
Organic Priors in Non-Rigid Structure from
Motion

Suryansh Kumar1 Luc Van Gool1,2
sukumar@vision.ee.ethz.ch vangool@vision.ee.ethz.ch

1ETH Zürich Switzerland, 2KU Leuven Belgium

Abstract. This paper advocates the use of organic priors in classical
non-rigid structure from motion (NRSf M). By organic priors, we mean
invaluable intermediate prior information intrinsic to the NRSf M matrix
factorization theory. It is shown that such priors reside in the factorized
matrices, and quite surprisingly, existing methods generally disregard
them. The paper’s main contribution is to put forward a simple, method-
ical, and practical method that can effectively exploit such organic priors
to solve NRSf M. The proposed method does not make assumptions other
than the popular one on the low-rank shape and offers a reliable solu-
tion to NRSf M under orthographic projection. Our work reveals that
the accessibility of organic priors is independent of the camera motion
and shape deformation type. Besides that, the paper provides insights
into the NRSf M factorization—both in terms of shape and motion—and
is the first approach to show the benefit of single rotation averaging for
NRSf M. Furthermore, we outline how to effectively recover motion and
non-rigid 3D shape using the proposed organic prior based approach and
demonstrate results that outperform prior-free NRSf M performance by
a significant margin. Finally, we present the benefits of our method via
extensive experiments and evaluations on several benchmark datasets.

Keywords: Organic Priors, Non-Rigid Structure from Motion, Rank Minimiza-
tion, Rotation Averaging, Matrix Factorization.

1 Introduction

Non-rigid structure from motion (NRSf M) factorization is a classical problem in
geometric computer vision [9,27]. The problem’s primary objective is to recover
3D shape of a deforming object from a given set of image key-points tracked
across multiple images. As a result, it is sometimes referred as solving an inverse
graphics problem [46]. An effective solution to NRSf M is of significant impor-
tance to many computer vision and geometry processing applications [10,39].

It is now widely accepted that the NRSf M problem is challenging to work
out if the shape deforms arbitrarily across images, as it becomes equivalent to
a non-rigid shape recovery problem using a single image at a time, which is
ill-posed. Accordingly, several assumptions and priors are often used to make
the problem solvable and computationally tractable. For instance, the deform-
ing shape spans a low-rank space [13], smooth temporal shape deformation [1,6],
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shape or trajectory lies in the union of linear subspace [26,29–31,35,54] and the
local surface deformation is rigid or near rigid [14,37,45,48]. Other favored prior
assumptions include smooth camera motion [28,43], a piece-wise planar deforma-
tion model [14, 32–34], a Gaussian shape prior distribution [51], the availability
of a 3D shape template [46], and shapes across frames must align [36]. Despite
that, NRSf M remains a challenging and active research problem.

Meanwhile, there exist several popular methods to solve NRSf M [3, 9, 13,
36, 51]. Here, we will concern ourselves with the theory of matrix factorization
for NRSf M elaborated in 1999-2000 by Bregler et al. [9]1. It is a simple yet an
effective approach to solve NRSf M. In the context of matrix factorization, one
of the commonly used prior assumptions is that the non-rigid shape spans a
low-rank space i.e., the shape at each instance can be represented as a linear
combination of a small set of basis shapes [9]. This paper adheres to such an
assumption and shows that other important prior information resides within
the intermediate factorized matrices —termed as organic priors. Surprisingly,
most existing methods, if not all, ignore them. We used the word «organic»
because they come naturally by properly conceiving the algebraic and geometric
construction of NRSf M factorization [9,13,49]. Furthermore, this paper contends
that the use of external priors and assumptions not only restricts the practical
use of NRSf M methods, but also constrains the understanding and broader use
of the well-known theory [13]. Yet, unlike [13], we advocate the use of organic
priors, which is predicated on the proposition put forward by Kumar [28]. In this
paper, we will show how to procure organic priors and exploit them effectively.

One of the critical innovations in NRSf M factorization that disputed the use
of extraneous priors was introduced in [12, 13]. The algorithm proposed in that
paper does not use any prior other than the low-rank shape assumption. Never-
theless, despite its theoretical elegance and challenging argument, it fails to per-
form well on benchmark datasets [3,15,25,50]. Recently, Kumar [28] highlighted
the possible reasons and exploited its missing pieces to gain performance. It was
shown that a better rotation and shape could be estimated using the prior-free
method’s theory [12, 13]. Still, [28] based his work on a smooth camera motion
assumption that requires a brute force, heuristic search in the rotation space. In
contrast, this paper puts forward a systematic method for NRSf M factorization
that encourages the use of organic priors extracted from the factorized matrices.
Experiments on synthetic and real benchmarks show that our approach consis-
tently provides excellent 3D reconstruction results. This indicates the strength
of matrix factorization theory for NRSf M. In summary, our contributions are
• A methodical approach for solving NRSf M that provides outstanding results

using simple matrix factorization idea under the low-rank shape assumption.
• An approach that endorses the use of organic priors rather than extraneous

priors or assumptions. Our method introduce single rotation averaging to esti-
mate better rotation while being free from smooth camera motion heuristics.

1 See, however, C. Tomasi and T. Kanade, pp. 137-154, IJCV (1992) for the original
matrix factorization theory for shape and motion estimation, although devoted to
the rigid Sf M problem [49].
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• A different setup for low-rank shape optimization is proposed. We present a
blend of partial sum minimization of singular values theory and weighted nu-
clear norm optimization for shape recovery. We observed that the proposed
optimization better exploits the organic shape priors and yields shape recon-
structions superior to other popular NRSf M factorization methods [13,24,28].

Further, we proffer the benefits of L1 single rotation averaging for NRSf M factor-
ization, which is excellent at providing robust rotation solutions. Although most
of NRSf M factorization focuses on sparse key-point sets, our method is equally
effective for dense feature points and compares favorably with well crafted state-
of-the-art dense NRSf M methods such as [15,26,29].

2 Overview and Key Strategy

General Definition and Classical Setup. In NRSf M, a measurement ma-
trix W ∈ R2F×P is defined as a matrix containing the image coordinates
(wf,p ∈ R2×1) of P feature points tracked across F image frames. W is generally
mean-centered and given as an input to the factorization method [9]. Under an
orthographic camera model assumption, the NRSf M factorization theory pro-
poses to decompose the W into a product of a rotation matrix R ∈ R2F×3F and
a non-rigid shape matrix X ∈ R3F×P such that W ≈ RX.

A practical method for NRSf M factorization was initially proposed by Bre-
gler et al. [9]. Using the linear model proposition, a non-rigid shape Xi ∈ R3×P

for ith frame was represented as a linear combination of K basis shapes Bk ∈
R3×P i.e., Xi =

∑K
k=1 cikBk, where cik denotes the shape coefficients. Using

such a shape representation, the W matrix is decomposed as follows:

W =

w11 . . .w1P

. . .
wF1 . . .wFP

 =

R1X1

..
RFXF

 =

 c11R1 . . . c1KR1

. . .
cF1RF . . . cFKRF

B1

..
BK


⇒ W = R(C⊗ I3)B = MB

(1)

where, Ri ∈ R2×3 denotes the ith frame rotation matrix, and ⊗ the Kronecker
product. M ∈ R2F×3K , B ∈ R3K×P and I3 is the 3 × 3 identity matrix. It is
easy to infer from the above construction that rank(W) ≤ 3K.

Since there is no general way to solve for R,C, and B directly, rank 3K
factorization of W via its Singular Value Decomposition (svd) gives a natu-
ral way to solve the problem under the orthonormality constraint of the ro-
tation space [3, 9, 13]. As it is well-known that factorization of W via svd is
not unique [9, 49], there must exist a corrective matrix G ∈ R3K×3K such that
W = (M̂G)(G−1B̂) = MB. And therefore, once the svd of W is computed, a
general rule of thumb in NRSf M factorization is to first solve for the G matrix,
followed by the estimation of R and X, respectively [3, 13].
(a) Background on Corrective and Rotation Matrix Estimation. To
solve for G, orthonormality constraints are enforced [2, 9]. Few works proposed
in the past solve for the full G ∈ R3K×3K matrix (i.e., for all its matrix entries)
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to estimate the rotation matrix [2, 8, 52, 53]. In contrast, Dai et al. [13] argued
that rather than solving for the full G, simply solve for G1 ∈ R3K×3 (first
3 columns or first corrective triplet) leveraging Akhter et al.’s [2] theory. Yet,
there exist K such triplets (see Fig.1). Even if we don’t deviate from [2] theory,
the question that still remains with the use of [13] rotation estimation theory is:
Q1. Do we utilize all possible rotations that can be recovered from [13] rotation
estimation theory? The answer is no, as recently argued by Kumar [28]. He
proposed to inspect all K column triplets in the corrective matrix (G), and
recover K possible rotation solutions Rk ∈ R2F×3, where k ∈ {1, 2, . . . ,K}.
He then selected the one Rk that provides a smooth camera motion trajectory.
Yet, this solution is heuristic in nature and requires a qualitative inspection
of all the K rotations. The point to note is that, similar to Dai et al. [13],
Kumar’s [28] solution at the end does not fully utilize all the K rotation priors
and eventually ends up aborting the rest of the near smooth or non-smooth
(K−1) solutions. We call those (K−1) rotation solutions «organic priors in
the rotation space». Our proposed method utilizes all those organic rotation
priors to estimate a better and more informed rotation matrix.
(b) Background on the Shape Matrix Estimation. After solving for the
rotation, the goal is to estimate the shape with the rank K constraint. Generally,
an initial solution to the shape can be estimated in a closed form using Xinit =
pinv(R)W2. Yet, this may produce a planar solution as outlined in [52]. In spite
of that, Xinit provides useful information about the true shape and can be used
as a shape variable (X) initialization in the following rank-optimization problem:

minimize
X♯

1

2

F∑
i=1

P∑
j=1

∥wij −Rixij∥2, s.t. rank(X♯) ≤ K (2)

where, xij denote the 3D point j in the ith view, and wij is its corresponding
projection. X♯ ∈ RF×3P is the reshape of the shape matrix (X) for K shape
basis constraint [4, 13].

There exist several approaches to solve the Eq.(2) optimization [4,13,20,42].
Among them, relaxed rank-minimization via appropriate matrix-norm minimiza-
tion is widely used to recover a low-rank shape matrix providing favorable accu-
racy and robust results [13, 15, 24, 28, 52]. In this paper, we exploit the singular
values of the Xinit, which we call «organic priors in the shape space» to
recover better solution than the recent state-of-the-art [24, 41]. Although Ku-
mar [28] work is the first to propose and utilize such priors for better shape
reconstructions, in this paper we show that we can do better3. This brings us to
the next question:
Q2. Can we make better use of the organic shape prior to solve for the shape
matrix? We will show that we can. When solving the relaxed rank minimization
optimization problem of the shape matrix [13], it is not beneficial to equally
penalize all the singular values of the shape matrix. Hence, for effective shape

2 pinv() symbolizes Moore–Penrose inverse of a matrix, also known as pseudoinverse.
3 Familiarity with [13,28] gives a good insight on our paper’s novelty.
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Fig. 1: A visual illustration of our rotation estimation approach for K = 5. (a)-(b)
Use the [13] intersection theorem to recover all Gks’. (b)-(c) Recover Rk ∈ R2F×3

corresponding to each column triplet. (c) Map per frame 2 × 3 rotation to SO(3) via
a cross product, taking care of the determinant sign. (d) Register (K − 1) rotation to
the reference rotation (e) Perform per frame single rotation averaging to recover Ravg.

recovery, one can use the Xinit singular values prior to regularize the shape
matrix rank-optimization [28]. In particular, perform a weighted nuclear norm
(WNN) minimization of the shape matrix, and assign the weights to the shape
variable that is inversely proportional to the Xinit singular values magnitude [28].
In this paper, we go a step further. We propose to preserve the first component of
the shape during its WNN minimization, i.e., to not penalize the first singular
value shape prior from Xinit. We empirically observed that the first singular
value of Xinit, more often than not, does contain rich information about the true
shape. Penalizing the first singular value during WNN minimization of the shape
matrix may needlessly hurts the overall results. Consequently, we introduce a mix
of partial sum minimization of singular values [40] and WNN minimization [28]
to recover a better shape matrix estimate.

3 Proposed Approach

First, we provide details of our approach to solve for the rotation matrix, followed
by the shape matrix estimation.

3.1 Rotation Estimation

To put our work in context, we highlight some previous efforts that took a similar
direction towards enhancing the rotation estimate for NRSf M.
Relation to previous methods. As mentioned before, there exist K corrective
column triplets in the G matrix (Fig.1(b)). Brand [8] and Akhter et al. [2] solves
for all corrective triplets jointly. Xiao et al. [53] proposed to independently solve
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for each corrective triplet (Gk) and align Gk’s using the Procrustes method up
to sign [43]. Lee et al. [36] proposed an additional constraint on the rotation by
posing NRSf M as a shape alignment problem. By comparison, the Dai et al. [13]
method is a simple and effective way to compute rotation. It estimates only the
1st column-triplet of G i.e., G1 to recover R (see Fig.1).

On the contrary, we propose to first compute all the column-triplets i.e.,
Gk ∀ k ∈ {1, 2, . . . ,K} and their corresponding rotation matrices Rk ∈ R2F×3,
using Dai et al. [13]. Later, we use all K rotation estimates per frame to estimate
a better rotation matrix R ∈ R2F×3F via the theory of single rotation averag-
ing [23]. Rather than aligning Gks as in [2, 53], we register the rotations. Our
approach consists of the following steps applied in sequel:
• Recover Gk and its corresponding Rk ∈ R2F×3 using [13], ∀ k ∈ {1, . . . ,K}.
• Map Rk ∈ R2F×3 7→ Rk ∈ R3F×3 via the cross product of per frame 2× 3 or-

thographic rotation estimates, while correcting for the sign of the determinant,
if applicable.

• Take the rotation due to the first column-triplet i.e., R1 ∈ R3F×3 as the
reference rotation matrix and register the other (K−1) i.e., R2 to RK rotation
estimates to it. After registration, filter the rotation sample if the distance
w.r.t its reference rotation sample is greater than δ [23] (see below for details).

• Perform per frame single rotation averaging of all the aligned rotation priors
to recover Ravg ∈ R3F×3. Later, convert Ravg per frame to orthographic form
and place it in the block diagonal structure to construct R ∈ R2F×3F .

Before performing single rotation averaging, we align all rotation priors due to
the global ambiguity (see Fig.1(b)-Fig.1(c) visual). We align the other (K − 1)
rotations to R1 using the following optimization.

minimize
Rk

reg

F∑
f=1

∥R1
f −Rk

f (R
k
reg)

T ∥2F ; s.t. Rk
reg ∈ SO(3), ∀ k ∈ {2, . . . ,K} (3)

where, k ∈ Z. In the paper, ∥.∥F denotes the Frobenius norm. Using Eq.(3)
optimization, we recover (K − 1) Rk

reg ∈ R3×3 to register the organic rotation
priors for averaging. Next, we perform single rotation averaging per frame.
Single rotation averaging. Given a set of n ≥ 1 rotations {R1, R2, . . . , Rn} ⊂
SO(3), the goal of single rotation averaging (SRA) is to find the average of a
set of rotations [23]. It can also be conceived as finding a rotation sample on the
SO(3) manifold that minimizes the following cost function

argmin
R∈SO(3)

n∑
i=1

dp(Ri, R) (4)

d() denotes a suitable metric function. We use p = 1 for its robustness and
accuracy as compared to p = 2 [22]. For our problem, we have K rotation
samples for each frame (see Fig.1(c)). Accordingly, we modify Eq.(4) as:

argmin
Rf∈SO(3)

K∑
k=1

d1(R̃k
f ,Rf ) (5)
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Here, R̃k
f is the kth registered rotation for the f th frame, i.e., averaging across

rows after registration (Fig.1(c)). We solve Eq.(5) for all the frames using the
Weiszfeld algorithm for L1 rotation averaging [22]. The average is computed
in the local tangent space of SO(3) centered at the current estimate and then
back-projected onto SO(3) using the exponential map (Fig.1(d)-Fig.1(e)). Yet,
instead of initializing using the chordal L2 mean, we use the starting point using
the following equation proposed recently by Lee and Civera [38].

So = argmin
S∈R3×3

K∑
i=1

3∑
j=1

3∑
k=1

∣∣(Ri − S)jk
∣∣
1

(6)

Eq.(6) is an element-wise L1 norm matrix entries, minimizing the sum of absolute
differences from the Ri at (j, k) value i.e., (So)jk = median({Ri}Ki=1) ∀ j, k ∈
{1, 2, 3}. After median computation, its equivalent rotation representation is
obtained by projecting So onto SO(3) using Υ operator. For Ψ ∈ R3×3 matrix,
we define ΥSO(3)(Ψ) = UDVT , where UDVT is svd of Ψ and D = diag(1, 1,−1)
if det(UVT ) < 0 or I3×3 otherwise.

Algorithm 1: L1 Single Rotation Avg.

Data: Set of rotation {Ri}K
i=1, ϵt = 1e−3

Result: L1 mean i.e., median rotation
Set So := median({Ri}K

i=1);
/*Project median on SO(3)*/
Set Ro := ΥSO(3)(So); Set Ravg := Ro;
while do

vi := log(RiR
T
avg) ∀ i = 1, 2.., K;

∆v :=
∑K

i=1 vi/∥vi∥∑K
i=1

1/∥vi∥
;/*Weiszfeld step*/

Ravg := exp(∆v)Ravg
if ∥∆v∥ < ϵt then

break;
end

end
return Ravg;

Algorithm 1 provide our im-
plementation for single rotation av-
eraging. Empirically, after registra-
tion and minor filtering of the ro-
tation samples4, we observed per
frame rotation samples are reason-
ably close, which is good for con-
vergence [23]. Averaging per frame
rotation priors, we recover Ravg ∈
R3F×3. For more details on single
rotation averaging and its conver-
gence analysis refer [23,38].

To compute R ∈ R2F×3F from
Ravg ∈ R3F×3, we take Ravg’s per
frame 3 × 3 matrix, drop its 3rd row and place it to the diagonal of R, and
perform this step for all frame5.

3.2 Shape Estimation

Once we estimated the rotation matrix, our goal is to recover the shape matrix.
An easy way to compute shape is Xinit = pinv(R)W, which is consistent with
the assumption of low rank shape matrix and it minimizes the re-projection
error. To show the merit of our rotation estimation, we tabulate the pseudo
inverse shape reconstruction result using our rotation compared to BMM [13] in
Tab.(1). Clearly, our rotation improves the Xinit, i.e., the initial shape solution,
4 filter if sample is too far to the reference rotation after registration.
5 After registration, if samples are filtered out due to its distance from the reference

rotation (more than δ), then per frame rotations is less than K.
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Dataset Drink Pickup Yoga Stretch Dance Face Walking Shark
BMM-PI [13] 0.4449 0.5989 0.6523 0.4784 0.5764 0.4848 0.5100 0.8784

Ours-PI 0.2195 0.2985 0.2740 0.2238 0.3014 0.2995 0.2702 0.3053
Table 1: Pseudo inverse (PI) shape results comparison with BMM [13] via e3d metric.
Compared to [13], our approach dramatically improves PI shape accuracy, showing the
benefit of using rotation organic prior. e3d definition is provided in Sec.§4

by a large margin. However, Xinit may be a 3D reconstruction co-planar in every
frame and “the catch is that there are in fact many solutions which minimize the
rank” [52]. Therefore, further optimization of the shape matrix is recommended.
Let’s review Dai et al.’s [13] relaxed rank-minimization and recent improvement
over it to better place our approach.
Relation to previous methods. Given rotation matrix R ∈ R2F×3F , Dai et
al. [13] perform the following optimization for low-rank shape matrix estimation.

minimize
X♯,X

1

2
∥W −RX∥2F + µ∥X♯∥∗; subject to: X♯ = Φ(X) (7)

Here, Φ(.) is a function that maps X ∈ R3F×P to X♯ ∈ RF×3P . µ is a scalar con-
stant and ∥.∥∗ denotes the nuclear norm of the matrix, which is a convex bound
of the matrix rank and can give a good solution to rank minimization prob-
lems under restricted isometry property constraints [44]. Eq.(7) can be solved
efficiently using the ADMM optimization strategy [7]. [13] optimizes Eq.(7) by
penalizing each singular value of X♯ equally. Yet, we have an initial shape prior
Xinit that we can exploit to recover a better shape. In the same vein, Kumar [28]
introduced WNN minimization to Eq.(7), which shows highly effective results
with the use of Xinit singular values as prior. [28] suggested the following changes

minimize
X♯,X

1

2
∥W −RX∥2F + µ∥X♯∥∗,θ; subject to: X♯ = Φ(X) (8)

Here, θ is the weight assigned to X♯ based on the X♯
init singular values. It is

known that for a low-rank shape matrix, a few top singular values contain most
of the shape information. Thus, when optimizing Eq.(8) the first singular value
should be penalized the least and vice-versa, using the following relation

θi = ξ
(
σi(X

♯
init) + γ

)−1 (9)

where, ξ and γ are small positive scalars, σi(X
♯
init) denotes the ith singular value

of X♯
init and θi denotes its weight. It is observed and empirically tested that such

a strategy provides significantly better minima after optimization [28].
Nevertheless, for shape estimation, contrary to Kumar [28], we propose the

mixed use of partial sum minimization of singular values and weighted nuclear
norm optimization of X♯. Based on our extensive empirical study over several
non-rigid shapes, we found that the first singular value of X♯

init contains useful
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information. Thus, penalizing it during WNN minimization may hurt perfor-
mance unnecessarily. Therefore, we propose to preserve the first singular value
of the shape during optimization, leading to the following optimization problem

minimize
X♯,X

1

2
∥W −RX∥2F + µ∥X♯∥r=N,θ; subject to: X♯ = Φ(X) (10)

We use N = 1 for all our experiments and assign the weights θ using Eq.(9) for
the rest of the singular values in the shape matrix optimization via ADMM [7].
Shape optimization. We optimized Eq.(10) using ADMM [7]. Introducing the
Lagrange multiplier in Eq.(10) gives us

Lρ(X
♯,X) =

1

2
∥W −RX∥2F + µ∥X♯∥r=N,θ

+
ρ

2
∥X♯ −Φ(X)∥2F+ < Y,X♯ −Φ(X) >

(11)

Y ∈ RF×3P is the Lagrange multiplier and ρ > 0 is the penalty parameter.
We obtain the solution to each variable solving the following sub-problems over
iterations (indexed with the variable t):

Xt+1 = argmin
X

Lρt

(
X♯,Xt

)
; X♯

t+1 = argmin
X♯

Lρt

(
X♯

t,X
)

(12)

Using Eq.(11)-Eq.(12), we derive the following expression for X, assuming X♯ is
constant.

X ≃ argmin
X

1

2
∥W −RX∥2F +

ρ

2

∥∥∥X−
(
Φ−1(X♯) +

Φ−1(Y)

ρ

)∥∥∥2
F

(13)

The closed form solution for X is obtained by taking the derivative of Eq.(13)
w.r.t the corresponding variable and equating it to zero. The closed form expres-
sion is used during the ADMM iteration until convergence to recover optimal X.
Similarly, rewriting the Eq.(11) by assuming X♯ as variable and X as constant,
we get the following expression for X♯

X♯ ≃ argmin
X♯

µ∥X♯∥r=N,θ +
ρ

2

∥∥∥X♯ −
(
Φ(X)− Y

ρ

)∥∥∥2
F

(14)

To solve Eq.(14), we used the theory of Partial Singular Value Thresholding
(PSVT) [40]. Let PN,τ [Q] denote the PSVT operator operating on matrix Q. The
operator preserves the leading N singular values and penalizes the others with
soft-thresholding parameter τ 6. For completeness, let’s go over the following:

Theorem 1. Oh et al. [40] proposed the following optimization problem to solve

argmin
P

τ∥P∥r=N +
1

2
∥P−Q∥2F (15)

6 For more discussion on partial sum minimization of singular values, cf. the supple-
mentary material. For a comprehensive theory refer to [40].
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Dataset↓ / Method→ MP [42] PTA [3] CSF1 [18] CSF2 [20] KSTA [19] PND [36] CNS [37] BMM [13] R-BMM [28] Ours
Drink 0.0443 0.0250 0.0223 0.0223 0.0156 0.0037 0.0431 0.0266 0.0119 0.0071 (K = 12)
Pickup 0.0667 0.2369 0.2301 0.2277 0.2322 0.0372 0.1281 0.1731 0.0198 0.0152 (K = 12)
Yoga 0.2331 0.1624 0.1467 0.1464 0.1476 0.0140 0.1845 0.1150 0.0129 0.0122 (K = 10)

Stretch 0.2585 0.1088 0.0710 0.0685 0.0674 0.0156 0.0939 0.1034 0.0144 0.0124 (K = 11)
Dance 0.2639 0.2960 0.2705 0.1983 0.2504 0.1454 0.0759 0.1864 0.1491 0.1209 (K = 4)
Face 0.0357 0.0436 0.0363 0.0314 0.0339 0.0165 0.0248 0.0303 0.0179 0.0145 (K = 7)

Walking 0.5607 0.3951 0.1863 0.1035 0.1029 0.0465 0.0396 0.1298 0.0882 0.0816 (K = 8)
Shark 0.1571 0.1804 0.0081 0.0444 0.0160 0.0135 0.0832 0.2311 0.0551 0.0551 (K = 3)

Table 2: Statistical comparison on the MoCap dataset [3]. Our method provides favor-
able 3D reconstruction results. Contrary to the R-BMM [28], our approach provides
a methodical way to solve NRSf M factorization irrespective of the camera motion
assumption. The value of K used is generally same as [12, 13]. The 2nd best results
are underlined. To have clear spacing, we put comparison with other methods
as suggested by the reviewers in the supplementary material.

where, τ > 0 and P, Q ∈ Rm×n be real valued matrices which can be decom-
posed by Singular Value Decomposition (SVD). Then, the optimal solution can
be expressed by the PSVT operator defined as:

PN,τ [Q] = UQ(ΣQ1 + Sτ [ΣQ2])V
T
Q (16)

where, ΣQ1 = diag(σ1, σ2, .., σN , .., 0) and ΣQ2 = diag(0, ..σN+1, ..,max(m,n)).
Symbol Sτ is the soft-thresholding operator defined as Sτ (σ) = sign(σ)max(|σ| −
τ, 0). Q = UQ(ΣQ1 +ΣQ2)V

T
Q

For a detailed derivation and proof, we refer to Oh et al. [40]. Using the theorem,
we substitute N = 1, τ = (µθ)/ρ and write the solution of X♯ in Eq.(14) as:

X♯ = P1,µθ
ρ

[(
Φ(X)− ρ−1Y

)]
(17)

We use the above expression of X♯ during the ADMM optimization [7] to re-
cover the optimal shape matrix. The θ values are assigned according to Eq.(9)
for N > 1. The Lagrange multiplier (Y) and penalty parameter (ρ) are up-
dated over ADMM iteration (say for t+ 1 iteration) as Yt+1 = Yt + ρ(X♯

t+1 −
Φ(Xt+1)); ρt+1 = minimum(ρmax, λρt). Where, ρmax refers to the maximum
value of ‘ρ’ and λ is an empirical constant. Y and ρ are updated during the
ADMM [7] iteration until convergence criteria is satisfied. The criteria for the
ADMM iteration to stop are ∥X♯ −Φ(X)∥∞ < ϵ, or, ρt+1 ≥ ρmax

4 Experiments

(a) Implementation Details and Initialization. We implemented our method
on a desktop machine with 32GB RAM using C++/MATLAB software. Initial
rotation filtering parameter δ is set to 0.05. All the K rotations Rk ∈ R2F×3 can
be solved in parallel, so the minor increase in processing time compared to [13], is
due to registration, filtering and rotation averaging. For e.g., a 357 frame pickup
sequence takes 7.46s. for registration, 0.012s. for filtering and 0.93s. for com-
puting Ravg. We ran 50 iterations of SRA (Algorithm 1) for each frame. The
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(a) Drink (b) Pickup (c) Stretch (d) Yoga

Fig. 2: Datafit curve shows the value of Eq.(10) cost function over iteration compared
to R-BMM [28] and AOW [24] WNN formulation on Mocap dataset [3]. Ours⋆ show the
Eq.(10) datafit value using [13] rotation whereas, Ours† show the datafit curve using
our rotation initialization. Our shape optimization gives better minima, and using our
rotation as initialization, we have faster and stable convergence response (Ours†).

weights (θ) in Eq.(10) is initialized using Eq.(9) with ξ = 5e−3 ∗ sqrt(σ1(X
♯
init))

generally and γ = 1e−6. For Eq.(10) optimization via ADMM, we use ρ = 1e−4,
λ = 1.1, ρmax = 1e10, Y = zeros(F, 3P ), ϵt = 1e−10, and ϵ = 1e−10 (see supp.).
(b) Evaluation Metric. We used the popular mean normalized 3D reconstruc-
tion error metric to report our statistical results on motion capture (MoCap)
benchmark [3, 50] and Garg et al. [15] dense NRSf M benchmark dataset. It is
defined as e3d = 1

F

∑F
i=1 ∥Xest

i −Xgt
i ∥F/∥Xgt

i ∥F with Xest
i , Xgt

i symbolizing per
frame estimated shape and its ground-truth (GT) value, respectively. For eval-
uation on recent NRSf M benchmark dataset [25], we used their supplied error
evaluation metric script, which is inspired from Taylor et al. work [48]. The 3D
reconstruction accuracy is computed after registering the recovered shape to the
ground-truth shape due to global ambiguity [3,25]. To evaluate rotation estimate
accuracy, we use the mean rotation error metric eR = 1

F

∑F
i=1 ∥RGT

i −Rest
i ∥F .

Here, RGT
i , Rest

i denotes the ground-truth and estimated per frame rotation.

4.1 Dataset and Evaluation.

(a) MoCap Benchmark Dataset. Introduced by Akther et al. [3] and Torre-
sani et al. [50], this dataset has become a standard benchmark for any NRSf M al-
gorithm evaluation. It is composed of 8 real sequences, namely Drink (1102, 41),
Pickup (357, 41), Yoga (307, 41), Stretch (370, 41), Dance (264, 75), Walking
(260, 55), Face (316, 40) and Shark (240, 91). The last 3 sequences were intro-
duced by Torresani et al. [50]. The numbers presented in bracket correspond to
number of frames and points (F, P ). Tab.(2) shows the comparison of our method
with other competing methods. For evaluation, we keep the value of K generally
same as BMM [13]. From Tab.(2), it is easy to observe that more often than not,
our approach performs best or second-best than other methods, thus showing a
consistent superior performance over a diverse set of object deformation type.

Compared to BMM [13], which also makes no assumption other than low-
rank, our «organic prior» based method dramatically improves 3D reconstruction
accuracy, thereby validating our claims made in the paper. Fig.(2) shows few
qualitative results along with the convergence curve comparison with the current
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Method Type → Sparse NRSf M Methods Dense NRSf M Methods
Dataset MP [42] PTA [3] CSF1 [18] CSF2 [20] BMM [13] Ours DV [15] SMSR [5] CMDR [17] GM [29] ND [47] Ours

Face Seq.1 0.0926 0.1559 0.5325 0.4677 0.4263 0.0624 0.0531 0.1893 - 0.0443 - 0.0624
Face Seq.2 0.0819 0.1503 0.9266 0.7909 0.6062 0.0451 0.0457 0.2133 - 0.0381 - 0.0451
Face Seq.3 0.1057 0.1252 0.5274 0.5474 0.0784 0.0279 0.0346 0.1345 0.0373 0.0294 0.0450 0.0279
Face Seq.4 0.0717 0.1348 0.5392 0.5292 0.0918 0.0419 0.0379 0.0984 0.0369 0.0309 0.0490 0.0419

Table 3: 3D reconstruction accuracy on dense NRSf M dataset [15]. We observed su-
perior results compared to the well-known sparse NRSf M methods. It is interesting to
observe that our results compares favorably to carefully crafted dense NRSf M methods
such as DV, GM and others. The 2nd best performance of our method is underlined.

methods such as R-BMM [28], AOW [24]. The results show recovery of better
minima and stable convergence curve using our rotation estimate initialization.
(b) Dense NRSf M Benchmark Dataset. Introduced by Garg et al. [15,16],
it is a standard dataset to evaluate dense NRSf M methods. It comprises of 4
synthetic face sequences and 3 real video sequences of heart, back, and face
deformation. The synthetic face dataset is composed of 28,880 tracked feature
points. Face sequence 1 and Face sequence 2 are 10 frames long video, whereas
Face sequence 3 and Face sequence 4 are 99 frames video. The video sequence for
heart, back, and face dataset is 80, 150, and 120 frames long with 68295, 20561,
and 28332 feature track points. Tab.(3) provides the statistical results of our
approach compared to well-known dense NRSf M algorithms. For better compre-
hension, we classified the comparison into two sets i.e., sparse NRSf M methods
and dense NRSf M methods. From Tab.(3), it is easy to observe the advantage of
our approach compared to well-known sparse NRSf M methods. For evaluation
of our method, we use K = 1 for all the four sequence. For other methods [3,13],
we iterate over different K and put its best possible results.

The interesting point to note is that without using any extra assumptions
about the dense deforming surface such as union of linear subspaces [26, 29],
variation in the deformation over frame should be smooth [16], dynamic shape
prior [17], smooth trajectory constraint [5], and recent deep neural network based
latent space constraint [47], our method provide impressive results and it is close
to the best method [29]. Note that, contrary to our simple approach, GM [29] is
a complex geometric method to implement. To conclude, our results reveal the
strength of classical NRSf M factorization if organic priors are exploited sensibly.
(c) NRSf M Challenge Dataset.

Data BMM [13] R-BMM [28] AOW [24] BP [41] Ours
Articul. 18.49 16.00 15.03 16.10 12.18 (K = 8)
Balloon 10.39 7.84 8.05 8.29 6.29 (K = 5)
Paper 8.94 10.69 10.45 6.70 8.86 (K = 2)
Stretch 10.02 7.53 9.01 7.66 6.36 (K = 6)
Tearing 14.23 16.34 16.20 11.26 10.91 (K = 6)

Table 4: Comparison of our method with state-of-the-art on
recent benchmark [25]. Results are reported in millimeters.

Jensen et al. [25] re-
cently proposed this
dataset. It comprises
5 different subjects,
namely Articulated, Pa-
per, Balloon, Stretch,
and Tearing. Each sub-
ject’s deformations is captured under 6 varying camera trajectories i.e., circle,
flyby, line, semi-circle, tricky and zigzag, making the dataset interesting yet
challenging. For evaluation, the dataset provide a single frame ground-truth 3D
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PAPER BALLOON STRETCH TEARING ARTICULATED

Fig. 3: Qualitative Results on NRSf M challenge dataset [25]. Top row. Subject image.
Bottom row. 3D reconstruction of the respective object shape.

shape for each subject. Tab.(4) show the average 3D reconstruction accuracy
comparison in millimeters with the recent and earlier state-of-the-art on this
dataset i.e., BMM [13], R-BMM [28], AOW [24], BP [41]. For comparison, we
used the orthogonal sequence of the dataset. The value of K used by our method
for comparison is provided in the bracket. Statistical results indicate that our
approach provides better non-rigid shape reconstruction for most of the subject
categories on this dataset. Fig.(3) show visual results obtained on this dataset.
(d) Rotation Estimation. To validate that the single rotation averaging gives
meaningful rotation, we validate our results using the ground-truth rotation
available in the Akther et al. [3] dataset.

Data MP [42] PTA [3] CSF [18] BMM [13] R-BMM [28] Ours
Yoga 0.8343 0.1059 0.1019 0.0883 0.0883 0.0888

Pickup 0.2525 0.1549 0.1546 0.1210 0.1217 0.1144
Stretch 0.8185 0.0549 0.0489 0.0676 0.0676 0.0671
Drink 0.2699 0.0058 0.0055 0.0071 0.0243 0.0072

Table 5: eR comparison with other factorization methods.

Tab.(5) provide the
average camera rota-
tion error eR results on
yoga, pickup, stretch,
and drink sequence.
The statistics show that using our approach, we can have fine rotation esti-
mate7. Further, advantage of our rotation estimation on clean sequence, noisy
trajectories and pseudo inverse solution can be inferred from Tab.(6) Fig.4(a),
and Tab.(1), respectively.

Dataset Drink Pickup Yoga Stretch Dance Face Walking Shark
BMM [13] 0.0266 0.1731 0.1150 0.1034 0.1864 0.0303 0.1298 0.2357

e3d ( [13] rotation) 0.0101 0.0164 0.0126 0.0126 0.1382 0.0152 0.0880 0.0563
e3d (our rotation) 0.0071 0.0152 0.0122 0.0124 0.1209 0.0145 0.0816 0.0550

Table 6: 2nd row: Our e3d results using Dai et al. rotation [13]. 3rd row: e3d using
our rotation. Indeed using organic rotation priors help improve overall performance.

(e) Other Experiments and Ablations.
(i) Performance with noisy trajectory. Fig.4(a), Fig.4(b) shows the rotation (eR)
and shape error (e3d) comparison on the noisy trajectory, respectively. We in-
troduce noise to the 2D point trajectory with the standard deviation varying
from 0.01-0.25 using normrand() function from MATLAB. We ran the different

7 With W = RS theory, even GT rotation cannot provide GT shape, cf. [13] Table(3)
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Fig. 4: (a)-(b) Rotation and shape error on the noisy Pickup trajectories. Our method
show stable behaviour consistently. Mean and standard deviation is shown with bold
and light shaded regions, respectively. (c) Avg. 3D reconstruction for missing data
experiment. (d) N = 0 show results when all the singular values are penalized using
WNN. Our approach i.e., N = 1 gives better results overall under same rotation.

methods 10 times for each standard deviation value and plotted the method’s
mean and variance. Statistical results show that our method is quite robust to
noisy sequence and show much stable behaviour (both in rotation and shape
estimation) than the other prior or prior-free approaches (see Fig.4(a)-4(b)).
(ii) Performance on missing trajectory cases. For this experiment, we used Lee
et al. [36] and Kumar [28] setup, where we randomly set 30% of the trajectory
missing from the W. We perform matrix completion using [11] optimization
and then ran our algorithm on the recovered matrix. The results are shown in
Fig.4(c). Our method outperforms the state-of-the-art in most of the cases.
(iii) Performance with change in value of N . To show that N = 1 generally
works best for Eq.(10), we conducted this experiment. First, we penalize all the
singular values using WNN optimization (N = 0) and then we vary the value of
N from 1 to 5 and recorded the results. Fig.4(d) shows the reconstruction results
using different values of N . We observed that by penalizing all the singular values
using WNN, we are unnecessarily hurting the performance. On the contrary, if
we increase N value greater than 1, more often than not, it starts to reduce
the performance. Refer supplementary material for more results and discussions.

5 Conclusion

This work reveals organic priors for NRSf M factorization irrespective of camera
motion and shape deformation type. It exhibited that mindful use of such funda-
mental priors gives better accuracy than the prior-free methods. That said, our
method uses an orthographic camera model with a low-rank shape assumption
in NRSf M. Hence, by construction, it has some limitations for e.g., our method
may perform inadequately on high perspective distortion images having large
object deformation. A recent idea by Graßhof et al. [21] can be used to overcome
such a limitation. Finally, we conclude that the clever use of organic priors with
matrix factorization theory is sufficient to provide excellent 3D reconstruction
accuracy for both sparse and dense NRSf M.
Acknowledgement. The authors thank Google for their generous gift (ETH
Zürich Foundation, 2020-HS-411).
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