel Procrustean Residual Loss for regularizing
the non-rigid shape reconstruction.
Motivation. Reducing the rigid motions between reconstructed shapes is one
of the keys to successful NRSfM. In the previous work of Novotny et al. [40],
the Transversal property is proposed to characterize a space where a shape is
enforced to appears in a canonical view, such that the effects of rigid motions be-
tween same shapes are removed. Implemented with an auxiliary neural network,
the Transversal property is effective in performing non-rigid reconstructions.

However, the Transversal property is still restricted to aligning only iden-
tical shapes. That means shapes with small differences are not guaranteed to
be aligned in a Transversal set. In other words, the effect of a rigid motion is
not removed for similar (but not identical) shapes. As regularization on similar
shapes is shown to be useful in a recent work [69], we are motivated to reduce
the rigid motion between similar shapes.

To achieve this objective, we first define two distance measures:
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De�nition 1. Given two non-degenerated shapesSi ; Sj 2 R3� N p and the opti-
mal rotation R� aligning Si to Sj , the Original distance � ori is kSi � Sj kF , and
the Procrustean distance� pro is kR� Si � Sj kF .

Here, a shape is non-degenerated if rank(Si ) = 3, k�kF denotes the Frobe-
nius norm, and the optimal rotation R � is obtained with the orthogonal Pro-
crustes [54].

Next, we use the two de�ned distances to: (1) test whether Si and Sj are
similar or not; (2) if S i ; Sj are similar, measure the e�ect of rigid motions. In
step (1), Si ; Sj are considered to be similar if � pro < � , where � is a hyper-
parameter of similarity threshold. We use the Procrustean distance in this step
since it is agnostic of rigid rotations. In step (2), we propose to measure the
e�ect of rigid motions with the Procrustean Residual � res , calculated as:

� res = � ori � � pro : (12)

The Procrustean Residual indicates how much the Original distance can be re-
duced with rigid motions, and � res reaches zero if and only if Si and Sj are
already optimally aligned (i.e. R� = I). Therefore, the undesirable rigid motion
between Si ; Sj is reduced when we minimize� res .
Loss design. We now introduce the Procrustean Residual Loss for NRSfM reg-
ularization. This loss function realizes the minimization4 of � res and is developed
in a di�erentiable way.

Given two shapes Si ; Sj randomly sampled from the network prediction batch,
the optimal rotation that aligns S i to Sj is calculated with the orthogonal Pro-
crustes [54]:

R�
i;j = VU T ; Si ST

j = U�V T ; (13)

where U�V T is the singular value decomposition of Si ST
j .

Next, we calculate the (normalized) Procrustean distance and the Procrustean
Residual as follows:

�� pro =




 R�

i;j Si � Sj





F

kSj kF

; �� res =
kSi � Sj kF

kSj kF

� �� pro : (14)

We normalize the di�erences with kSj kF to make the loss numerically stable.
The Procrustean Residual Loss is:

L res(Si ; Sj ) = � ( �� pro ; � ) � �� res; (15)

where � ( �� pro ; � ) = 1 if �� pro < � , else� = 0.
The practical problem of the proposed loss function is that L res contains

a non-di�erentiable operation SVD in Eq. 13. To make L res di�erentiable, one
e�ective way is to use the Lagrange multiplier method on Lie Group [46, 47] for a
closed-form partial derivative, and another way is to leverage modern auto-grad

4 Note that in general � res cannot be reduce to exactly zero for all pairs simultaneously.
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libraries where the numeric computation of SVD is di�erentiable [28, 66, 69]. In
this paper, we choose to use a simple alternative approach by detaching R�i;j from
the computation graph, namely R�

i;j is viewed as a constant matrix. In such way,
L res only involves standard di�erentiable operations of inputs Si ; Sj , which frees
us from the calculation of SVD gradient and keeps the model computationally
e�cient.

For the regularization term L reg of MHR-Net, we apply a canonicalization
lossL cano

5 [40] to the deterministic basis SB
i and L res to S�

i , leading to:

L reg = L cano + � resL res; (16)

where � res is the weight of Procrustean Residual Loss. Although only including
L res in L reg is possible and produces good results, we empirically �nd that using
two losses jointly leads to a better performance.

5 Experiments

We evaluate the proposed MHR-Net in two aspects: (1) The reconstruction ac-
curacy of the best hypothesis. (2) The multiple hypothesis reconstructions. We
also make an in-depth analysis of proposed components.

5.1 Datasets and Experimental Setups

Human3.6M [26]. It is the largest 3D human pose dataset with a total of 3.6
million frames. It contains 15 di�erent activities performed by 7 professional
actors and captured by four cameras. We follow the common protocols to use
�ve subjects (S1, S5-8) as the training set and two subjects (S9 and S11) as the
testing set. We adopt the widely-used pre-processing from Pavllo et al. [48].
300VW [56]. The 300VW is a large-scale facial landmark dataset. It has a total
of 114 sequences with 2D annotations of 68 landmarks. Following [47], we use
the subset of 64 sequences from 300VW, and divide them into a training set and
a testing set of 32 sequences respectively. As 3D ground-truth is not provided,
we follow [47] to adopt the results from [12] as 3D ground-truths.
SURREAL [63]. The SURREAL dataset contains 6 million synthetic human
images with large variations in shape, view-point and pose. The 6,890 dense
3D points are obtained by �tting SMPL [38] to CMU MOCAP dataset. Follow-
ing [47, 66], the training and testing sets include 5,000 and 2,401 frames selected
from the full dataset, respectively.
Metrics . We adopt the following two metrics:
(1) MPJPE: It stands for the mean per joint error, which is calculated as

1
N p




 Si � Sgt

i






1. To address the re
ection ambiguity, we follow [40, 47, 66] to re-
port the minimal error with ground-truth between original and 
ipped shapes.
(2) Normalized Error (NE): It re
ects the relative estimation error and is com-

puted by:
kSi � Sgt

i k
F

kSgt kF
.

5 Please refer to the supplementary material or [40] for details.
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Methods (Ortho.) Direct. Discuss Eating Greet Phone Pose Purch. Sitting SittingD. Smoke Photo Wait Walk WalkD. WalkT. Mean
CSF2 [23] 87.2 90.1 96.1 95.9 102.9 92.1 99.3 129.8 136.7 99.5 120.1 95.2 90.8 102.4 89.2101.6
SPM [18] 65.3 68.7 82.0 70.1 95.3 65.1 71.9 117.0 136.0 84.3 88.9 71.2 59.5 73.3 68.382.3
C3DPO [40] 56.1 55.6 62.2 66.4 63.2 62.0 62.9 76.3 85.8 59.9 88.7 63.3 71.1 70.7 72.3 67.8
PRN [47] 65.3 58.2 60.5 73.8 60.7 71.5 64.6 79.8 90.2 60.3 81.2 67.1 54.4 61.2 65.6 66.7
MHR-Net (Ours) 60.3 54.3 55.5 67.9 67.7 69.5 61.3 69.7 83.2 67.6 85.3 61.7 61.9 63.4 68.2 65.8

Methods (Persp.) Direct. Discuss Eating Greet Phone Pose Purch. Sitting SittingD. Smoke Photo Wait Walk WalkD. WalkT. Mean
PoseGAN [30] - - - - - - - - - - - - - - - 130.9
SFC [29] - - - - - - - - - - - - - - - 218.0
Consensus [13] - - - - - - - - - - - - - - - 120.1
DNRSFM [28] - - - - - - - - - - - - - - - 101.6
Wang et al. [65] - - - - - - - - - - - - - - - 86.2
C3DPO [40] 96.8 85.7 85.8 107.1 86.0 96.8 93.9 94.9 96.7 86.0 124.3 90.7 95.2 93.4 101.395.6
PRN [47] 93.1 83.3 76.2 98.6 78.8 91.7 81.4 87.4 91.6 78.2 104.3 89.6 83.0 80.5 95.386.4
PAUL [66] - - - - - - - - - - - - - - - 88.3
PoseDict [14] 74.6 82.9 77.0 86.7 80.0 79.2 94.2 88.4 124.0 77.1 103.8 80.8 78.8 94.2 78.385.6
ITES [14] 77.6 77.3 77.1 77.3 77.3 77.4 77.3 77.2 77.3 77.1 77.1 77.5 77.3 77.2 77.5 77.2
MHR-Net (Ours) 62.8 68.3 62.2 73.9 73.7 67.0 70.2 76.7 100.0 71.5 90.0 72.3 68.8 80.2 71.0 72.6

Table 1. Quantitative results on Human3.6M Dataset.

5.2 Main Results

In this subsection and Sec. 5.3, we treating MHR-Net as a single-prediction
model by using the best hypothesis S�i . We report the standard NRSfM evalua-
tion results of MHR-Net on three datasets.

For Human3.6M, we test the performance of MHR-Net under two settings: or-
thographic camera and perspective camera. The major competitors of MHR-Net
are state-of-the-art deep NRSfM models, including C3DPO [40], DNRSFM [28],
PRN [47], PAUL [66], ITES [14]. In Table. 1, we report the MPJPE of all frames
and 15 individual activities on the test set. We also includes classic methods
like Consensus [13], SFC [29] for comparison. As shown in Tab. 1, MHR-Net
outperforms all competing methods overall in both orthographic and perspec-
tive experiments. These results on the challenging Human3.6M dataset verify
the e�ectiveness of MHR-Net on reconstructing highly-
exible human poses.

For 300VW dataset and SURREAL dataset, we compare MHR-NET with
C3DPO [40], PRN [47], PR [46] and PAUL [66]. The Normalized Error results
are shown in Tab. 3 and Tab. 2 respectively. These outcomes validate that MHR-
Net is capable to perform accurate reconstruction of both facial landmarks and
dense meshes. It is worth noting that MHR-Net recovers the dense point clouds
of SURREAL dataset without splitting it into several subsets, unlike [47]. This is
achieved by avoiding the burdensome SVD of matrices whose scales are related to
Np. With the di�erentiable design, MHR-Net shares the same level of scalability
as SVD-free methods while achieving better performance.

5.3 Ablation Study

We show the e�ectiveness of the important designs in MHR-Net. We conduct
the experiments on perspective Human 3.6M dataset. BD and IL in Tab. 4 are
short for Basis-Deformation (Eq. 6) and Intermediate Loss (Sec. 4.3).
Basis-Deformation and Intermediate Loss. We setup several ablated mod-
els: (1) Baseline: We use a modi�ed PoseDict [14] as baseline. We replace the
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Model NE

C3DPO [40] 0.3509
PRN [47] 0.1377
PAUL [66] 0.1236

MHR-Net (w/o L res ) 0.1388
MHR-Net 0.1192

Table 2. Results on SURREAL.

Model NE

CSF2 [23] 0.2751
PR [46] 0.2730
C3DPO [40] 0.1715
PRN [47] 0.1512

MHR-Net 0.1007

Table 3. Results on 300VW.

No. BD IL DBSD Optim. L res MPJPE
1 7 7 7 7 7 83.5
2 3 198.3
3 3 3 75.5
4 3 3 3 Best 73.7
5 3 3 3 Worst 78.4
6 3 3 3 MD 77.9
7 3 3 3 Worst 3 76.2
8 3 3 3 MD 3 77.3
9 3 3 3 Best 3 72.6

Table 4. Ablation study results.

invariance loss of PoseDict with the canonicalization loss [40], and it works
slightly better than PoseDict. In Baseline, only the basis and camera are es-
timated. (2) Baseline with Basis-Deformation. The deformation here is imple-
mented deterministically. (3) Baseline with Basis-Deformation and Intermediate
Loss. Comparing the results of (1) and (2) in Tab. 4, we observe the degradation
of performance. This implies that a naive extension of the deformation subspace
will harm the regularization of low-rankness and lead to the failure of non-rigid
reconstruction. By adding an intermediate loss in (3), the MPJPE is greatly
reduced from 83.5 to 75.5, which is already better than the MPJPE (77.2) of
the most competitive method ITES.

Stochastic Deformation and Hypothesis Optimization Strategy. We
now use the deterministic basis and stochastic deformation with best hypothesis
selection strategy, indicated by (4) in Tab. 4. We compare the proposed design
with two alternatives: (5) Worst Hypothesis. In this strategy, we choose to opti-
mize the hypothesis with the largest re-projection error, which is the opposite of
the best hypothesis strategy. The intuition of Worst Hypothesis is that it tries
to minimize the upper bound of errors. (6) Mixture Density (MD) [36], where a
hypothesis is selected by sampling from a learned mixture density. As we do not
have ground-truth labels for training, we use the uniform categorical distribu-
tion instead of a learned distribution. The results in Tab. 4 demonstrates that
the combination of DBSD and the Best Hypothesis strategy produce the best
performance.
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Fig. 3. Point-wise variation of deformations.

Procrustean Residual Loss. We show the e�ectiveness of the Procrustean
Residual LossL res. As reported in Tab. 4, the full model (9) has a better MPJPE
of 72.6. Despite the fact that the previous state-of-the-art method ITES uses
two networks and the prior knowledge of human pose, MHR-Net outperforms
ITES by 4.6 MPJPE. By adding L res to models with alternative MD and Worst
Hypothesis, these two models (7) and (8) also outperform the corresponding
models (5) and (6) without L res. Moreover, the improvement by using L res is
also signi�cant on the dense mesh dataset SURREAL, as indicated in Tab. 2.

5.4 Analysis of Stochastic Deformation

Point-wise variation of deformations. We measure the variation of stochas-
tic deformations of point j as 1

N f

P N f
i =1 maxm;n






 SD;m

i;j � SD;n
i;j








F
, where the sub-

script j denotes thej -th point. As shown in Fig. 3, the variation of deformations
decreases as the training processes. One tentative interpretation is that MHR-
Net searches solutions with a more diverse set of hypotheses in the early stage
of training, and produces less diverse (or more con�dent) hypotheses after con-
vergence. Moreover, the variation also di�ers between points. We observe the
largest variations at Left/Right Hand/Elbow/Foot , which is consistent with
the common sense that these are most 
exible parts of body.
Accuracy of other hypotheses . To verify the accuracy of non-best hypothe-
ses, we evaluate the MPJPE of the worst (largest reprojection error) hypothesis
on Human3.6M. Compared to the best hypothesis, the results of worst hypoth-
esis show a decline of -0.5 and -0.1 MPJPE at epoch 10 and epoch 50 with
Nm = 50. This veri�es that other hypotheses from MHR-Net are also accurate.
Visualizing largely-deformed regions of meshes. Another advantage of
MHR-Net is that we can use




 SD

i




 as an indicator of the degree of deformations.

We visualize the largely-deformed regions of reconstructed dense point clouds
from SURREAL dataset, as shown in Fig. 5. The visualization clearly illustrates
the largely deformed parts of the body, which is helpful for better understanding
of non-rigid reconstruction.




