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Abstract. This draft provides extra statistical results, comparison, ab-
lations, mathematical derivations, remaining details, and discussions to
further support the claims made in the main paper. Continuing with the
results presented in the main paper, we first provide remaining results
on the noisy sequence. Next, we supply a more comprehensive evalua-
tion of our method on the NRSfM challenge dataset [17]. Additionally,
we show the contribution of single rotation averaging to the overall ac-
curacy of our approach on the CMU MoCap dataset [3]. Finally, we end
the draft with timing details, more visual results, theory with discussion
on the rank optimization methods, and future areas for research in this
direction of work.

1 More Experiments and Analysis

a) Performance on the noisy trajectory. In the main paper, we provided
the statistical comparison results for the noisy Pickup trajectory sequence. Re-
sults for the remaining Akther et al. [3] sequence i.e., Yoga, Stretch and Drink
sequence, with the noisy trajectories are shown in Fig.(1). We observed that
our method handles the noise cases efficiently and generally outperform other
competing methods.
b) Comprehensive results on the NRSf M benchmark dataset. Although
the visual results are provided in the main paper, we added this qualitative 3D
shape reconstruction results here for completeness. Fig.(2) show the visual out-
come obtained on [17] dataset using our method, for the test frame. As demon-
strated in Jensen et al. [17] work that camera trajectory type can have a no-
ticeable difference in NRSf M algorithm’s performance. Even though the overall
average reconstruction error per subject is provided in the main paper, it may
not reflect the true behavior of the algorithm. Consequently, we provide a more
comprehensive statistical evaluation. Table (1) shows the quantitative results ob-
tained using our method over different types of camera motion. All in all, Flyby
and Circle camera trajectory gives better performance; however, results with
Tricky camera trajectory type are a bit off than other categories. Nevertheless,
our method’s performance pattern is consistent with the observation made in
the Jensen et al. [17] recent article on other state-of-the-art NRSf M methods.
c) Performance Comparison with GT rotation. We analyzed the fidelity
of our estimated rotation against the ground-truth rotation. For that, we first
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(a) eR w.r.t noise (Yoga)
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(b) e3d w.r.t noise (Yoga)
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(c) eR w.r.t noise (Stretch)
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(d) e3d w.r.t noise(Stretch)

0.00 0.05 0.10 0.15 0.20 0.25
 W with Noise Variance ( 2

m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ro
tat

ion
 E

rro
r (e

R) Drink
PTA
MP
CSF
BMM
Ours

(e) eR w.r.t noise (Drink)
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(f) e3d w.r.t noise (Drink)

Fig. 1: Top to bottom row: Rotation and shape error on the noisy yoga, stretch
and drink sequence trajectories, respectively. Consistently, our method show
stable behaviour and provide satisfactory results. Mean and standard deviation
is shown with bold and corresponding light shaded region, respectively.

PAPER BALLOON STRETCH TEARING ARTICULATED

Fig. 2: Qualitative Results on NRSf M challenge dataset [17]. Top row. Subject
image. Bottom row. 3D reconstruction of the respective object shape.
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Dataset ↓ / Camera Trajectory Type → Circle Flyby Line Semi-Circle Tricky Zigzag Avg. on Deformation Type (over rows)
Articulated 11.5054 3.7178 12.9399 6.5405 21.9694 16.4351 12.1847

Balloon 1.3584 2.5427 10.8937 2.8792 18.5155 1.5760 6.2942
Paper 1.6968 4.3147 15.6295 8.5301 21.6723 1.3176 8.8602
Stretch 2.5105 3.4801 4.1066 2.7418 21.9850 3.3715 6.3659
Tearing 2.1395 2.5594 15.9419 3.3603 35.3746 6.1068 10.9137

Avg. on Trajectory Type (over columns) 3.8421 3.3229 11.9023 4.8104 23.9034 5.7614

Table 1: Object 3D shape reconstruction error reported in millimeters (mm) over
different camera trajectory type. The result corresponds to the test example sup-
plied with the dataset [17]. The results indicate that our method can efficiently
handle different kinds of shape deformation with distinct camera trajectory. Also,
we can observe that our evaluation over the different camera trajectory aligns
well the independent study conducted by Jensen et al. [17].

considered the 3D reconstruction accuracy (e3d) of the pseudo-inverse inverse
solution i.e., Xinit = pinv(R)W, using ground-truth (GT) rotation and our
estimated rotation, respectively. Table (2) provides the statistical comparison
for the same. It is easy to infer that the two results are almost equivalent. For
us, such results were surprising as well as encouraging.

Dataset Drink Pickup Yoga Stretch
GT-PI 0.2195 0.2984 0.2739 0.2236
Ours-PI 0.2195 0.2985 0.2740 0.2238
Table 2: Pseudo inverse (PI) 3d recon-
struction error results with GT (PI-
GT) and ours rotation. Ours results are
very close to pseudo-inverse solution re-
sult that can be recovered with ground-
truth rotation.

Next, we studied the performance
our shape optimization proposed in the
main paper with different rotation (R)
initialization (i) our rotation (Ours)
(ii) with GT rotation (Ours♯). Table
(3) provide the statistical comparison
for the same. The numbers suggest that
our shape optimization performs bet-
ter than other competing methods. Be-
sides, using our estimated rotation we
can have 3d reconstruction results which is as good as if ground-truth rotation
were used, and the difference between the two is insignificant.

Data PTA [3] CSF2 [11] BMM [8] Ours Ours♯

Yoga 0.0580 0.0215 0.0334 0.0122 0.0119
Pickup 0.0992 0.0814 0.0497 0.0152 0.0139
Stretch 0.0822 0.0442 0.0456 0.0124 0.0121

Table 3: Quantitative performance comparison using (e3d) metric given ground-
truth rotation. Ours, Ours♯ show the statistics with our estimated rotation ini-
tialization and ground-truth rotation initialization results, respectively.

d) Effect of using our organic prior rotation compared to prior-free
rotation. We conducted this extra experiment to show the contribution of our
rotation estimation to the overall deforming shape 3D reconstruction. To effec-
tively show the outcome, we conduct this experiment in two settings (i) We
introduce Dai et al. rotation to our shape optimization (ii) We introduce our
computed rotation to the proposed shape optimization. Table (4) show the result
of this ablation. Clearly, our shape optimization provides outstanding results.
Additionally, use our rotation approach, we can further enhance our results.
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Dataset Drink Pickup Yoga Stretch Dance Face Walking Shark
BMM [8] 0.0266 0.1731 0.1150 0.1034 0.1864 0.0303 0.1298 0.2357

e3d ( [8] rotation) 0.0101 0.0164 0.0126 0.0126 0.1382 0.0152 0.0880 0.0563
e3d (our rotation) 0.0071 0.0152 0.0122 0.0124 0.1209 0.0145 0.0816 0.0550

Table 4: Showing the contribution of our rotation averaging approach to overall
performance on noise-free sequence. Second row. e3d metric obtained using our
shape optimization with Dai et al. method’s rotation [8]. Third row. e3d metric
using our shape optimization results with our method’s rotation. Indeed using
intermediate rotation priors (organic prior) help improve the performance and
works incredibly well on the noisy sequence, as shown in the main paper.

e) Timing Details. To provide a clear indication that we don’t sacrifice much
on the computation time as compared to BMM rotation [8] estimation, we evalu-
ated the processing time of our algorithm. The study indicate that our method’s
computation time compares favorably with [8]. The reasons for that are (i) re-
covering column triplet and corresponding rotation can be run in parallel as
each column triplet is processed independent of each other, and (ii) L1 single
rotation averaging algorithm is computationally fast [14], and with just 50 it-
erations of it for every frame gives good enough results. Table (5) provides the
processing time comparison with [8] for both the parallel and sequential imple-
mentation of our method. Parallel implementation is used solely for the purpose
of K parallel computation of Gk ∈ R3K×3 and corresponding Rk ∈ R2F×3. The
supplied computation time is observed on MATLAB (R2020b)/C++ running on
a desktop machine with Linux OS and 32GB RAM. For all of the CMU MoCap
sequence [3, 32], our computation time is slightly more than the BMM [8]. Yet,
there is an exception for e.g., for the shark sequence our method gives better
timing performance. That is because our shape optimization converges faster
than BMM [8] shape optimization, at the same time, the value of K and number
of frames for this example is relatively small.

Dataset Drink Pickup Yoga Stretch Dance Face Walking Shark
BMM [8] 89.7040 ± 0.12 50.0569 ± 0.35 25.3601 ± 0.24 34.0517 ± 0.56 61.6082 ± 0.22 16.3589 ± 0.26 26.9831 ± 0.29 52.6904 ± 0.35

Our Method (P) 123.1312 ± 0.39 67.3095 ± 0.58 45.2626 ± 0.42 50.3835 ± 0.49 84.7192 ± 0.21 20.1009 ± 0.78 33.5214 ± 0.22 5.7592 ± 0.31
Our Method (S) 536.9051 ± 0.63 460.0693 ± 0.19 143.8776 ± 0.52 265.8589 ± 0.13 146.7546 ± 0.99 24.2315 ± 0.81 45.0942 ± 0.75 8.3043 ± 0.49

Table 5: Timing details of our algorithm are compared to BMM original imple-
mentation [7]. The above statistics are the overall time taken by the algorithm for
computing both the rotation and the shape. The above numbers are in seconds.
Executing the code at different times can provide slightly different execution
time; hence, we also put the corresponding expected variance up to 2 decimal
places. Our Method (P) represent the processing time for the parallel implemen-
tation and Our Method (S) is for sequential implementation, respectively.

For comparison, we could have included other methods; yet we confine ourselves
to the prior-free method as our approach is well aligned with it. Also, it indicates
the computation overhead by using organic priors rather than no prior.

(f) Comparison with few other methods on CMU MoCap dataset.
Based on the recommendation of the reviewer, we added some more statistical
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(a) Back Sequence (b) Face Sequence (c) Heart Sequence
Fig. 3: Qualitative Results on Garg et al. [10] Real Video Sequence. Top row:
Example Input Image Sequence. Bottom row: Reconstructed 3d shape of the
corresponding frame in the video sequence.

comparison of our method with other methods. The table in the main paper is
already too dense therefore, we put it in the supplementary material.

Dataset (noise-free) Drink Pickup Yoga Stretch Dance
P-Bézier [1] 0.009 0.138 0.111 0.062 0.143

SEA [2] 0.011 0.235 0.158 0.084 0.229
Separable ST [31] 0.009 0.170 0.111 0.094 0.134

Ours 0.007 0.015 0.012 0.012 0.120

The statistical results show that our method despite being simple provides ex-
emplary 3D reconstruction accuracy.

(g) Results on Real Dense Sequence. We used Garg et al. [10] dataset se-
quence for dense 3d reconstruction on real-world example images. Unfortunately,
no ground-truth data is available for its statistical evaluation, and therefore, we
show the qualitative results obtained on these sequences in Fig.(3).

2 Single Rotation Averaging for NRSf M

In this work, we use the theory of single rotation averaging for NRSf M problem.
In particular L1 single rotation averaging. To our knowledge, rotation averaging
until now in the vision field is applied to rigid structure from motion [12,15]. Our
work shows that rotation averaging is equally important to NRSf M problem.
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Despite rotation averaging under the L2 norm is widely studied and put
to use [28], L1 averaging averaging show markedly improved results [15]. It is
well understood that L1 mean (geometric median) is generally more robust to
outliers than L2 mean. In the context of NRSf M, we have absolute rotation
prior Rk ∈ R3F×3 for every column triplet Gk. After registration to the reference
rotation, some of them become turn out to be outliers; therefore, we must resort
to the robust estimator for rotation averaging. Unfortunately, we don’t have a
closed-form solution to the L1 single rotation averaging. Nonetheless, we have
an effective and fast iterative Weiszfeld algorithm to solve L1 single rotation
averaging [14]. For rigorous details on theory and convergence analysis, refer to
Hartley et al. rotation averaging tutorial [15].

2.1 Why single rotation averaging helps?

Averaging helps because we now have more evidence for per frame rotation that
can help refine the solution. The first corrective triplet rotation solution gives one
of the possible solutions, and it cannot guarantee the best plausible rotation that
could be recovered from the matrix factorization theory to NRSf M, as shown
recently by Kumar [19]. In our case, we have K rotation evidence per frame. We
initialize the L1 averaging with the median of the registered sample (Eq.6) than
blindly average it with the first corrective triplet rotation prior as initialization
(see Algorithm 1 of the main paper). Such a strategy treats some prior rotations
as outliers; hence provide us with the robust estimation of rotation [27]. Further,
as quoted in [14] “The geometric median has a breakdown point of 0.5. That is,
up to half of the sample data may be arbitrarily corrupted, and the median of the
sample will still provide a robust estimation for the location of the uncorrupted
data”.

3 Shape optimization

In this section, we show the derivation of the closed form solution derivation of
the shape variables i.e., X, X♯ used in ADMM optimization. The overall cost
function for shape optimization presented in the main paper is as follows

Lρ(X,X♯) =
1

2
∥W −RX∥2F + µ∥X♯∥r=N,θ

+
ρ

2
∥X♯ −Φ(X)∥2F+ < Y,X♯ −Φ(X) >

(1)
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(a) Closed form solution to X: Assuming X♯ as constant Eq.(1) can be
written as

X ≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2
∥X♯ −Φ(X)∥2F+ < Y,X♯ −Φ(X) >

Since Φ(.) is a linear one-to-one function, we can re-write the above equation as

≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2
∥Φ−1(X♯)−X∥2F+ < Φ−1(Y),Φ−1(X♯)−X >

≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2

[
∥Φ−1(X♯)∥2F + ∥X∥2F − 2Tr(Φ−1(X♯)TX)

]
+ Tr(Φ−1(Y))T (X♯ −X)

Now, dropping the terms that do not involve X variable.

≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2

[
∥X∥2F − 2Tr(Φ−1(X♯)TX)

]
− Tr(Φ−1(Y))TX

Using the trace property, Tr(ATB) = Tr(BTA)
(2)

≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2

[
∥X∥2F − 2TrXT

(
Φ−1(X♯) +

Φ−1(Y)

ρ

)]
Adding the constant to get a better form for optimization

Lρ(X,X♯) ≈ argmin
X

1

2
∥W −RX∥2F +

ρ

2

∥∥∥X−
(
Φ−1(X♯) +

Φ−1(Y)

ρ

)∥∥∥2
F

(3)

To get the closed form solution for X, we differentiate the above term Lρ(X,X♯)
w.r.t X and equate it to zero i.e., ∂L

∂X = 0. By performing that, we get the
following:

(RTR+ ρI)X = RTW + ρ
(
Φ−1(X♯) +

Φ−1(Y)

ρ

)
(4)

Therefore,

X =
(
RTR+ ρI

)−1
[
RTW + ρ

(
Φ−1(X♯) +

Φ−1(Y)

ρ

)]
(5)



8 Suryansh Kumar and Luc Van Gool

(b) Derivation of solution to X♯: Assuming X as constant Eq.(1) can be
written as

X♯ ≈ argmin
X♯

µ∥X♯∥r=N,θ +
ρ

2
∥X♯ −Φ(X)∥2F+ < Y,X♯ −Φ(X) >

≈ argmin
X♯

µ∥X♯∥r=N,θ +
ρ

2

[
∥X♯∥2F + ∥Φ(X)∥2F − 2Tr(X♯)TΦ(X)

]
+

Tr(YTX♯)− Tr(YTΦ(X))

≈ argmin
X♯

µ∥X♯∥r=N,θ +
ρ

2

[
∥X♯∥2F − 2Tr(X♯)T (Φ(X)− Y

ρ
)

]

≈ argmin
X♯

µ∥X♯∥r=N,θ +
ρ

2

∥∥X♯ −
(
Φ− Y

ρ

)∥∥2
F

(6)

For simplicity and clarity on the symbols for the derivation, assume X♯ = P and(
Φ− Y

ρ

)
= Q, and µ

ρ = τ . Substituting, the symbol in the above equation gives

argmin
P

τ∥P∥r=N,θ +
1

2

∥∥P−Q
∥∥2
F (7)

Eq.(7) optimization has form similar to the one introduced by Oh et al. [29] on
partial sum minimization of singular values. Yet, on the contrary, we have weight
priors for the singular values greater than N for optimization1.

Theorem 1. If the optimization problem has the following form

argmin
P

τ∥P∥r=N +
1

2
∥P−Q∥2F (8)

where, τ > 0 and P, Q ∈ Rm×n be real valued matrices which can be decomposed
by Singular Value Decomposition (SVD). Then, the optimal solution can be ex-
pressed by the Partial Singular Value Thresholding (PSVT) operator defined as
follows in [29]:

PN,τ [Q] = UQ(ΣQ1 + Sτ [ΣQ2])V
T
Q (9)

where, ΣQ1 = diag(σ1, σ2, .., σN , .., 0) and ΣQ2 = diag(0, ..σN+1, ..,max(m,n)).
Symbol Sτ is the soft-thresholding operator defined as Sτ (σ) = sign(σ)max(|σ| −
τ, 0). Q = UQ(ΣQ1 +ΣQ2)V

T
Q

Proof: Let r = min(m,n) and UPΣPV
T
P =

∑r
i=1 σi(P)uiv

T
i , where ΣP =

diag(σ(P)) with σ(P) = [σ1(P), ....., σr(P)] contains the non-increasing singular

1 We are deriving here in the supplementary material for completeness. Readers may
refer to [29] for more comprehensive discussion and related proofs.
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values of P. Using such algebraic relations, Eq.(8) optimization function w.r.t P
variable can be re-written as follows:

argmin
P

τ

r∑
i=N+1

σi(P) +
1

2
∥Q∥2F +

1

2

r∑
i=1

(
− 2σi(P)uT

i Qvi + σi(P)2
)

(10)

Since the optimization is w.r.t P, variable Q does not affect the optimization.
This leads to the following minimization problem

argmin
P

τ

r∑
i=N+1

σi(P) +
1

2

r∑
i=1

(
− 2σi(P)uT

i Qvi + σi(P)2
)

(11)

For our problem setup, using the von Neumann’s lemma on the inner product
of matrices [13,29] i.e., ⟨P,Q⟩ ≤ ⟨σ(Q), σ(Q)⟩, the upper bound of uT

i Qvi can
be set as max{uT

i Qvi}, which is equal to σi(Q) ∀ i when UP = UQ and VP =
VQ. The lower envelope of Eq.(11) is obtained at UP = UQ and VP = VQ.
Consequently, Eq.(11) optimization depends only singular values of P i.e., ΣP

leading to the following optimization function:

argmin
P

τ

r∑
i=N+1

σi(P) +
1

2

r∑
i=1

(
− 2σi(P)σi(Q) + σi(P)2

)
=

1

2

(
r∑

i=N+1

(
2τσi(P)− 2σi(P)σi(Q) + σi(P)2

)
+

N∑
i=1

(
− 2σi(P)σi(Q) + σi(P)2

))
(12)

As shown before [29] the minimum of Eq.(12) is obtained at Σ̂P = diag(σ̂(P))
(first order optimality condition), where

σ̂i(P) =

{
σi(Q), if i < N + 1

max(σi(Q)− τ, 0) otherwise
(13)

The above solution exactly corresponds to the PSVT operator as defined
in Eq.(9) utilizing the von Neumann’s lemma [29, 30] i.e., P∗ = UQΣ̂PVQ.
Re-writing, it using shrinkage operator UQ(ΣQ1 + Sτ [ΣQ2])V

T
Q.

For the NRSf M formulation, we have an additional weight prior θ due to the
pseudo-inverse solution of X, which we used for optimization. In our optimization
(Eq.14 in the main paper), we substitute τ = µθ

ρ and N = 1. The point to note
is that by weighting the initial singular value prior for the shape matrix X♯ opti-
mization, the criteria for the optimality on the weighted nuclear norm minimiza-
tion do not change i.e., the weights still satisfy the criteria 0 ≤ w1 ≤ w2... ≤ wn

and σ1 ≥ σ2.... ≥ σn ≥ 0. The only difference is we do not penalise the first
singular value of the shape during minimization. And therefore, it can be re-
garded as the special case of weighted nuclear norm minimization [6, 9, 13]. For
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(a) Stretch Sequence
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(b) Pickup Sequence

Fig. 4: The shape optimization cost function value (Eq.(10) in the main paper)
over iterations. Ours shape optimization gives better minima than the current
state-of-the-art R-BMM [19] and AOW [16]. Ours∗ and Ours† show the results
when [8] rotation and our proposed rotation averaging based estimated rotation
is used as initialization, respectively. Clearly, our approach achieves better min-
ima with stable convergence response, and faster w.r.t Ours∗. (a)-(b) Results on
stretch, pickup seq. [3] respectively.

our problem, we exploited the initial shape prior to encourage the proposed op-
timization to better meet the target rank constraint. Generally, for NRSf M case
N = 1 works well.

Although Eq.(6) is a non-convex optimization problem, minimizing it us-
ing PSVT operator via ADMM —which has shown effectiveness for many non-
convex computer vision problems [4, 33], gives highly satisfactory results. Fig.4
clearly show the our shape optimization provides better minima than weighted
nuclear norm minimization methods i.e., R-BMM [19], AOW [16]. In Algo-
rithm Table 1, we provide the pseudo code of the proposed idea for better
understanding of our approach.

4 Partial Sum Minimization of Singular Values: Intuition

In NRSf M, it is generally the case that the shape spans a low-rank space
which can be less than the assumed K or 3K (depending on the previous works
that dealt with the rank of the shape) [5] [34] [3] [8]. Therefore, using nuclear
norm minimization to recover rank K shape solution can unfavorably affect the
outcome of NRSf M factorization.

As demonstrated in several NRSf M factorization work, the shape may lie in
a space that is much lower than K. Hence, outliers are included as inliers in the
solution space for nuclear norm minimization can lead to questionable results
after the optimization. Further, the nuclear norm minimization for the low-rank
shape minimizes the rank, including the singular values within the space’s true
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Algorithm 1: Pseudo code of our approach

1 % Pseudo code of our algorithm.
2 %% Input
3 [W, K] = read_the_input_and_suitable_K(’dataset_name ’);
4
5 % mean centralize the measurement matrix.
6 Wm = mean(W, 2);
7 W = W - Wm*ones(1, size(W, 2));
8
9 %% get the important intermediate information.

10 [F, P] = size(W); F = F/2;
11
12 %% Initialize the variable
13 epsilon_t = 1e-3; lambda = 1.1; xi=5e-3; gamma = 1e-6; rho = 1e-4;
14 delta = 0.05; rho_max = 1e10; epsilon = 1e-10;
15 Y = zeros(F, 3*P);
16
17 %% estimate the rotation matrix
18 [GK] = compute_the_correction_matrix(W, K);
19 [RK] = recover_rotation_from_correction(W, K, GK);
20 [R_avg] = perform_rotation_averaging(RK, delta , epsilon_t);
21 [R] = orthographic_rotation_per_frame(R_avg , F, P);
22
23 %% estimate the shape matrix
24 % get the initial shape prior and corresponding initial weights (
25 % in the main Eq.9 main).
26 X_init = pinv(R)*W;
27 [~, sigma , ~] = svd(Phi(X_init), ’econ’);
28 c = xi*sqrt(sigma(1, 1));
29 [n, ~] = size(sigma);
30 Theta = eye(n, n).* repmat(c./( diag(sigma) + gamma), [1, n]);
31
32 % initialize some other variables
33 mu = 1.0; % regularization parameter.
34 Xs = g(X_init); % initialize the tranformed shape
35 I = eye(3*F);
36 iter = 1; % initialize the iteration value.
37 N = 1; % for the first component.
38 Theta (1:N, 1:N) = zeros(N); % preserve the first component.
39 datafit_val = [];
40
41 % ADMM optimization
42 while(true)
43 %solve for X
44 X = solveX(W, R, Xs , I, Y, rho);
45 %solve for X^{\ sharp}
46 Xs = solveXs_preserve_component(X, Y, rho , mu, Theta , N);
47 % update lagrange multiplier
48 Y = Y + rho*(Xs -g(X));
49 % check for the gap
50 gap = max(max(abs(Xs -g(X))));
51 %check for convergence and break;
52 if(gap <epsilon || rho >= rho_max)
53 break;
54 else
55 rho = min(rho_max , lambda*rho);
56 end
57 %print the intermediate statistics
58 fprintf(’Iteration number = %d \n’, iter);
59 fprintf(’The value of current rho = %f\n’, rho);
60 iter = iter + 1;
61 end
62
63 return X;
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rank, which can really hurt the performance. Consequently, WNN minimization
provides a good alternative for recovering better results [19] [16]. On the contrary,
the proposed shape matrix optimization approach takes a more noticeable step
that the first singular values of the pseudo-inverse shape solution is more often
than not gives a very good prior on the shape, so why not preserve it.

Concretely, our shape optimization attempts to find a mid-way between the
partial sum minimization of singular value and WNN in NRSf M for better shape
recovery. The proposed method pushes the shape optimization towards a good
solution by exploiting the organic shape prior so that it does not minimize the
subspace variance within the given N . We demonstrated it empirically in the
main paper that N = 1 suits the NRSf M case since we don’t know the exact rank
of the deforming shape apriori in NRSf M unlike photometric stereo (N = 3),
rigid Sf M (N = 3), and other low-level vision problems.

5 Discussion and critical observation with NRSf M

Similar to other available NRSf M algorithms, our method’s performance varies
with different camera trajectory types [17]. Finally, a large part of success in
NRSf M is due to the development in the optimization methods assuming that
image key-points correspondence is correct or reasonably accurate. So, our results
are as good as image feature correspondences, yet image feature correspondence
in itself is a challenging vision task.

One critical avenue of inspection with our method or other similar methods is
the rank minimization approach to NRSf M [19,21,29,35]. As mentioned above,
ADMM based minimization may provide a sub-optimal solution for non-convex
NRSf M formulation. Still, time and again, it has been observed practically that
the rank minimization-based statistical approaches provides better results with-
out theoretical global optimal guarantees [17, 21]. For instance, if we look into
recent Jensen et al. [17] benchmark results in Table 5, the top method i.e.,“Multi-
body” [21,22] is a non-convex optimization algorithm with no theoretical global
minimum guarantees for the shape optimization, yet it demonstrated state-of-
the-art results for most of the object categories.
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