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S1. Detailed Network Architecture

We adopt EfficientNet-B5 [47] as the backbone for the shared encoder, which
processes a 3×384×512 RGB image to yield a 2048×12×16 high-level feature.
Fig. S1 shows the network structures of G-Net, N-Net, and M-Net. Note that
EfficientNet-B5 has six reduction levels. We use the output features of the second
to fifth reduction levels for the skip connection using the concatenation. The
detailed structure of the channel attention layer [15] is shown in Fig. S2.
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Fig. S1: Network structures of G-Net, N-Net, and M-Net. Each number denotes
the number of channels of a feature tensor.
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Fig. S2: Detailed structure of the channel attention layer. Each number denotes
the number of channels of a feature tensor.

S2. Encoder Backbones

We test the proposed algorithm using different encoder backbones on the NYUv2
dataset [45]. Table S1 compares the proposed algorithm with the conventional
algorithms: Lee and Kim [28], and Bhat et al. [1]. It is observed that the proposed
algorithm performs better than the conventional algorithms when using the same
backbone network. Also, the proposed algorithm outperforms [28] meaningfully
and comparable to [1] when using only 17K training images.

Table S1: Depth estimation results on NYUv2 using various encoder backbone.

Method Encoder backbone # RMSE REL log 10 δ1 δ2 δ3

Lee and Kim [28] PNASNet-5 [36] 58K 0.430 0.119 0.050 0.870 0.974 0.993
Proposed PNASNet-5 [36] 17K 0.403 0.109 0.048 0.882 0.983 0.997

Bhat et al. [1] EfficientNet-B5 [47] 50K 0.364 0.103 0.044 0.903 0.984 0.997
Proposed EfficientNet-B5 [47] 17K 0.370 0.103 0.045 0.903 0.986 0.997
Proposed EfficientNet-B5 [47] 51K 0.362 0.100 0.043 0.907 0.986 0.997

S3. Loss Functions

The weights for LG and LN are set to 1, and those for LMx
, LMy

, LNx
and LNy

are set to 0.2, as in [33, 51]. Also, the weights for LµM
, LM , and LlogM

are 1,
0.5, 0.5, respectively.

Note that we use LlogM
to alleviate the problem that LM is less effective for

distant depths. Table S2 compares the performances with and without LlogM

for pixels whose ground-truth depths are farther or nearer than 5m. The pixels
farther than 5m account for 5.17% of all pixels. We see that the performances
improve in most metrics when LlogM

is applied in addition to LM .



Depth Map Decomposition for Monocular Depth Estimation 3

Table S2: Efficacy of LlogM
according to the ground-truth depth range.

Distance Setting RMSE REL log 10 δ1 δ2 δ3

> 5m
LM 0.755 0.096 0.046 0.879 0.978 0.999
LlogM

0.749 0.095 0.045 0.883 0.979 0.999
LM + LlogM

0.743 0.095 0.045 0.888 0.979 0.998

≤ 5m
LM 0.301 0.098 0.043 0.911 0.988 0.998
LlogM

0.298 0.099 0.042 0.914 0.988 0.998
LM + LlogM

0.296 0.098 0.042 0.914 0.989 0.998

S4. Efficacy of µM

To evaluate the efficacy of µM , we define the depth mean error as

|µ(M̂)− µ(M)| (S1)

where M and M̂ denote the ground-truth and predicted depth maps, respec-
tively. Also, µ(·) denote the mean of valid pixel depths in a depth map. We use
µ(·) rather than µM since the ground truth depth map in NYUv2 is not dense.

Instead of MDR, we train an alternative regressor using the output of the
shared encoder after average pooling followed by fully connected layers to predict
µM . By comparing the first and the second rows in Table S3, we see that without
MDR, the explicit regression of µM rather degrades the performances. MDR is
also used to regress the scale feature σM explicitly as well, but scaling by σM

is less reliable than shifting by µM . Hence, it degrades the performances in the
last row in Table S3.

Table S3: Depth mean errors on the NYUv2 dataset with and without MDR and
regression of µM .

MDR µM RMSE REL log 10 δ1 δ2 δ3 Mean error

✓ - 0.381 0.108 0.046 0.894 0.984 0.997 0.168
- ✓ 0.393 0.114 0.048 0.884 0.982 0.996 0.173
✓ ✓ 0.370 0.103 0.045 0.903 0.986 0.997 0.155

MDR σM RMSE REL log 10 δ1 δ2 δ3 Mean error

✓ ✓ 0.385 0.112 0.047 0.889 0.982 0.997 0.169

Next, we define the depth distribution error as

|σ(M̂)− σ(M)| (S2)

where σ(·) denote the standard deviation of valid pixel depths in a depth map.
Table S4 compares the depth distribution errors of MDR* and MDR, which
denote the proposed algorithm with µM deactivated and activated, respectively,
as in Table 5 in the main paper. Again, MDR performs better than MDR*.
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Table S4: Depth distribution errors on the NYUv2 dataset.

MDR* MDR

0.144 0.134

Fig. S3 shows qualitative results, together with the standard deviations σ of
the corresponding depth maps. We see that, by predicting µM through the MDR
block, we can estimate the overall depth scales more reliably.
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Fig. S3: Qualitative comparison of metric depth maps, estimated by MDR* and
MDR, respectively.

S5. Efficacy of G-Net

To demonstrate the efficacy of G-Net, we train the proposed algorithm using
N-Net and M-Net only, excluding G-Net. This combination is denoted by M+N,
while the default combination by M+N+G. Note that M+N and M+N+G in
Table S5 are identical to the second and third rows of Table 3 in the main paper,
respectively. In the green boxes in Fig. S4, M+N+G provides sharper edges and
more consistent depths on planar regions than M+N does, indicating G-Net
helps to improve the performances. Fig. S5 compares metric depth maps. Note
that M+N+G reduces estimation errors.
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Table S5: Depth estimation results on NYUv2 according to the use of G-Net.

Setting RMSE REL log 10 δ1 δ2 δ3 Kendall’s τ WHDR(%)

M+N 0.389 0.111 0.047 0.888 0.982 0.996 0.814 14.19
M+N+G 0.387 0.109 0.047 0.888 0.982 0.997 0.817 14.01
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Fig. S4: Normalized depth maps of the two combinations M+N and M+N+G.
The differences can be more easily observed within the green boxes.
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Fig. S5: Metric depth maps of M+N and M+N+G. The error maps are also
provided, in which brighter pixels correspond to larger errors.
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S6. More Qualitative Results

Fig. S6 and Fig. S7 compare the proposed algorithm with the conventional al-
gorithms [1, 42] on the NYUv2 dataset.

Fig. S8 and Fig. S9 compare the proposed algorithm with the baseline net-
work on the NYUv2 dataset, when the 795 NYU training images and the DIML-
Indoor [23] dataset are used for the training, respectively.

GT Bhat et al. Ranftl et al. Proposed
†

Fig. S6: Qualitative comparison of the proposed algorithm with Bhat et al. [1]
and Ranftl et al. [42] on the NYUv2 dataset. The error maps are also provided,
in which brighter pixels correspond to larger errors.
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Fig. S7: Qualitative comparison of the proposed algorithm with Bhat et al. [1]
and Ranftl et al. [42] on the NYUv2 dataset. The error maps are also provided,
in which brighter pixels correspond to larger errors.
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Fig. S8: Qualitative comparison of the proposed algorithm with the baseline using
the 795 NYUv2 training images.
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Fig. S9: Qualitative comparison of the proposed algorithm with the baseline using
the DIML-Indoor dataset.
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