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Abstract. Most recent 6D object pose estimation methods, including
unsupervised ones, require many real training images. Unfortunately, for
some applications, such as those in space or deep under water, acquiring
real images, even unannotated, is virtually impossible. In this paper, we
propose a method that can be trained solely on synthetic images, or
optionally using a few additional real ones. Given a rough pose estimate
obtained from a first network, it uses a second network to predict a dense
2D correspondence field between the image rendered using the rough
pose and the real image and infers the required pose correction. This
approach is much less sensitive to the domain shift between synthetic
and real images than state-of-the-art methods. It performs on par with
methods that require annotated real images for training when not using
any, and outperforms them considerably when using as few as twenty
real images.

Keywords: 6D Object Pose Estimation, 6D Object Pose Refinement,
Image Synthesis, Dense 2D Correspondence, Domain Adaptation

1 Introduction

Estimating the 6D pose of a target object is at the heart of many robotics, quality
control, augmented reality applications, among others. When ample amounts of
annotated real images are available, deep learning-based methods now deliver
excellent results [7,32,31,46,38]. Otherwise, the most common approach is to
use synthetic data instead [25,49,14]. However, even when sophisticated domain
adaptations techniques are used to bridge the domain gap between the synthetic
and real data [34,26,14], the results are still noticeably worse than when training
with annotated real images, as illustrated by Fig. 1.

Pose refinement offers an effective solution to this problem: An auxiliary
network learns to correct the mistakes made by the network trained on syn-
thetic data when fed with real data [33,25,51,23]. The most common refinement
strategy is to render the object using the current pose estimate, predict the 6D
difference with an auxiliary network taking as input the rendered image and the
input one, and correct the estimate accordingly. As illustrated by Fig. 2(a), this
process is performed iteratively. Not only does this involve a potentially expen-
sive rendering at each iteration, but it also is sensitive to object occlusions and
background clutter, which cannot be modeled in the rendering step. Even more
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Fig. 1: Data-limited 6D object pose estimation. (a) In the absence of real data,
one can train a model using synthesized images [9]. (b) Although the resulting accuracy
on synthetic data is great, (c) that on real images is significantly worse. (d) While the
common iterative pose refinement approach can help, it still suffers from the synthetic-
to-real domain gap [25]. (e) Our non-iterative strategy generalizes much better to real
images despite being trained only on synthetic data.

problematically, most of these methods still require numerous real images for
training purposes, and there are applications for which such images are simply
not available. For example, for 6D pose estimation in space [20,14] or deep under
water [17,36], no real images of the target object may be available, only a CAD
model and conjectures about what it now looks like after decades in a harsh
environment. These are the scenarios we will refer to as data-limited.

To overcome these problems, we introduce the non-iterative pose refinement
strategy depicted by Fig. 2(b). We again start from a rough initial pose but,
instead of predicting a delta pose, we estimate a dense 2D correspondence field
between the image rendered with the initial pose and the input one. We then
use these correspondences to compute the 6D correction algebraically. Our ap-
proach is simple but motivated by the observation that predicting dense 2D-
to-2D matches is much more robust to the synthetic-to-real domain gap than
predicting a pose difference directly from the image pair, as shown in Fig. 1(d-
e). Furthermore, this strategy naturally handles the object occlusions and is less
sensitive to the background clutter.

Furthermore, instead of synthesizing images given the rough initial pose,
which requires on-the-fly rendering, we find nearest neighbors among pre-rendered
exemplars and estimate the dense 2D correspondences between these neighbors
and the real input. This serves several purposes. First, it makes the computation
much faster. Second, it makes the final accuracy less dependent on the quality of
the initial pose, which only serves as a query for exemplars. Third, as multiple
exemplars are independent of each other, we can process them simultaneously.
Finally, multiple exemplars deliver complementary perspectives about the real
input, which we combine for increased robustness.

We evaluate our pose refinement framework on the challenging Occluded-
LINEMOD [22] and YCB-V [49] datasets, and demonstrate that it is significantly
more efficient and accurate than iterative frameworks. It performs on par with
state-of-the-art methods that require annotated real images for training when
not using any, and outperforms them considerably when using as few as twenty
real images.
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Fig. 2: Different pose refinement paradigms. (a) Given an initial pose P0, ex-
isting refinement strategies estimate a pose difference ∆P0 from the input image and
the image rendered according to P0, generating a new intermediate pose P1. They
then iterate this process until it converges to the final pose P̂ [25,23]. This strategy
relies on estimating a delta pose from the input images by extracting global object
features. These features contain high-level information, and we observed them not to
generalize well across domains. (b) By contrast, our strategy queries a set of discrete
poses {P1, P2, P3, . . . } that are near the initial pose P0 from pre-rendered exemplars,
and computes the final pose P̂ in one shot by combining all the correspondences {Ci}
established between the exemplars and the input. Estimating dense 2D-to-2D local cor-
respondences forces the supervision of our training to occur at the pixel-level, not at
the image-level as in (a). This makes our DNN learn to extract features that contain
lower-level information and thus generalize across domains. In principle, our method
can easily be extended into an iterative strategy, using the refined pose as a new initial
one. However, we found a single iteration to already be sufficiently accurate.

2 Related Work

6D pose estimation is currently dominated by neural network-based meth-
ods [11,32,38,37,14,2]. However, most of their designs are still consistent with tra-
ditional techniques. That is, they first establish 3D-to-2D correspondences [27,44,45]
and then use a Perspective-n-Points (PnP) algorithm [24,52,21,3]. In practice,
these correspondences are obtained by predicting either the 2D locations of pre-
defined 3D keypoints [19,33,43,29,16], or the 3D positions of the pixels within
the object mask [51,26,8]. These methods have been shown to outperform those
that directly regress the 6D pose [49], which are potentially sensitive to object
occlusions. Nevertheless, most of these methods require large amounts of anno-
tated real training data to yield accurate predictions. Here, we propose a pose
refinement strategy that allows us to produce accurate pose estimates using only
synthetic training data.

6D pose refinement [19,33,51,40] aims to improve an initial rough pose
estimate, obtained, for example, by a network trained only on synthetic data. In
this context, DeepIM [25] and CosyPose [23] iteratively render the object in the
current pose estimate and predict the 6D pose difference between the rendered
and input images. However, learning to predict a pose difference directly does not
easily generalize to different domains, and these methods thus also require an-
notated data. Furthermore, the on-the-fly rendering performed at each iteration
makes these algorithms computationally demanding. Finally, these methods are
sensitive to object occlusions and background clutter, which cannot be modeled
in the rendering process. Here, instead, we propose a non-iterative method based
on dense 2D correspondences. Thanks to our use of offline-generated exemplars
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and its non-iterative nature, it is much more efficient than existing refinement
methods. Furthermore, it inherently handles occlusions and clutter, and, as we
will demonstrate empirically, generalizes easily to new domains. The method
in [28] also uses 2D information for pose refinement. Specifically, it iteratively
updates the pose so as to align the model’s contours with the image ones. As
such, it may be sensitive to the target shape, object occlusion and background
clutter. Instead, we use dense pixel-wise correspondences, which are more robust
to these disturbances and only need to be predicted once.

Optical flow estimation, which provides dense 2D-to-2D correspondences
between consecutive images [35,13,15,12,39,42], is a building block of our frame-
work. Rather than estimating the flow between two consecutive video frames, as
commonly done by optical flow methods, we establish dense 2D correspondences
between offline-generated synthetic exemplars and the real input image. This is
motivated by our observation that establishing dense correspondences between
an image pair depends more strongly on the local differences between these im-
ages, rather than the images themselves, making this strategy more robust to a
domain change. This is evidenced by the fact that our network trained only on
synthetic data remains effective when applied to real images.

Domain adaptation constitutes the standard approach to bridging the gap
between different domains. However, most domain adaptation methods assume
the availability of considerable amounts of data from the target domain, albeit
unsupervised, to facilitate the adaptation [41,30,4,1]. Here, by contrast, we focus
on the scenario where capturing such data is difficult. As such, domain gener-
alization, which aims to learn models that generalize to unseen domains [5],
seems more appropriate for solving our task. However, existing methods typi-
cally assume that multiple source domains are available for training, which is not
fulfilled in our case. Although one can generate many different domains by aug-
mentation techniques [53,48,50], we observed this strategy to only yield rough
6D pose estimates in the test domain. Therefore, we use this approach to obtain
our initial pose, which we refine with our method.

3 Approach

We aim to estimate the 6D pose of a known rigid object from a single RGB image
in a data-limited scenario, that is, with little or even no access to real images
during training. To this end, we use a two-step strategy that first estimates a
rough initial pose and then refines it. Where we differ from other methods is
in our approach to refinement. Instead of using the usual iterative strategy, we
introduce a non-iterative one that relies on an optical flow technique to esti-
mate 2D-to-2D correspondences between an image rendered using the object’s
3D model in the estimated pose and the target image. The required pose cor-
rection between the rough estimate and the correct one can then be computed
algebraically using a PnP algorithm. Fig. 3 depicts our complete framework.
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Fig. 3: Overview of our framework. We first obtain an initial pose of the target using
a pose network trained only on synthetic data. We then retrieve the N closest exemplars
from the offline-rendered exemplar set and estimate their dense 2D displacement fields
with respect to the target. Finally, we combine all these flow results into a set of
3D-to-2D correspondences to obtain a robust final pose estimate.

3.1 Data-Limited Pose Initialization

Most pose refinement methods [25,51,23] assume that rough pose estimates are
provided by another approach trained on a combination of real and synthetic
data [49], often augmented in some manner [32,10,14]. In our data-limited sce-
narios, real images may not be available, and we have to rely on synthetic images
alone to train the initial pose estimation network.

We will show in the results section that it requires very substantial augmen-
tations for methods trained on synthetic data alone to generalize to real data,
and that they only do so with a low precision. In practice, this is what we use
to obtain our initial poses.

3.2 From Optical Flow to Pose Refinement

Given an imprecise estimate of the initial pose, we seek to refine it. To this end,
instead of directly regressing a 6D pose correction from an image rendered using
the pose estimate, we train a network to output a dense 2D-to-2D correspon-
dence field between the rendered image and the target one, that is, to estimate
optical flow [42]. From these dense 2D correspondences, we can then algebraically
compute the 6D pose correction using a PnP algorithm. In the results section,
we will show that this approach generalizes reliably to real images even when
trained only on synthetic ones.

More formally, let It be the image of the target object and let Ir be the one
rendered using the rough pose estimate. We train a network to predict the 2D
flow image Fr→t such that

∀i ∈M, ut
i = ur

i + fr→t
i , (1)

whereM contains the indices of the pixels in Ir for which a corresponding pixel
in It exists, ut

i and ur
i denote the pixel locations of matching points in both

images, and fr→t
i is the corresponding 2D flow vector.
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Fig. 4: Establishing 3D-to-2D correspondences from exemplars. After retriev-
ing an exemplar based on the initial pose, we estimate the 2D-to-2D correspondences
between the exemplar and the input image within their respective region of interest.
This implicitly generates a set of 3D-to-2D correspondences.

Because Ir has been rendered using a known 6D pose, the 2D image locations
ur are in known correspondence with 3D object points p. Specifically, the 3D
point pi corresponding to the 2D location ur

i can be obtained by intersecting
the camera ray passing through ur

i and the 3D mesh model transformed by the
initial 6D pose [18], as shown in the left of Fig. 4. For each such correspondence,
which we denote as {pi ↔ ur

i }, we have

λi

[
ur
i

1

]
= K(Rpi + t), (2)

where λi is a scale factor encoding depth, K is the matrix of camera intrinsic
parameters, and R and t are the rotation matrix and translation vector repre-
senting the 6D pose.

To simplify the discussion, let us for now assume that the intrinsic matrix
K used to render Ir is the same as that of the real camera, which is assumed
to be known by most 6D pose estimation methods. We will discuss the more
general case in Section 3.4. Under this assumption, the flow vectors predicted
for an input image provide us with 2D-to-3D correspondences between the input
image and the 3D model. That is, for two image locations (ut

i,u
r
i ) deemed to be

in correspondence according to the optical flow, we have

{pi ↔ ur
i } ⇔ {pi ↔ ut

i}. (3)

Given enough such 3D-to-2D correspondences, the 6D pose in the input image
can be obtained algebraically using a PnP algorithm [24]. In other words, we
transform the pose refinement problem as a 2D optical flow one, and the 3D-to-
2D correspondence errors will depend only on the 2D flow field fr→t. Fig. 5 shows
an example of dense correspondences between the synthetic and real domains.

3.3 Exemplar-Based Flow Aggregation

The above-mentioned flow-based strategy suffers from the fact that it relies on
an expensive rendering procedure, which slows down both training and testing.
To address this, we use exemplars rendered offline. Instead of synthesizing the
image from the initial pose directly, which requires on-the-fly rendering, we then
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Fig. 5: Estimating dense 2D-to-2D correspondences across domains. We train
a flow network to model the differences of images rendered using OpenGL (Exemplar)
and using a PBR (Physically-based rendering) technique, respectively. Although our
network accesses no real data during training, it generalizes well to estimating the flow
between the exemplar and a real input image, as shown in the last two subfigures.

retrieve the exemplar with 6D pose nearest to the initial pose estimate and
compute the 2D displacements between this exemplar and the input image.

The resulting speed increase comes at the cost of a slight accuracy loss.
However, it is compensated by the fact that this approach enables to exploit
multiple rendered views, while only needing a single input image. That is, we do
not use a single exemplar but multiple ones rendered from different viewpoints
to make our pose refinement more robust. During inference, we use the initial
pose to find the N closest exemplars and combine their optical flow. In short,
instead of having one set of 3D-to-2D correspondences, we now have N such
sets, which we write as

{pk,i ↔ ut
k,i} 1 ≤ i ≤ nk , k ∈ {1, . . . , N} , (4)

where nk is the number of correspondences found for exemplar k. Because the
exemplars may depict significantly different viewpoints, this allows us to aggre-
gate more information and adds both robustness and accuracy, as depicted by
Fig. 6. Finally, we use a RANSAC-based PnP algorithm [24] to derive the final
pose based on these complementary correspondences.

3.4 Dealing with Small Objects

In practice, even when using multiple exemplars, the approach described above
may suffer from the fact that estimating the optical flow of small objects is chal-
lenging. To tackle this, inspired by other refinement methods [25,51,23], we work
on image crops around the objects. Specifically, because we know the ground-
truth pose for the exemplars and have a rough pose estimate for the input image,
we can define 2D transformation matrices Mr and Mt that will map the object
region in the exemplar and in the input image to a common size. We can then
compute the flow between the resulting transformed images.

Formally, let ũr
i = Mru

r
i be an exemplar 2D image location after transfor-

mation. Furthermore, accounting for the fact that the intrinsic camera matri-
ces used to render the exemplars and acquire the input image may differ, let
ũt
i = MtKrK

−1
t ut

i be an input image location after transformation, where Kr
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Fig. 6: Multi-view flow aggregation. The multiple exemplars provide 3D-to-2D cor-
respondences that are complementary since they are rendered from different viewpoints.
These correspondences are then combined to make the final pose estimates more robust.

is the intrinsic matrix used for the exemplars and Kt the one corresponding
to the input image. We then estimate a flow field {f̃r→t

i = ũt
i − ũr

i } using the
flow network. For two transformed image locations (ũt

i, ũ
r
i ) found to be in cor-

respondence, following the discussion in Section 3.2, we can establish 3D-to-2D
correspondences in the transformed image as

{pi ↔ ũr
i } ⇔ {pi ↔ ũt

i} . (5)

We depict this procedure in Fig. 4. We can then recover the corresponding ur
i

in the original input image by applying the inverse transformation, which then
lets us combine the correspondences from multiple exemplars.

3.5 Implementation Details

We use the WDR-Pose network [14] as our initialization network, and RAFT [42]
as our 2D correspondence network. We first train WDR-Pose on the BOP syn-
thetic data [7,9], which contains multiple rendered objects and severe occlusions
in each frame to simulate real images. Before training the flow network, we
generate a set of exemplars for each object type by offline rendering. To avoid
computing a huge set of exemplars by densely sampling the 6D pose space, we
fix the 3D translation and randomly sample a small set of 3D rotations. Specifi-
cally, we set the 3D translation to (0, 0, z̄), where z̄ is approximately the average
depth of the working range. In our experiments, we found that 10K exemplars
for each object type yields a good accuracy. We generate our exemplar images
using the method of [18] with a fixed light direction pointing from the camera
center to the object center.

To build image pairs to train the flow network, we pick one image from the
exemplar set and the other from the BOP synthetic dataset. Specifically, we
query the closest exemplar in terms of 6D pose. To simulate the actual query
process, we first add some pose jitter to the target instance. Specifically we add
a random rotation angle within 20 degrees and a random translation leading to a
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reprojection offset smaller than 10 pixels. Note that this randomness only affects
the query procedure; it does not affect the supervision of the flow network, which
relies on the selected exemplar and the synthetic image.

In practice, to account for small objects, we first extract the object instances
from the exemplar and target images using the transformation matrices Mr and
Mt discussed above. We then resize the resulting object crops to 256× 256 and
build the ground-truth flow according to Eq. 5. We only supervise the flow of
pixels located within the exemplar’s object mask. Furthermore, during training,
we also discard all pixels without explicit correspondence because of occlusions
or because they fall outside the crops.

Finally, during training, we apply two main categories of data augmentation
techniques. The first is noise (NS) augmentation. We add a random value be-
tween -25 to 25 to the pixels in each image channel. We then blur the resulting
image with a random kernel size between 1 and 5. The second is color (HSV)
augmentation. We convert the input image from RGB to HSV and add random
jitter to each channel. Specifically, we add 20%, 50%, 50% of the maximum value
of each channel as the random noise to the H, S, and V channel, respectively.
We then convert the image back to RGB.

4 Experiments

In this section, we first compare our approach to the state of the art on standard
datasets including LINEMOD (“LM”) [6], Occluded-LINEMOD (“OLM”) [22]
and YCB-V (“YCB”) [49]. We then evaluate the influence of different compo-
nents of our refinement network. We defer the evaluation of the initialization
network trained only on synthetic data to Section 4.3. The source code is pub-
licly available at https://github.com/cvlab-epfl/perspective-flow-aggregation.
Datasets and Experimental Settings. LINEMOD comprises 13 sequences.
Each one contains a single object annotated with the ground-truth pose. There
are about 1.2K images for each sequence. We train our model only on the exem-
plars and the BOP synthetic dataset, and test it on 85% of the real LINEMOD
data as in [33,25]. We keep the remaining 15% as supplementary real data for our
ablation studies. Occluded-LINEMOD has 8 objects, which are a subset of the
LINEMOD ones. It contains only 1214 images for testing, with multiple objects
in the same image and severe occlusions, making it much more challenging.

Most methods train their models for LINEMOD and Occluded-LINEMOD
separately [11,26], sometimes even one model per object [32,47], which yields
better accuracy but is less flexible and does not scale well. As these two datasets
share the same 3D meshes, we train a single model for all 13 objects and test
it on LINEMOD and Occluded-LINEMOD without retraining. When testing
on Occluded-LINEMOD, we only report the accuracy of the corresponding 8
objects. We show that our model still outperforms most methods despite this
generalization that makes it more flexible.

YCB-V is a more recent dataset that contains 92 video sequences and about
130K real images depicting 21 objects in cluttered scenes with many occlusions

https://github.com/cvlab-epfl/perspective-flow-aggregation
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Table 1: Comparing against the state of the art. Our method trained without
accessing any real images (+0) performs on par with most methods that use all real
data (hundreds of images per object for LM and OLM, and thousands for YCB). After
accessing only 20 real images per object (+20), our method yields the best results.

Data Metrics PoseCNN SegDriven PVNet GDR-Net DeepIM CosyPose Ours (+0) Ours (+20)

LM ADD-0.1d 62.7 - 86.3 93.7 88.6 - 84.5 94.4
OLM ADD-0.1d 24.9 27.0 40.8 62.2 55.5 - 48.2 64.1

YCB
ADD-0.1d 21.3 39.0 - 60.1 - - 56.4 62.8

AUC 61.3 - 73.4 84.4 81.9 84.5 76.8 84.9

and complex lighting conditions. As for LINEMOD, unless stated otherwise, we
train our model only on the exemplars and the BOP synthetic dataset and test
on the real data.
Evaluation metrics. We compute the 3D error as the average distance between
3D points on the object surface transformed by the predicted pose and by the
ground-truth one. We then report the standard ADD-0.1d metric [49], that is,
the percentage of samples whose 3D error is below 10% of the object diameter.
For more detailed comparisons, we use ADD-0.5d, which uses a larger threshold
of 50%. Furthermore, to compare with other methods on YCB-V, we also report
the AUC metric as in [32,23,47], which varies the threshold with a maximum
of 10cm and accumulates the area under the accuracy curve. For symmetric
objects, the 3D error is taken to be the distance of each 3D point to its nearest
model point after pose transformation.

4.1 Comparison with the State of the Art

We now compare our method to the state-of-the-art ones, PoseCNN [49], Seg-
Driven [11], PVNet [32], GDR-Net [47], DeepIM [25], and CosyPose [23], where
DeepIM and CosyPose are two refinement methods based on an iterative strat-
egy. We train our initialization network WDR-Pose only on synthetic data and
use its predictions as initial poses. To train the optical flow network, we gener-
ate 10K exemplars for each object and use the N = 4 closest exemplars during
inference. As shown in Table 1, even without accessing any real images during
training, our method already outperforms most of the baselines, which all use
real training data, and performs on par with the most recent ones. Fig. 7 de-
picts some qualitative results. Note that YCB-V contains some inaccurate pose
annotations, and, as shown in Fig. 8, we sometimes predict more accurate poses
than the annotations, even when training without accessing any real data.

In Table 1, we also report the results we obtain by adding 20 real images
to the synthetic ones during the training of our refinement network. In this
case, we train each model by mixing the BOP synthetic data with the real
images, balancing their ratio to be 0.5:0.5 by dynamic sampling during training.
Note that we still use the same pose initializations trained only on synthetic
images. With only 20 real images, our method outperforms all the baselines by a
significant margin, even though they all use all the real images during training.
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Fig. 7: Visualization of the results. Although the predicted flows contain some errors
(e.g., the flow at the bottom of the drill, which is occluded), aggregating multiple flows
and using a RANSAC-based PnP make the final pose estimation robust. Here we show
results obtained with one exemplar and by training purely on synthetic data.

Annotation Reprojection Difference Our result

Fig. 8: An example of inaccurate annotation in YCB-V. The last two images
show the difference between the input and the reprojection image rendered from the
corresponding pose. Our predicted pose aligns the object more accurately here.

Most existing refinement methods, including DeepIM and CosyPose, employ
pose initializations trained using all real images, which is impractical in our
data-limited scenario. To have a fair comparison of our refinement method with
them, we use the same synthetic-only pose initializations for them as for our
approach. We then train the refinement networks according to their open-source
official code, based on synthetic data only. Furthermore, we also evaluate them
when trained with different numbers of additional real images. Note that, while
CosyPose can use multiple views as input, we only evaluate it in the monocular
case to make it comparable with the other methods. In Table 2, we report the
ADD-0.1d on the challenging Occluded-LINEMOD dataset. As expected, using
more real images yields more accurate pose estimates for all methods. However,
with as few as 20 real images, our model achieves even higher accuracy than the
baselines with more than 100 real images. Since all methods use the same initial
poses, giving an accuracy of 37.9%, as shown in Table 5, this means that DeepIM
and CosyPose can only increase the initialization accuracy by 3-4% when not
accessing any real image data. By contrast, our method increases accuracy by
over 10% in this case, demonstrating the robustness of our method to the domain
gap in cluttered scenarios.
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Table 2: Comparing different refinement frameworks on OLM. We train the
models with different numbers of additional real images. With as few as 20 real images,
our model achieves even higher accuracy than the baselines with more than 100 real
images.

0 10 20 90 180

DeepIM 41.1 45.6 48.2 58.1 61.4
CosyPose 42.4 46.8 48.9 58.8 61.9
Ours 48.2 59.5 64.1 64.9 65.3

Table 3: Pose refinement with different initializations on LM. With only one
exemplar (N=1), our refinement framework already yields a significant improvement
over the initialization. More exemplars make it more accurate.

Initialization N=1 N=2 N=4 N=8

NS 54.1 82.0 82.7 84.3 84.1
HSV 52.7 81.1 81.2 83.3 83.9
NS+HSV 60.2 82.0 83.4 84.5 84.9

FPS ∼32 ∼25 ∼20 ∼14

4.2 Ablation Studies

Let us now analyze more thoroughly the exemplar-based flow aggregation in our
pose refinement framework. To this end, we conduct more ablation studies on the
standard LINEMOD dataset. We train our refinement model only on synthetic
data [9], and report ADD-0.1d accuracies on real test data.
Flow Aggregation. We first evaluate our flow aggregation strategy given dif-
ferent pose initializations. We use three initialization sets with varying levels
of accuracy, corresponding to the results from the initialization network under
NS, HSV, and NS+HSV augmentations, respectively. Furthermore, we evaluate
the accuracy using different numbers of retrieved exemplars, also reporting the
corresponding running speed on a typical workstation with a 3.5G CPU and an
NVIDIA V100 GPU.

As shown in Table 3, the refinement network improves the accuracy of the
initial pose significantly even with only one exemplar. More exemplars boost it
further, thanks to the complementarity of their different viewpoints. Interest-
ingly, although the different pose initializations have very different pose accura-
cies, they all reach a similar accuracy after our pose refinement, demonstrating
the robustness of our refinement network to different initial poses. As the ex-
emplars can be processed in parallel, the running time with 4 exemplars is only
about 1.6 slower than that with a single exemplar. This slight speed decrease is
related to the throughput of the GPU and could be optimized further in princi-
ple. Nevertheless, our approach is still more than 3 times faster than the iterative
DeepIM [25] method, which runs at only about 6 FPS using 4 iterations. Since
the version with 8 exemplars yields only a small improvement over the one with
4 exemplars, we use N=4 in the previous experiments. Furthermore, we use the
results of NS+HSV for pose initialization.
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Table 4: Effect of exemplar sets of different sizes on LM. An exemplar set with
less than 5K exemplars suffers from the large distance between the nearest exemplars.
By contrast, using more than 10K exemplars does not bring much improvement.

2.5K 5K 10K 20K 40K Online

Before Ref. 55.2 57.0 58.0 58.9 59.9 60.2
After Ref. 81.9 83.2 84.5 85.0 84.8 84.9

Image preparation 16ms 19ms 29ms 52ms 81ms 184ms

Exemplar Set. While using an exemplar set eliminates the need for online ren-
dering, the accuracy of our approach depends on its granularity, leading to a
tradeoff between accuracy and IO storage/speed. We therefore evaluate the per-
formance of our approach with varying numbers of exemplars during inference.
To better understand the query process, we also report the numbers just after
the query but before the refinement, denoted as “Before Ref.”.

Table 4 shows that larger exemplar sets yield more accurate queries before the
refinement, leading to more accurate pose refinement results. Note that because
we have a discrete set of exemplars, the ADD-0.1d scores before refinement are
lower than those obtained by on-the-fly rendering from the initial pose, which
reaches 60.2%. While fewer exemplars in the set translates to lower accuracy
before refinement, the accuracy after refinement saturates beyond 10K exem-
plars, reaching a similar performance to online rendering. We therefore use 10K
exemplars for each object in the previous experiments. This only requires about
200MB of disk space for storing the exemplar set for each object. We also report
the timings of image preparation for each setting. Although there is a powerful
GPU for the online rendering, our offline exemplar retrieval is much faster.

4.3 Pose Initialization Network

We now evaluate our pose initialization network based on WDR-Pose [14]. Un-
like in [14], we train it only on the BOP synthetic data [7,9] and study the
performance on real images. To fill the domain gap between the synthetic and
real domains, we use simple data augmentation strategies during training.

Specifically, we evaluate 3 groups of data augmentations. The first one con-
sists of random shifts, scales, and rotations within a range of (-50px, 50px), (0.9,
1.1), and (-45◦, 45◦), respectively. We refer to this as SSR augmentations. The
second group incudes random noise and smoothness, and corresponds to the NS
augmentations discussed in Section 4.2. The final group performs color augmen-
tations, and corresponds to the HSV augmentations presented in Section 4.2.

Table 5 summarizes the results of the model trained with these different data
augmentations on LINEMOD, Occluded-LINEMOD, and YCB-V. We report
the accuracy in terms of both ADD-0.1d and ADD-0.5d. In short, training on
synthetic data without data augmentation (“No”) yields poor performance on
the real test data, with an accuracy of almost zero in both metrics on the YCB-V
dataset. Interestingly, although the NS and HSV augmentations can considerably
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Table 5: Data augmentation in pose initialization. We study both geometric
(SSR) and non-geometric (NS, HSV) augmentation strategies for pose initialization
trained only on synthetic data but tested on real images.

Data Metrics No SSR NS HSV NS+HSV

LM
ADD-0.1d 48.9 39.0 56.6 58.1 60.2
ADD-0.5d 93.2 80.7 98.8 97.0 98.9

OLM
ADD-0.1d 28.6 20.9 36.0 34.4 37.9
ADD-0.5d 74.8 69.2 83.0 81.3 86.1

YCB
ADD-0.1d 0.1 0 17.0 7.4 27.5
ADD-0.5d 2.9 0 59.0 36.6 72.3

increase the performance, the SSR augmentations degrade it consistently on
all three datasets. We believe this to be due to the geometric nature of the
SSR augmentations. More precisely, after shifting, scaling, or rotating the input
image, the resulting inputs do not truly correspond to the original 6D poses,
which inevitably introduces errors in the learning process. However, the NS
and HSV augmentations do not suffer from this problem, as the ground-truth
annotations before and after augmentation are the same.

Note that, although the NS and HSV augmentations significantly outper-
form no augmentation, the accuracy remains rather low in terms of ADD-0.1d.
However, the ADD-0.5d numbers evidence that most of the predictions have an
error of less than 50% of the diameter of the object. This indicates that the
resulting rough initialization can indeed serve as a good starting point for our
pose refinements, as demonstrated before.

5 Conclusion

We have introduced a simple non-iterative pose refinement strategy that can be
trained only on synthetic data and yet still produce good results on real images.
It relies on the intuition that, using data augmentation, one can obtain a rough
initial pose from a network trained on synthetic images, and that this initial-
ization can be refined by predicting dense 2D-to-2D correspondences between
an image rendered in approximately the initial pose and the input image. Our
experiments have demonstrated that our approach yields results on par with the
state-of-the-art methods that were trained on real data, even when we don’t use
any real images, and outperforms these methods when we access as few as 20
images. In other words, our approach provides an effective and efficient strat-
egy for data-limited 6D pose estimation. Nevertheless, our method remains a
two-stage framework, which may limit its performance. In the future, we will
therefore investigate the use of a differentiable component to replace RANSAC
PnP and make our method end-to-end trainable.
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