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Abstract. We propose a method to infer a dense depth map from a sin-
gle image, its calibration, and the associated sparse point cloud. In order
to leverage existing models (teachers) that produce putative depth maps,
we propose an adaptive knowledge distillation approach that yields a pos-
itive congruent training process, wherein a student model avoids learning
the error modes of the teachers. In the absence of ground truth for model
selection and training, our method, termed Monitored Distillation, allows
a student to exploit a blind ensemble of teachers by selectively learn-
ing from predictions that best minimize the reconstruction error for a
given image. Monitored Distillation yields a distilled depth map and a
confidence map, or “monitor”, for how well a prediction from a partic-
ular teacher fits the observed image. The monitor adaptively weights
the distilled depth where if all of the teachers exhibit high residuals, the
standard unsupervised image reconstruction loss takes over as the super-
visory signal. On indoor scenes (VOID), we outperform blind ensembling
baselines by 17.53% and unsupervised methods by 24.25%; we boast a
79% model size reduction while maintaining comparable performance to
the best supervised method. For outdoors (KITTI), we tie for 5th over-
all on the benchmark despite not using ground truth. Code available at:
https://github.com/alexklwong/mondi-python.
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1 Introduction

Interaction with physical space requires a representation of the 3-dimensional
(3D) geometry of the surrounding environment. Most mobile platforms include
at least one camera and some means of estimating range at a sparse set of
points i.e. a point cloud. These could be from a dedicated range sensor such as
a LiDAR or radar, or by processing the images using a visual odometry module.
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Depth completion consists of inferring a dense depth map, with a range value
corresponding to every pixel, from an image and a sparse point cloud. Inherently,
depth completion is an ill-posed inverse problem, so priors need to be imposed
in the form of generic regularization or learned inductive biases.

Natural scenes exhibit regularities that can be captured by a trained model,
for instance a deep neural network (DNN), using a dataset of images and corre-
sponding sparse depths. While we wish to avoid any form of manual or ground
truth supervision, we also strive to exploit the availability of differing types of
pretrained models, whether from synthetic data or other supervised or unsuper-
vised methods. We refer to these pretrained models as “teachers,” each providing
a hypothesis of depth map for a given image and sparse point cloud. This leads
to a blind ensemble setting where ground truth is not available (e.g. transferring
models trained on a specific task to new datasets with no ground truth) for the
explicit evaluation of pretrained models i.e. model selection. The key question,
then, is how to make use of a heterogeneous collection of teachers, along with
other variational principles such as minimization of the photometric reprojection
error and generic regularizers such as structural similarity.

In general, different teachers will behave differently not only across images,
but even across regions within a given image. The incongruency of different mod-
els trained on the same tasks has been observed in the context of classification
model versioning [61]. Particularly, the same architecture trained with the same
data, but starting from different initial conditions can yield models that differ
on a significant portion of the samples while achieving the same average error
rate. Thus, a naive ensembling of a handful of teachers yields the union of the
failure modes, only modestly mitigated by the averaging.

Instead, we propose Monitored Distillation for selecting which teacher to em-
ulate in each image at each pixel. The selection is guided by a “monitor”, based
on the residual between the observations (e.g. image, sparse point cloud) and
their reconstructions generated by each teacher. This yields a spatially-varying
confidence map that weights the contribution of the selected teachers as well as
the structural and photometric reprojection errors i.e. unsupervised losses, cus-
tomary in structure-from-motion. In doing so, our method is robust even when
poor performing teachers are introduced into the ensemble – discarding their
hypotheses in favor of the ones that better reconstruct the scene. In the extreme
case where every teacher produces erroneous outputs, our method would still
learn a valid depth estimate because of our unsupervised fall-back loss.

Our contributions are as follows: (i) We propose an adaptive method to
combine the predictions of a blind ensemble of teachers based on their compat-
ibility with the observed data; to the best of our knowledge, we are the first to
propose knowledge distillation from a blind ensemble for depth completion. (ii)
The adaptive mechanism yields a spatially varying confidence map or “monitor”
that modulates the contributions of each teacher based on their residuals, lead-
ing to a training method that is positive congruent. (iii) Even when all members
of the ensemble fail, our model automatically reverts to the unsupervised learn-
ing criteria and generic regularization, allowing us to avoid distilling erroneous
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knowledge from teachers. (iv) Our method outperforms distillation and unsu-
pervised methods by 17.53% and 24.25% respectively on indoors scenes; we are
comparable to top supervised methods with a 79% model size reduction. On the
KITTI benchmark, we tie for 5th overall despite not using ground truth.

2 Related Works

Depth completion is a form of imputation and thus requires regularization, which
may come from generic assumptions or learned from data. The question is: How
to best combine different sources of regularization, adaptively [17,18,57], in a
way that leverages their strengths, while addressing their weaknesses?

Supervised depth completion is trained by minimizing a loss with respect to
ground truth. Early methods posed the task as learning morphological opera-
tors [10] and compressive sensing [8]. Recent works focus on network operations
[12,22] and design [5,35,49,62] to effectively deal with the sparse inputs. For ex-
ample, [29] used a cascade hourglass network, [24,62] used separate image and
depth encoders and fused their representations, and [22] proposed an upsampling
layer and joint concatenation and convolution. Whereas, [11,12,43,44] learned
uncertainty of estimates, [50] leveraged confidence maps to fuse predictions from
different modalities, and [42,60,63] used surface normals for guidance. [6,39] use
convolutional spatial propagation networks, [21] used separate image and depth
networks and fused them with spatial propagation. While supervised methods
currently hold the top ranks on benchmark datasets i.e. KITTI [49] and VOID
[56], they inevitably require ground truth for supervision, which is typically un-
available. Furthermore, these architectures are often complex and require many
parameters (e.g. 132M for [21], 53.4M for [42], and 25.8M for [39]), making them
computationally prohibitive to train and impractical to deploy [37].

Unsupervised depth completion assumes that additional data (stereo or monoc-
ular videos) is available during training. Both stereo [46,62] and monocular
[35,54,55,56] paradigms focus largely on designing losses that minimize (i) the
photometric error between the input image and its reconstructions from other
views, and (ii) the difference between the prediction and sparse depth input
(sparse depth reconstruction). Architecture-wise, [58] proposed a calibrated back-
projection network. However, all of these methods rely on generic regularization
i.e. local smoothness that is not informed by the data. Attempts to leverage
learned priors mainly focused on synthetic data. [34] applied image translation
to obtain ground truth in the real domain; whereas [56,62] used synthetic data to
learn a prior on the shapes populating a scene. We also employ an unsupervised
loss, but unlike them, we distill regularities from a blind ensemble of pretrained
models that can be trained on synthetic or real data, supervised or unsupervised.

Knowledge Distillation uses a simpler student model to approximate the
function learned by a larger, more complex teacher model by training it to learn
the soft target distribution [16]. There exists many works on knowledge distilla-
tion, including image classification [33,45,59], object detection [2,3,4], semantic
segmentation [31,38,40], depth estimation [20,32,52], and more recently, depth
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completion [23]. [9,31,32] utilize pairwise and holistic distillation to capture
structural relationships and [38] distills latent representations to guide learning.
[52] leverages knowledge distillation for monocular depth estimation on mobile
devices, and [41] uses cyclic inconsistency and knowledge distillation for unsu-
pervised depth estimation, where the student network is a sub-network of the
teacher. In depth completion, [23] uses knowledge distillation for joint training
of both teacher and student models. Unlike ours, this method uses ground truth.

Ensemble learning addresses the limitations of a single teacher by distilling
information from multiple teachers [14]. If done effectively, the student will learn
to extract the most relevant information from each teacher. This has been ex-
plored in classification [26,28,51], but fewer works utilize it in dense prediction
tasks. [1] uses it for domain adaptation in semantic segmentation and [15] in se-
lecting lidar points for depth completion. We further assume the blind ensemble
setting [48] where we lack ground truth for evaluation of the ensemble.

Positive congruent training [61] observed sample-wise inconsistencies in clas-
sification versioning, where new models wrongly predict for samples that were
previously classified correctly by an older, reference model on the same task and
dataset. To address this, they propose to emulate the reference model (teacher)
only when its predictions are correct; otherwise, they minimize a loss with respect
to ground truth – yielding reduced error rates and inconsistencies. Monitored
distillation is inspired by positive-congruency, but unlike [61], we do not require
ground truth and are applicable towards geometric tasks.

3 Method Formulation

We wish to recover the 3D scene from a calibrated RGB image I : Ω ⊂ R2 7→ R3
+

and its associated sparse point cloud projected onto the image plane z : Ωz ⊂
Ω 7→ R+. To do so, we propose learning a function fθ that takes as input I, z, and
camera intrinsics K and outputs a dense depth map d̂ := fθ(I, z,K) ∈ RH×W

+ .
We assume that for each synchronized pair of image and sparse depth map

(It, zt) captured at a viewpoint t, we have access to a set of spatially and/or
temporally adjacent alternate views T and the corresponding set of images IT .
Additionally, we assume access to a set of M models or “teachers” {hi}Mi=1 (e.g.
publicly available pretrained models). Fig. 2 shows that each teacher has unique
failure modes. As we operate in the blind ensemble setting, we lack ground
truth to evaluate teacher performance for model selection. To address this, we
propose Monitored Distillation, an adaptive knowledge distillation framework
for ensemble learning that results in positive congruent training: We only learn
from a teacher if its predictions are compatible with the observed scene.

To this end, we leverage geometric constraints between It and Iτ ∈ IT and
validate the correctness of predictions di := hi(It, zt) produced by each teacher
through averaging their photometric reprojection residuals from different views
IT and weighting them based on deviations from z. From the error, we derive
a confidence map that determines the compatibility of each teacher to the ob-
served image It. We then construct distilled depth d̄ ∈ RH×W

+ via pixel-wise
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Fig. 1:Monitored Distillation.Our method measures the reconstruction resid-
ual of predictions from each teacher and constructs the distilled depth d̄ based
on a pixel-wise selection of predictions that best minimize the reconstruction
error E. We derive a monitor function Q from E, which adaptively balances the
trade-offs between the distilling from the ensemble and the unsupervised losses.

selection from the ensemble that yields the highest confidence. The resulting
spatially varying confidence map acts as a “monitor” to balance the trade-off
between “trusting” the ensemble and falling back onto unsupervised geometric
consistency as a supervisory signal (i.e. when all teachers yield high residuals).

Monitored Distillation. Given M ∈ Z+ teachers and their predicted depth
maps di, for i ∈ {1, · · · ,M}, we construct a distilled depth map d̄ by adaptively
selecting predictions from the teacher ensemble that best minimize reconstruc-
tion error of the observed point cloud and image. To this end, we reconstruct
the observed image It via reprojection from an adjacent view Iτ , τ ∈ T :

Îtτ (x, d) = Iτ (πgτtK
−1x̄d(x)), (1)

where d denotes the depth values for x ∈ Ω, x̄ = [x⊤ 1]⊤ is the homogeneous
coordinate of x, gτt ∈ SE(3) is the relative pose of the camera from view t to
τ , K is the camera intrinsics, and π is the perspective projection. In practice,
gτt can be derived from camera baseline if It and Iτ are stereo pairs, directly
estimated by a visual inertial odometry (VIO) system, or learned from a pose
network if the views are taken from a video.

For each teacher hi, we measure the photometric reprojection error Pi via
the mean SSIM [53] between It and each reconstruction Îtτ (x, di), τ ∈ T :

Pi(x) =
1

|T |
∑
τ∈T

(
1− ϕ(Îtτ (x, di), It(x))

)
(2)

For ease of notation, we denote SSIM as ϕ(·).
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Fig. 2: Error Modes of Teacher Models on KITTI. Row 1 shows the input
image It (left) and an image taken from another view Iτ (right). Rows 2-4 shows
the predicted depth maps (left) and error maps (right) for each teacher, where
each has different error modes. Row 5 shows the distilled depth that our method
adaptively constructs from the teacher models. The error for each region in the
distilled depth lower bounds the reprojection error of the individual teachers.

As photometric reprojection alone does not afford scale, we additionally mea-
sure the local deviation of teacher predictions from the observed sparse point
cloud within a k × k neighborhood of x, denoted by N (x):

Zi =
1

k2|zt|
∑
x∈Ω

∑
y∈N (x)

1zt(x) · |di(y)− zt(x)| (3)

When used as a weight, βi := 1−exp(−αZi) serves to resolve the scale ambiguity
between different teachers, where α is a temperature parameter. We can then
define Ei, the weighted reconstruction residual from the i-th teacher, as:

Ei(x) = βiPi(x). (4)

To construct the distilled depth, we selectively choose the depth prediction for
each pixel x ∈ Ω that minimizes the overall residual error Ei across all teachers:

d̄(x) =

M∑
i=1

1i(x)di(x), (5)
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(a) VOID Dataset (indoor) (b) KITTI Dataset (outdoor)

Fig. 3: Teacher Selection Distribution. The plots show the proportion of
pixels selected from each teacher model. Note: error modes vary across different
depth ranges as different teachers dominate the selection at different distances.

where 1i is a binary weight map of the i-th teacher is given by

1i(x) =

{
1 Ei(x) < Ej(x) ∀ j ̸= i

0 otherwise.
(6)

In other words, 1i(x) = 1 when di(x) yields the lowest photometric residual.
Fig. 1 shows an overview of our method, where teacher predictions are ensem-
bled into distilled depth for supervision. Fig. 3 shows the distribution of teachers
chosen for constructing the distilled depth. As observed, different teachers per-
form well in different regions across different depth ranges. Our method selects
points from each teacher with the lowest error (i.e. highest confidence) to yield
an adaptive ensemble (see Fig. 2).

Despite being trained on ground truth, each teacher can only approximate
the true distribution of depths in the scene. While selectively ensembling based
on the reprojection residual will address some error modes of the teachers, it
is still possible for all teachers to yield high reconstruction residuals. Hence,
we do not trust the ensemble fully, and instead further adaptively weight the
ensemble supervision with a monitor Q based on the error of the distilled depth
d̄. As we have already constructed the error maps Ei for each teacher, we can
similarly aggregate the error for each pixel E(x) = mini Ei(x) for x ∈ Ω. The
final monitor Q ∈ [0, 1]H×W is a spatially adaptive per-pixel confidence map:

Q(x) = exp(−λE(x)), (7)

where λ is a temperature parameter (see Supp. Mat.). Q naturally assigns higher
confidence to points in the distilled depth that are compatible with the observed
image It as measured by reconstruction error, and is used to weight the super-
vision signal. Our monitored knowledge distillation objective reads:

ℓmd =
1

|Ω|
∑
x∈Ω

Q(x) · |d̂(x)− d̄(x)|. (8)
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Typically, a student learns the error modes of its teacher. But by distilling
from the adaptive ensemble of teachers that is positive congruent, our student
model learns not to make the same mistake as any individual teacher. We refer
to this process as Monitored Distillation, in which our monitor function Q gives
higher weight to the teachers in regions of lower reconstruction error. For regions
where all of the teachers within the ensemble yield high residuals, we default to
unsupervised loss to avoid learning the common error modes of any teacher.

Unsupervised Objective. For regions with high reconstruction error, the mon-
itoring function Q allows us to fall back onto standard unsupervised photometric
reprojection error, i.e. color and structural consistencies, as the training signal:

ℓco =
1

|Ω|
1

|T |
∑
x∈Ω

∑
τ∈T

(1−Q(x))
(
|Îtτ (x, d̂)− It(x)|

)
(9)

ℓst =
1

|Ω|
1

|T |
∑
x∈Ω

∑
τ∈T

(1−Q(x))
(
1− ϕ(Îtτ (x, d̂), It(x))

)
(10)

We weight the relative contributions of these losses with the complement of our
adaptive monitor function (1−Q). As a result, our framework naturally allows us
to search for the correct correspondences (and in turn better depth estimation)
in regions where the ensemble failed. In other words, regions which the monitor
deems as high confidence are more heavily influenced by ℓmd as supervision,
while lower confidence regions will minimize unsupervised losses instead.

Because the ensemble is informed by large amounts of data, their predictions
have regularities of our physical world, e.g. roads are flat and surfaces are locally
connected, “baked into” them. This presents an advantage: The student will
learn priors, often too complex to be modeled by generic assumptions, from the
ensemble. However, these priors may backfire when all the teachers yield high
residuals. Luckily, Q naturally limits the influence of the ensemble in such cases,
but this in turn reduces the amount of regularization that is needed for ill-posed
problems like 3D reconstruction. Hence, for these cases, we default to generic
assumptions i.e. a local smoothness regularizer:

ℓsm =
1

|Ω|
∑
x∈Ω

(1−Q(x))
(
λX(x)|∂X d̂(x)|+ λY (x)|∂Y d̂(x)|

)
(11)

where ∂X , ∂Y are gradients along the x and y directions, weighted by λX :=
e−|∂XIt(x)| and λY := e−|∂Y It(x)| respectively.

Thus, we have the following overall loss function

L = wmdℓmd + wphℓph + wstℓst + wsmℓsm (12)

where w(·) denotes the respective weights for each loss term (see Supp. Mat.).

Student Model Architecture. Through monitored distillation from an ensem-
ble of teachers, a simpler student model can be trained on the output distribution
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Table 1: Blind Ensemble Distillation. We compare Monitored Distillation
against naive ensembling methods for training a student model.

Ensemble Type Distillation Method MAE RMSE iMAE iRMSE

None Unsupervised Loss Only 55.67 117.21 28.68 58.31

Supervised

Mean w/o Unsupervised Loss 34.27 91.72 17.63 41.39
Mean 34.04 89.19 17.30 40.43
Median 34.64 89.80 17.46 39.77
Random 35.18 92.30 18.41 42.95
Ours w/o β 32.86 85.53 16.44 39.14
Ours 30.88 87.48 15.31 38.33

Unsupervised

Mean w/o Unsupervised Loss 44.73 96.56 24.08 49.55
Mean 41.96 94.47 23.80 50.37
Median 43.86 99.46 23.62 50.85
Random 39.38 92.14 20.62 46.04
Ours w/o β 38.78 90.72 20.53 45.91
Ours 36.42 87.78 19.18 43.83

Heterogeneous

Mean w/o Unsupervised Loss 44.53 100.59 23.33 48.36
Mean 35.79 84.78 18.65 42.90
Median 33.89 85.25 17.31 40.40
Random 43.64 94.38 24.74 50.27
Ours w/o β 32.09 80.20 16.15 38.86
Ours 29.67 79.78 14.84 37.88

of more complex teacher models to achieve comparable performance. Therefore,
we compress KBNet [58] by replacing the final two layers in the encoder with
depth-wise separable convolutions [19] to yield a 23.2% reduction in the number
of model parameters. Compared to the best supervised teacher models that re-
quire 25.84M (NLSPN [39]), 131.7M (ENet [21]), 132M (PENet [21]), and 6.9M
(the original KBNet) parameters, our student model only requires 5.3M.

4 Experiments

We evaluate our method on public benchmarks – VOID [56] for indoor and out-
door scenes and KITTI [49] for outdoor driving settings. We describe evaluation
metrics, implementation details, hyper-parameters and learning schedule in the
Supp. Mat. [30]. All experiments are performed under the blind ensemble setting
where we do not have ground truth for model selection nor training.

VOID dataset [56] contains synchronized 640× 480 RGB images and sparse
depth maps of indoor (laboratories, classrooms) and outdoor (gardens) scenes.
The associated sparse depth maps contain ≈1500 sparse depth points with a
density of ≈0.5%. They are obtained by a set of features tracked by XIVO [13],
a VIO system. The dense ground-truth depth maps are acquired by active stereo.
As opposed to static scenes in KITTI, the VOID dataset contains 56 sequences
with challenging motion. Of the 56 sequences, 48 sequences (≈45,000 frames) are
designated for training and 8 for testing (800 frames). We follow the evaluation
protocol of [56] and cap the depths between 0.2 and 5.0 meters.

KITTI dataset [49] depth completion benchmark contains≈86,000 raw 1242×
375 image frames (43K stereo pairs) and synchronized sparse depth maps . The
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Table 2: Different Teacher Ensembles. We apply Monitored Distillation to
various combinations of teachers trained on different datasets. Using an ensemble
trained only on NYUv2(‡) and SceneNet(†) still benefits a student on VOID(⋄).
Teachers Teachers Trained On MAE RMSE iMAE iRMSE

None (Unsupervised Loss Only) - 55.67 117.21 28.68 58.31

FusionNet⋄, ScaffNet† VOID, SceneNet 48.72 102.44 26.94 56.32
FusionNet⋄, KBNet⋄ VOID 40.10 92.03 22.16 46.86

KBNet⋄, ScaffNet† VOID, SceneNet 38.87 91.76 20.50 46.67

FusionNet⋄, KBNet⋄, ScaffNet† VOID, SceneNet 36.42 87.78 19.18 43.83

FusionNet‡, KBNet‡, ScaffNet† NYUv2, SceneNet 46.66 104.05 26.13 54.96

Fig. 4: Monitored Distillation vs. Unsupervised (Left) and Supervised
(Right) Teachers. While KBNet [58] is the best performer among unsupervised
methods, by ensembling it with weaker methods, we addressed its error modes
on lab equipment (top left). Similarly, we address the failure modes in the top
supervised method NLSPN [39] by distilling from a heterogeneous ensemble

sparse depth is obtained using a Velodyne lidar sensor and, when projected,
covers ≈ 5% of the image space. The ground truth depths are semi-dense, which
we use only for evaluation purposes. We use the designated 1,000 samples for
validation and evaluate test-time accuracy on KITTI’s online testing server.

Teacher ensembles: We use the following ensembles for VOID (Table 1, 2,
3): (i) supervised ensemble of NLSPN [39], MSG-CHN [29], ENet, and PENet
[21], (ii) unsupervised ensemble of FusionNet [54], KBNet [58], and ScaffNet [54]
(trained on SceneNet [36]), and (iii) heterogeneous ensemble of all seven meth-
ods. For KITTI (Table 4, 5), we used NLSPN [39], ENet, and PENet [21].

VOID Depth Completion Benchmark.We present qualitative and quantita-
tive experiments on VOID against blind ensemble distillation baselines, and top
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Table 3: VOID Benchmark. We compare against unsupervised (U) and su-
pervised (S) methods. By distilling from blind ensemble (BE), we outperform all
existing works except for [39] which has 5× more parameters. Using our method
with an unsupervised ensemble also yields 1st among unsupervised methods.

Method Type # Param Time MAE RMSE iMAE iRMSE

SS-S2D [35] U 27.8M 59ms 178.85 243.84 80.12 107.69

DDP [62] U 18.8M 54ms 151.86 222.36 74.59 112.36

VOICED [56] U 9.7M 29ms 85.05 169.79 48.92 104.02

ScaffNet [54] U 7.8M 25ms 59.53 119.14 35.72 68.36

ENet [21] S 131.7M 75ms 46.90 94.35 26.78 52.58

MSG-CHN [29] S 364K 36ms 43.57 109.94 23.44 52.09

KBNet [58] U 6.9M 13ms 39.80 95.86 21.16 49.72

Ours (Unsupervised) BE 5.3M 13ms 36.42 87.78 19.18 43.83

PENet [21] S 132M 226ms 34.61 82.01 18.89 40.36

Ours (Supervised) BE 5.3M 13ms 30.88 87.48 15.31 38.33

Ours (Heterogeneous) BE 5.3M 13ms 29.67 79.78 14.84 37.88

NLSPN [39] S 25.8M 122ms 26.74 79.12 12.70 33.88

supervised and unsupervised methods. Note that while we evaluate our method
and baselines across different ensemble compositions, Monitored Distillation and
baselines have no knowledge regarding any individual teacher in the ensemble.
For comparison purposes, scores for each teacher can be found in Table 3.

Comparisons Against Baselines: As we are the first to propose knowledge dis-
tillation for blind ensembles (Table 1), we begin by presenting several baselines:
(1) mean, and (2) median of teachers, and (3) randomly selecting a teacher for
each sample per iteration. All baselines are trained with distillation and unsu-
pervised loss, unless specified otherwise, for fair comparisons against our method
– which also consistently improves results for all ensemble types.

Table 1 row 1 shows the baseline performance of the student network trained
only on unsupervised losses. Compared to the KBNet [58] in Table 3 row 7, our
compressed KBNet (student) has a 23.2% sharp drop in performance due to a
decrease in capacity. While all distillation methods improves its performance,
Monitored Distillation beats all baselines by an average of 8.53% when using an
ensemble of supervised teachers. This improvement grows to 11.50% when using
an unsupervised ensemble (Table 1, rows 8-13), where the variance in teacher
performance is considerably higher than supervised ones. Nonetheless, distilling
an unsupervised ensemble improves over the best unsupervised method KBNet
by an average of 9.53% – showing that we can indeed leverage the strengths of
“weaker” methods to address the weakness of even the best method.

When using our method to distill from a heterogeneous ensemble, we observe
the same trend where adding more teachers produces a stronger overall ensemble
– improving over both supervised and unsupervised ones alone. This is unlike
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Table 4: KITTI Unsupervised Depth Completion Benchmark. Our
method outperforms all unsupervised methods across all metrics on the KITTI
leaderboard. * denotes methods that use additional synthetic data for training.

Method # Param Time MAE RMSE iMAE iRMSE

SS-S2D [35] 27.8M 80ms 350.32 1299.85 1.57 4.07

IP-Basic [27] 0 11ms 302.60 1288.46 1.29 3.78

DFuseNet [46] n/a 80ms 429.93 1206.66 1.79 3.62

DDP* [62] 18.8M 80ms 343.46 1263.19 1.32 3.58

VOICED [56] 9.7M 44ms 299.41 1169.97 1.20 3.56

AdaFrame [55] 6.4M 40ms 291.62 1125.67 1.16 3.32

SynthProj* [34] 2.6M 60ms 280.42 1095.26 1.19 3.53

ScaffNet* [54] 7.8M 32ms 280.76 1121.93 1.15 3.30

KBNet [58] 6.9M 16ms 256.76 1069.47 1.02 2.95

Ours 5.3M 16ms 218.60 785.06 0.92 2.11

naive distillation baselines, where “polluting” the ensemble with weaker teachers
results in a drop in performance (Table 1, rows 14-19). In fact, naive distillation
of heterogeneous ensemble is only marginally better than distilling unsupervised
ensemble and considerably worse than a supervised one. In contrast, our method
improves over baselines across all metrics by average of 17.53% and by 4.60%
and 16.28% over our method with supervised and unsupervised ensembles, re-
spectively. We also show an ablation study for β (Eqn. 4) by removing sparse
depth error from our validation criterion, where we observe an average drop of
4.32% without β across all ensemble types due to the inherent ambiguity in scale
when using monocular images for reconstruction. β allows us to choose not only
predictions that yield high fidelity reconstructions, but also metric scale.

Different Teacher Ensembles: Table 2 shows the effect of having different
teacher combinations within the ensemble. In general, the more teachers the
better, and the better the teachers, the better the student. For example, com-
binations of any two teachers from the unsupervised ensemble yields less a per-
formant student than the full ensemble of FusionNet, KBNet and ScaffNet –
including that adding an underperforming method like ScaffNet to the ensemble
(rows 3, 5). Finally, we show in row 6 that distilling from an ensemble trained on
completely different datasets than the target test dataset (i.e. KBNet and Fu-
sionNet are trained on NYU v2 [47] and Scaffnet on SceneNet [36]) still improves
over unsupervised loss with generic regularizers like local smoothness (row 1).

Benchmark Comparisons: Table 3 shows comparisons on the VOID bench-
mark. In an indoor setting, scene layouts are very complex with point clouds typ-
ically in orders of hundreds to several thousand points. As such, there are many
suitable dense representations that can complete a given point cloud. Hence, the
accuracy of the model hinges on the regularization as most of the scene does
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Table 5: KITTI Supervised Depth Completion Benchmark. We compare
against distilled (D) and supervised (S) methods. Despite operating in the blind
ensemble (BE) distillation regime, our method beats many supervised methods.
Our iMAE (0.92) and iRMSE (2.11) scores rank 4th, and we tie for 5th overall.
Note: a method outranks another if it performs better on more than two metrics.

Rank Method Type MAE RMSE iMAE iRMSE

13 CSPN [7] S 279.46 1019.64 1.15 2.93

12 SS-S2D [35] S 249.95 814.73 1.21 2.80

9 Self-Distill [23] D 248.22 949.85 0.98 2.48

9 DeepLiDAR [42] S 226.50 758.38 1.15 2.56

9 PwP [60] S 235.73 785.57 1.07 2.52

8 UberATG-FuseNet [5] S 221.19 752.88 1.14 2.34

5 Ours BE 218.60 785.06 0.92 2.11

5 RGB guide&certainty [50] S 215.02 772.87 0.93 2.19

5 ENet [21] S 216.26 741.30 0.95 2.14

4 PENet [21] S 210.55 730.08 0.94 2.17

2 DDP [62] S 203.96 832.94 0.85 2.10

2 CSPN++ [6] S 209.28 743.69 0.90 2.07

1 NLSPN [39] S 199.59 741.68 0.84 1.99

not allow for establishing unique correspondences due to largely homogeneous
regions, occlusions and the aperture problem.

Unlike generic regularizers (e.g. piecewise-smoothness), Monitored Distilla-
tion is informed by the statistics of many other scenes. Hence, even when distill-
ing from an unsupervised ensemble (row 8), we still beat the best unsupervised
method, KBNet [58], by an average of 9.53% over all metrics while using a 23.2%
smaller model. This highlights the benefit of our positive congruent training,
where our distillation objective can address the error modes of individual teach-
ers. This is shown in Fig. 4 (top left), where we fixed the erroneous predictions
in the lab equipment, and reduced errors in homogeneous regions.

Furthermore, distilling from a heterogeneous ensemble yields a student that
ranks 2nd on the benchmark, achieving comparable performance to the top
method NLSPN [39] while boosting a 79% model size reduction. Note: we do
not outperform NLSPN despite it being included in the ensemble. This is likely
due to distillation loss from the large size reduction. Fig. 4 shows that our model
distills complex priors from the teacher ensemble regarding the topology of in-
door surfaces, e.g. cabinets and tables are flat. The bottom right of Fig. 4 shows
that we can even produce a more accurate depth estimate than NLSPN.

KITTI Depth Completion Benchmark. We provide quantitative compar-
isons against unsupervised and supervised methods on the KITTI test set. We
also provide qualitative comparisons in Supp. Mat.
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Comparison with Unsupervised Methods: Table 4 shows that despite hav-
ing fewer parameters than most unsupervised models (e.g. 23.2% fewer than
KBNet[58], 73.0% fewer than DDP[62]), our method outperforms the state of
the art [58] across all metrics by an average of 19.93%, and by as much as 28.47%
in iRMSE while boasting a 16ms inference time. Compared to methods that use
synthetic ground truth to obtain a learned prior (marked with * in Table 4),
our method leverages learned priors from pretrained models and improves over
[34,54] by an average of 28.32% and 27.06%. We posit that this is largely due
to the sim2real domain gap that [34,54,62] have to overcome i.e. covariate shift
due to image translation error during training.

Comparison with Distilled and Supervised Methods: We compare our method
(having at best indirect access to ground truth) against supervised and dis-
tilled methods that have direct access to ground truth in training. Table 5
shows that we rank 4th in iMAE and iRMSE, and tie for 5th overall. Note:
We beat knowledge distillation method Self-Distill [23] by 12.6% despite (i) they
use ground truth and (ii) we apply our method in the blind ensemble setting.
We achieve comparable performance to the teacher models ENet [21] (131.7M
params), PENet [21] (132M params), and NLSPN [39] (25.8M params) across
all metrics despite only requiring 5.3M parameters.

5 Discussion

We propose Monitored Distillation for blind ensemble learning and knowledge
distillation on depth completion tasks. Our method is capable of shrinking model
size by 79% compared to the best teacher model, while still attaining comparable
performance, enabling lightweight and deployable models.

However, we note that there exists several risks and limitations. (i) Our
method relies on the composition of teachers and their error modes; if all teach-
ers perform poorly on certain regions, our performance in these regions will
not improve beyond training with unsupervised losses. (ii) Our method relies
on structure-from-motion. If there is insufficient parallax between the stereo
or monocular images, then photometric reprojection is uninformative regard-
ing the depth of the scene. (iii) Reprojection error is limited when Lambertian
assumptions are violated. However, the domain coverage of specularities and
translucency is sparse due to the sparsity of primary illuminants [25] (rank of
the reflectance tensor is deficient and typically small). So, explicitly modeling
deviations from diffuse Lambertian reflection is likely to yield modest returns.

Admittedly the scope of this work is limited to depth completion, but we
foresee this method being applied to general geometric problems (e.g. optical
flow, stereo). Our method is the first attempt in blind ensemble distillation to
produce positive congruent students, and we hope it lays the groundwork for
approaches aiming to ensemble the abundance of existing pretrained models.
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