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1 Summary of Contents

In Sec. 2 we provide our implementation details, hyperparameters, learning rate
schedule, and augmentations used during training. In Sec. 3, we provide a sensi-
tivity study on the effect of various density levels in the sparse depth input. In
Sec. 4, we compare Monitored Distillation to methods operating under the non-
blind ensemble setting and show that distilling from a blind ensemble using our
method improves over directly distilling from any single teacher – even the best
teacher. In Sec. 5 we make qualitative comparisons against the state-of-the-art
unsupervised (Fig. 2, 3) and supervised methods (Fig. 4, 5) and show that our
method achieves comparable performance to the top supervised methods while
using significantly fewer parameters. We further include a discussion regarding
the error modes of teacher models and show that Monitored Distillation is able
to avoid distilling the error modes of individual teachers. Lastly, we conclude
with a discussion on the limitations of our method in Sec. 6. Code available at:
https://github.com/alexklwong/mondi-python.

2 Implementation Details

We implement our approach in PyTorch and optimized our networks using Adam
[13] with β1 = 0.9 and β2 = 0.999. We trained for a total of 200 epochs on KITTI
[27], and 75 epochs on VOID [33]. We use a batch size of 8 and choose wmd = 1.0,
wph = 0.15, wst = 0.85, wsm = 0.1 and temperature parameters λ = 0.10 for
both KITTI and VOID, α = 0.001 for KITTI and α = 0.10 for VOID. We detail
our learning rate schedule for each dataset in Table 1. We employ a sparse-to-
dense module from [36], and the min and max pool kernel sizes are detailed in
Table 2.
⋆ denotes equal contribution.
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Table 1: Learning Rate Schedule. Presented for KITTI (outdoors) and VOID
(indoors) depth completion benchmark datasets.

Epochs Learning Rate

KITTI [27]

0 to 30 5× 10−4

30 to 50 2× 10−4

50 to 90 5× 10−5

90 to 100 2× 10−5

100 to 120 5× 10−5

120 to 200 2× 10−5

VOID [33]

0 to 20 2× 10−4

20 to 75 5× 10−5

Table 2: Min Pool and Max Pool Kernel Sizes. Used in our sparse-to-dense
module. Kernel sizes for VOID [36] are larger because the point cloud generated
from VIO [6] is much sparser than that of the LIDAR used in KITTI [27].

Dataset Min Pool Max Pool

KITTI [27] 5, 7, 9, 11, 13 15, 17

VOID [33] 15, 17, 19, 21, 23 27, 29

For data augmentations, we performed random horizontal and vertical crops
to the image and depth maps of size 768 × 320 for KITTI and 576 × 448 for
VOID. We randomly removed between 60% to 70% of the sparse points for
KITTI and 60% to 95% of the sparse points for VOID. For both KITTI and
VOID, we performed random color shifts, saturation and contrast adjustments
between 0.80 and 1.20 in the input. Each augmentation has a 50% chance of being
applied. Augmentations are enabled 100% of the time for VOID; for KITTI,
augmentations are enabled 100% of the time until the 100th epoch, after which
it reduces to 50% for the remaining 50 epochs.

For the ease of training, we preprocess both datasets by running inference on
the training sets using each teacher model (except for sparse depth maps, which
are given) and load them during training. We note that teachers can also be used
for training online as we require < 8GB of GPU memory for training. It will take
longer as training time scales with the number of teachers, but even if teacher
inference is done sequentially, we will only use an extra 3265MiB of memory for
largest teacher (NLSPN) and at most 0.20s per image (total inference time for all
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Table 3: Inference Time and GPU Memory. Measured for a single image
(480×640) taken from VOID dataset. Training online requires an extra 3265MiB
of memory for largest teacher (NLSPN) and at most 0.20s per image (total
inference time for all teachers used) on standard 11GB GPU.

KBNet ENet PENet NLSPN MSG-CHN FusionNet ScaffNet

Time (ms) 15 15 24 112 6 24 6
GPU (MiB) 1043 3263 3265 2471 1095 1067 1047

Table 4: Error metrics. dgt denotes ground truth depth.

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x) − dgt(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x) − dgt(x)|2

)1/2
iMAE 1

|Ω|
∑

x∈Ω |1/d̂(x) − 1/dgt(x)|
iRMSE

(
1

|Ω|
∑

x∈Ω |1/d̂(x) − 1/dgt(x)|2
)1/2

teachers used) on a standard 11GB GPU. In Table 3, we present inference times
and memory usage for a single image from VOID using each of our teachers. For
the student baseline (without teachers), we emulate the training procedure of
[36]. To obtain pose, we trained a pose network jointly with our depth model by
minimizing Eqn. 10 from the main text.

In Table 4 we present four metrics that we use to evaluate our models. These
are the metrics reported on the KITTI and VOID benchmark datasets.

3 Sensitivity to Various Input Densities

To demonstrate robustness against varying levels of sparsity in the input, we
evaluate our method on VOID using input sparse point clouds of varying densi-
ties: 150, 500, and 1500 points which correspond to densities of approximately
0.05%, 0.15%, and 0.5% respectively over the image space. Compared to datasets
such as KITTI, sparse point clouds on VOID can be 100× more sparse, making
sparse to dense depth completion even more challenging.

As expected, qualitative results shown in Fig. 1 demonstrate that our per-
formance improves as density increases. We note that as the density of the point
cloud decreases, more errors occur in far, homogeneous regions that tend to
lack sparse points. In which case, we observe that our model is biased towards
outputting farther depths. Quantitative results against naive blind ensembling
baselines are provided in Table 5, where we restored the best checkpoint trained
on 0.5% density for each model and evaluated on the VOID test set of 0.05%,
0.15%, and 0.5%. Our method consistently outperforms ensembling baselines on
an average of 18.08% across all metrics, demonstrating greater improvement for
lower densities. This suggests our method is robust to sparseness and less reliant
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Fig. 1:Qualitative Results for Density Sensitivity Study. For two different
samples (top half and bottom half), the left column shows the ground truth depth
prediction and original image. The right three columns represent our method’s
output predictions given sparse depth maps at 0.5%, 0.15% and 0.05% density.
As observed, error increases with decreasing densities.

on sparse depth assistance. The use case is for densifying point clouds produced
by VIO systems, where locally there are few or no points. Thus, learning a prior
on the shapes of objects populating the scene becomes critical as the model must
depend more on the information from the image.

However, we must note that, while our method beats others for each tested
density levels, our model is also sensitive to the input density. Specifically, our
mean error doubles (×1.87) when density decreases to 0.15% and more than
triples (×3.04) when density decreases to 0.05% (i.e. decreases by 10x). This is
shown quantitatively in Table 5 and qualitatively in Fig. 1 where far regions that
are largely homogeneous become increasingly corrupted. This is because there
are usually fewer or no points tracked by the VIO system in those areas.

4 Comparison to Non-blind Ensemble Baselines

We compare our results to naive ensembling baselines without the blind-ensemble
assumption (i.e. the best performing model is known). We compare against the
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Table 5: Sensitivity Study for Sparse Depth Density on VOID. We train
a single model on VOID using monocular video and corresponding sparse depth
maps of 0.50% density and evaluate it on 0.50%, 0.15%, 0.05% density test
sets. On average, we outperform naive ensembling by 17.22% at 0.50% density,
17.44% at 0.15% density, and 29.58% at 0.05% density. Across all densities, we
outperform naive ensembling on average by 18.08%.

Distillation Method MAE RMSE iMAE iRMSE

0.50% Density

Mean 35.791 84.780 18.651 42.899

Median 33.889 85.245 17.296 40.401

Random 43.638 94.384 24.741 50.265

Ours 29.666 79.775 14.838 37.875

0.15% Density

Mean 75.969 169.259 35.502 76.108

Median 74.192 177.365 33.046 71.460

Random 78.819 166.750 39.183 77.690

Ours 61.370 146.569 27.963 64.356

0.05% Density

Mean 139.676 281.677 64.233 119.177

Median 139.276 306.621 57.785 109.511

Random 129.900 259.239 62.354 111.820

Ours 104.966 225.604 48.440 96.786

baseline approach of simply training using the best performing teacher, and show
that we perform better despite operating under the blind ensemble setting. We
note that while many methods have proposed distilling from a single teacher,
in many cases this is not practical. To determine which teacher to distill from,
one must have a measure error; existing methods relied on ground truth to
select the teacher model. Yet, in reality, ground truth is often not available
and when available it is expensive to obtain. So without ground truth i.e. the
blind ensemble setting, it becomes non-trivial to “find” the best teacher. For this
particular scenario in Table 6, we assume competing methods are able to choose
the best teacher and distill from them. This also serves as baseline for how well
a student model distilling from any particular top method will perform.

In Table 6, we compare against using only unsupervised losses (baseline,
row 1), the naive mean blind ensembling method with unsupervised loss (row
2), distilling from a single teacher (rows 3-5), and Monitored Distillation (last
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Table 6: Comparisons to Non-Blind Ensembles on KITTI Validation
Set. Row 1 is trained on standard photometric reprojection loss. Distilling from
the mean of the ensemble (row 2) yields union of the error modes. Single teacher
distillation baselines (rows 3-5) improves upon the mean ensemble. The best
performing method is our full model (row 6), where our monitored distillation
boosts performance of the best model (NLSPN) even though we operate in the
blind ensemble setting.

Distillation Method MAE RMSE iMAE iRMSE

Unsupervised Loss Only 333.865 1374.013 1.315 4.260

Mean 232.481 851.285 0.963 2.405

Distill E-Net [11] 228.356 831.737 0.952 2.278

Distill PE-Net [11] 226.058 819.46 0.964 2.316

Distill NLSPN [20] 221.077 841.952 0.921 2.234

Ours 218.222 815.157 0.910 2.184

row). We observe that learning from an ensemble of teachers using the mean
prediction (row 2) with unsupervised losses yield the union of error modes. In
fact, distilling from the mean of the ensemble performs worse than distilling from
any single teachers across all metrics. Furthermore, while knowledge distillation
with a single teacher (rows 3-5) improves the baseline and also distilling from
the mean of the ensemble, none of them produce the results that outperforms
our method that distills from a blind ensemble since the student model may still
propagate the teacher’s error modes.

We demonstrate the effectiveness of Monitored Distillation in row 6 of Ta-
ble 6, where our model performs significantly better than the distilling from any
of the individual teachers – even the best one, NLSPN [20]. Specifically, our
monitor allows the model to adaptively choose the teachers that best minimize
reconstruction residual (for calibrated images, the photometric reprojection er-
ror is a well-supported measure of reconstruction quality) and to fall back on
unsupervised losses to learn the correct correspondences when the teachers fail
to yield low reconstruction residuals.

5 Qualitative Comparisons on KITTI

Here, we provide qualitative comparisons across the spectrum of supervision.
First, we compare against top unsupervised methods on the KITTI benchmark,
where we show that our method is able to better recover the complex and homo-
geneous structures. After that, we show head-to-head comparisons against the
top supervised and unsupervised methods that we distill from and demonstrate
that we yield positive congruent training as we avoid distilling from the error
modes of individual teachers.
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Fig. 2: KITTI - Comparison to Unsupervised Methods #1. Monitored
Distillation, VOICED [33], ScaffNet [31], SynthProj [18], KBNet [36]. The first
row shows the input image It (left) and sparse depth z (right). Rows 2-5 are the
respective models’ dense depth maps (left) and error maps w.r.t ground truth
(right). The distilled regularization learnt by our approach improves accuracy for
transparent/translucent regions like car windows, and structures such as poles.
This is a known error mode of unsupervised methods due to the ambiguity of
homogeneous surfaces.

5.1 Against Unsupervised Methods

We qualitatively compare our results against top unsupervised methods in Fig. 2
and Fig. 3. We provide head-to-head comparisons against VOICED [33], ScaffNet
[31], SynthProj [18], KBNet [36]. As demonstrated in our figures, the distilled
regularization learned by our approach yields higher model accuracy overall, es-
pecially in transparent or translucent regions such as car windows, and largely
homogeneous and thin structures like poles and trees. This shows that our Mon-
itored Distillation approach can effectively distill priors learnt by the complex
teacher networks to our lightweight student model. Compared against the state
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Fig. 3: KITTI - Comparison to Unsupervised Methods #2. Monitored
Distillation, VOICED [33], ScaffNet [31], SynthProj [18], KBNet [36]. The first
row shows the input image It (left) and sparse depth z (right). Rows 2-5 are the
respective models’ dense depth maps (left) and error maps w.r.t ground truth
(right). The distilled regularization learnt by our approach improves accuracy
for transparent/translucent regions like car windows, and complex structures like
trees. This is a known error mode of unsupervised methods due to the ambiguity
of homogeneous surfaces.

of the art [36], our method consistently yields lower error in vehicles, highlighted
in white, where we do not suffer from the lidar artifacts leaving “holes” in the
cars. In general, our method learns to produce consistent depths within an ob-
ject for instance the pole and wall in the left image of Fig. 2 – [36] predicted a
break in the pole whereas our method produces a continuous surface.

5.2 Positive Congruent Training

In Fig. 4 and Fig. 5, we further compare the output of our method against the
top supervised and unsupervised methods from which we distill our regularities:
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Fig. 4: KITTI - Comparison to Teacher Methods #1. Monitored Distilla-
tion, KBNet [36], PENet [11], ENet [11], and NLSPN [20]. The first row shows
the input image It (left) and sparse depth z (right). Rows 2-5 are the respective
models’ dense depth maps (left) and error maps w.r.t ground truth (right). We
show that our method fixes (highlighted) error modes present in the teachers.

KBNet [36], PENet [11], ENet [11], and NLSPN [20]. Each teacher has some error
modes. For instance, as highlighted in Fig. 4, KBNet fails to reconstruct the pole
and leftmost street sign, NLSPN predicts the wrong shape for the middle street
sign, and ENet, PENet, and NLSPN fails to reconstruct the top left building
region. In Fig. 5, KBNet and ENet fail to reconstruct the tree, and NLSPN and
PENet fail to predict a smooth surface for the bottom right building. In our
predictions, we show that our method is able to address the (highlighted) error
modes present in the various teachers and avoid distilling them (see Sec. 3 on
main paper for details). This results in positive congruent training, where we
distill from a teacher only when it yields low reconstruction errors and avoid the
error modes of individual teachers.



10 T.Y. Liu et al.

Fig. 5: KITTI - Comparison to Teacher Methods #2. Monitored Distilla-
tion, KBNet [36], PENet [11], ENet [11], and NLSPN [20]. The first row shows
the input image It (left) and sparse depth z (right). Rows 2-5 are the respective
models’ dense depth maps (left) and error maps w.r.t ground truth (right). We
show that our method fixes (highlighted) error modes present in the teachers.

6 Limitations

As noted in our discussion (Sec. 5 from main paper), learning distilled regu-
larities from teachers imposes several risks and limitations. The effectiveness
of Monitored Distillation is lower bounded by training using the unsupervised
loss, and upper bounded by the performance of teachers and their error modes.
In particular, if all teachers yield high photometric reprojection errors on cer-
tain regions due to inaccurate depth values, the student model will have to rely
on unsupervised losses rather than the distilled depth, which lower bounds our
performance.

Our approach also depends on unsupervised photometric and structural losses
that are limited by parallax. In stereo settings with insufficient baseline, or in
monocular settings where there is insufficient movement between image frames,
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the photometric reprojection error would be limited in conveying information
about the 3D scene layout for distant regions. Our approach is further limited
by the identifiability of shape from the reprojection error, and relies on generic
priors to resolve the aperture problem and blank-wall effects.

Lastly, our method struggles to explicitly handle non-Lambertian surfaces as
we rely on photometric reprojection error for our ensembling method. However,
we know from [12] that the domain coverage of specularities and translucency
is sparse due to the sparsity of primary illuminants (rank of the reflectance
tensor is deficient and typically small). So, explicitly modeling deviations from
diffuse Lambertian reflection is likely to yield modest returns in accuracy of the
reconstruction. Nevertheless, we account for such surfaces to a certain extent by
additionally incorporating sparse depth constraints.

Nonetheless, this is the first work to introduce Monitored Distillation for
depth completion in the blind ensemble setting. Not only that, by leveraging
Monitored Distillation, we are able to compress the student such that it can run
in real-time, unlike the teachers. Our framework is general and we believe it can
be formulated to be applied to a number of tasks outside of depth completion
[11,17,19,20,31,32,33,36,38,41], including but not limited to unsupervised learn-
ing of geometry, i.e. stereo [2,3,5,22,37,34], optical flow [1,14,15,16,25,26], multi-
view stereo [4,8,28,39,40], monocular depth prediction [6,7,21,23,24,29,30,35],
and adaptive regularization [9,10,35].
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