
Supplementary Materials for DANBO:
Disentangled Articulated Neural Body

Representations via Graph Neural Networks

In this document, we provide additional qualitative comparisons on MonoP-
erfCap [12] held-out sets (Section 1), highlight the improved shape reconstruction
by extracting surfaces from the density field (Section 2), and show additional
quantitative comparison to mesh-based and point-cloud based approaches (Sec-
tion 3). We then provide the implementation and additional dataset details (Sec-
tion 4), describe skeleton representation (Section 5), explain how we initialize
our per-bone volumes (Section 6), and give details of our GNN design (Sec-
tion 7). Finally, we give a summary on the resource consumption of DANBO
compared to other baselines (Section 8). Our supplemental video in the project
website shows animated results. Real faces in all figures are blurred for
anonymity.

1 MonoPerfCap Held-out Sequences

We include qualitative comparisons on unseen pose synthesis in Figure 1, using
the estimated poses from [8] as driving signals. Overall, DANBO renders consis-
tent faces under different poses, and preserves the limbs better than A-NeRF.
DANBO also synthesizes plausible wrinkles and details as visible at the clothes
and jeans. Note that the driving motion (skeleton overlay) is not perfect as it is
estimated with an off-the-shelf estimator.

2 Additional Geometry Comparisons

In Figure 2, we show additional results on the learned body geometry of DANBO
and A-NeRF on unseen poses of the Human3.6M [3] dataset. As discussed in
the main paper, DANBO reconstructs smoother and less noisy surfaces, and
preserves the body part better compared to A-NeRF. We conclude that our
coarse volume design acts as an regularizer to avoid learning jittery surface.

3 Additional Quantitative Comparisons on Human3.6M

We compared DANBO to NHR [11] that extracts 3D point cloud features for
rendering human body and NeuralTexture [9] that synthesizes texture for 3D
meshes.

2 S.-Y. Su et al.

Reference A-NeRF DANBO (Ours) Reference A-NeRF DANBO (Ours)

Fig. 1: Motion retargeting on the MonoPerfCap hold-out test sets. We
overlay the reference images with the estimated poses. DANBO generates more
detailed facial features and more consistent body contours, with plausible wrin-
kles on the jeans and clothes. Real faces are blurred for anonymity.

In Table 1, we report the novel view synthesis results on the testing sets.
DANBO shows superior results to the two baselines that require more sophisti-
cated 3D prior, while being self-supervised and surface-free. We show the results
on unseen poses in Table 2. Similarly, DANBO outperforms the two baselines,
showing better generalizability over the prior mesh-based and point clouds-based
approaches.

DANBO: Disentangled Articulated Neural Body Representations 3

Reference

Reference

Reference

Ours

A-NeRF

Ours

A-NeRF

Ours

A-NeRF

Novel view →

Novel view →

Novel view →

Novel view →

Novel view →

Novel view →

Fig. 2: DANBO better preserves body geometry, showing a less noisy
surface than A-NeRF. We extract the isosurface using Marching cubes [4]
with voxel resolution 256.

4 S.-Y. Su et al.

Table 1: Novel-view synthesis comparisons on Human3.6M [3]. DANBO
achieves higher novel view synthesis quality compared to point clouds-based
method NHR and mesh-based approach NeuralTexture.

NHR[11] NeuralTexture [9] DANBO (Ours)

PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓
S1 21.79 0.892 0.094 0.155 22.04 0.893 0.054 0.150 23.95 0.916 0.033 0.148
S5 21.37 0.892 0.050 0.145 20.91 0.887 0.036 0.144 24.86 0.924 0.029 0.142
S6 21.05 0.854 0.050 0.145 21.10 0.855 0.039 0.145 24.54 0.903 0.035 0.143
S7 21.11 0.890 0.066 0.137 21.59 0.891 0.042 0.133 24.45 0.920 0.028 0.131
S8 19.80 0.889 0.052 0.177 17.69 0.871 0.026 0.174 23.36 0.917 0.068 0.173
S9 23.77 0.898 0.089 0.144 23.80 0.899 0.085 0.139 26.15 0.925 0.040 0.137
S11 22.65 0.891 0.108 0.160 22.73 0.892 0.076 0.155 25.58 0.917 0.060 0.153

Avg 21.65 0.887 0.073 0.152 21.41 0.884 0.051 0.149 24.70 0.917 0.042 0.146

Table 2: Novel-pose synthesis comparisons on Human3.6M [3]. DANBO
outperforms the NHR and NeuralTexture on novel pose synthesis despite not
relying on 3D supervisions for training.

NHR[11] NeuralTexture [9] DANBO (Ours)

PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ KID ↓ LPIPS ↓
S1 21.24 0.877 0.171 0.142 21.08 0.874 0.128 0.137 23.03 0.895 0.081 0.135
S5 21.55 0.883 0.060 0.151 21.06 0.879 0.048 0.150 23.66 0.903 0.049 0.147
S6 21.14 0.876 0.075 0.162 21.20 0.875 0.090 0.160 24.57 0.906 0.052 0.158
S7 20.52 0.878 0.068 0.143 21.15 0.878 0.048 0.137 23.08 0.897 0.036 0.136
S8 19.55 0.876 0.064 0.171 17.67 0.862 0.049 0.167 22.60 0.904 0.092 0.167
S9 23.02 0.883 0.086 0.143 23.10 0.883 0.097 0.138 24.79 0.904 0.042 0.136
S11 22.94 0.890 0.080 0.149 22.72 0.889 0.061 0.147 24.57 0.901 0.040 0.144

Avg 21.42 0.880 0.086 0.152 21.14 0.877 0.074 0.148 23.76 0.902 0.056 0.146

4 Implementation and Dataset Details

Implementation. We train our model for 200k iterations, with the same learning
rate decay schedule as in [6]. We use a hyperparameter setting similar to that in
A-NeRF [8], with several exceptions. For each training batch, we sample 3072
rays from 16 images with 96 uniform samples and 48 importance samples along
each ray. This results in the same number of network evaluations as A-NeRF.
Additionally, unlike the original NeRF, we learn a single neural field instead
of two separate coarse and fine networks. We use M = 16 and H = 5 for
the factorized volumes in all experiments unless stated otherwise. Training takes
around 20 hours on 2 NVidia V100 GPUs. Following prior work, we also optimize
a 128-dim latent code for each frame to model the appearance changes that
cannot be explained by the skeleton pose alone [5,7,8]. The total GPU memory
consumption during training is around 11.0G.

Dataset. Below, we provide additional descriptions on Mixamo [1] and Surreal+CMU-
Mocap [10,2] datasets:

– Mixamo [1] is a synthetic dataset that includes challenging dancing motions.
We use the sequences processed by [8] for motion retargeting.

DANBO: Disentangled Articulated Neural Body Representations 5

– Surreal+CMU-Mocap [10] is a synthetic dataset animated using real-life
motion capture data CMU-Mocap [2]. It consists of diverse motion sequences
such as gymnastic poses and ballet dances, making it a suitable dataset for
testing out-of-distribution novel pose synthesis.

5 Skeleton Representation

Our skeleton representation consists of a rest pose J = [j1, j2, · · · , j24] of 3D joint
locations with fixed connectivity and bone lengths, and the skeleton pose θ =
[ω1, ω2, · · · , ω24] that models the per-frame motion via the rotation ωi relative
to their parents. The root is at i = 1 with ωi encodes the global rotation. The
local-to-world transformation that maps a 3D point from the local coordinate
of i to the world space is computed via forward kinematic with homogeneous
coordinates

G(ωi) =
∏

l∈A(i)

[
R(ωl) jl,l−1

0 1

]
∈ R4×4, (1)

where R is the 3 × 3 rotation matrix converted from the 6D rotation [13], A(i)
is the ordered set of the joint ancestors of i, and jl,l−1 is the translation between
l and its child joint l − 1. The world-to-local transformation is then the inverse
of Equation (1),

T (ωi) = G(ωi)
−1 ∈ R4×4. (2)

In practice, since we want to center the per-bone volume in between joint i and
its child j for the best volume coverage, we rewrite Equation (2)

T (ωi) = T̂ (ωi)G(ωi)
−1 ∈ R4×4, where T̂ (ωi) =

[
I 0.5jj,i
0 1

]
(3)

with I ∈ R3×3 be an identity matrix We set jj,i = 0 when i has multiple or no
child. Intuitively, T̂ shifts the coordinates from joint i to the middle of the bone
defined by i and j. Note that our transformation T (ωi) also aligns the vector
from joint i to its child j with z-axis.

6 Per-bone Volume initialization

We use a set of simple heuristic for initializing the volume scale (sxi , s
y
i , s

z
i). We

first split the skeleton into 4 sections, namely torso, leg, arm, and head. We then
leverage the distances between three symmetric joints in the rest pose, Dshoulder,
Dcollar, and Dknee, as references to initialize volume width sxi and height syi . We
initialize volume length szi using the bone length ||ji,j || between joint i and its
child joint j. For joints with multiple children, we use the mean bone lengths
to all children instead. And for leaf nodes like the head and hands, we use
the maximum bone length ||jmax|| of the whole skeleton for initializing szi . We
illustrate the body sections and reference distances in Figure 3, and report the

6 S.-Y. Su et al.

Torso
Arm

Leg

Head
Shoulder distance

Collar distance

Knee distance

Fig. 3: We split the skeleton into
4 different sections: head (blue),
arm (orange), torso (green) and leg
(red). We initialize the volumes from
each section with values derived
from shoulder width, collar width,
and knee width.

Table 3: We initialize the vol-
ume width, height and length us-
ing Dshoulder, Dcollar, Dknee and bone
length ||ji,j || as heuristic. Note szi is
aligned with the bone direction of i.

sx sy sz

Head 1/(0.6Dshoulder) 1/(1.1||jmax||)
Torso 1/(0.7Dshoulder) 1/||ji,j ||
Arm 1/(0.6Dcollar) 1/||ji,j || or 1/||jmax|| for leaf
Leg 1/(0.5Dknee) 1/||ji,j || or 1/||jmax|| for leaf

detail initialization configuration in Table 3. Our heuristic initializes per-bone
volumes to be large enough to encompass the whole human body, and at the
same time be as small as possible for subsequent minimization to reduce empty
space within the volumes. Recall that this is only an initialization. The exact
scale is optimized alongside the neural radiance field.

7 GNN and Per-node MLP

GNN. We treat the human skeleton as a graph, where each node representing
one bone. We initialize the node embedding n

(0)
i of i as the associated bone

rotation ωi ∈ R6 in the 6D form [13]. The graph convolutional layer l = 1, · · · , L
then updates the node embedding by

ml
i = W

(l)
i n(l−1), (4)

n
(l)
i = ReLU

 ∑
a∈A(i)∪{i}

A
(l)
(i,a)m

l
a

+ b(l)

 , (5)

where ml
i is the message projected by the weight matrix W

(l)
i of bone i, and the

updated node embedding n
(l)
i is computed by aggregating the messages from the

1-hop neighbors A(i). A(l)(i, a) is a learnable scalar for controlling the message
flow from i to a, and b(l) is the bias term shared among all nodes. In all our
experiments, we use L = 2 graph convolutional layers, n(l)

i ∈ R128 for l > 0, and
initialize A(l)

(i,i) = 1 and A
(l)
(i,a) = min(0.05+ϵ, 0.01) with ϵ ∼ N (0, 0.1). Note that

the GNN can potentially achieve better performance by using the per-node bias
and making A

(l)
(i,a) conditioned on θ, but we forgo these options for simplicity.

We use per-node weight matrix W
(l)
i since the graph is heterogeneous: each node

(body part) has attributes different from the others.

DANBO: Disentangled Articulated Neural Body Representations 7

Per-node MLP. As mentioned above, the skeleton graph is heterogeneous. We
therefore use per-node MLPs to learn weights specific for individual body parts.
For the part-disentangled graph neural network G, we use 2-layer per-node MLPs
after the two graph convolutional layers. The aggregation network follows the
same design, but using only one graph convolutional layer.

8 Resource Consumption

We compare to A-NeRF with layer width 448 (2.3M parameters) to match ours
in capacity (2.5M) for a fair comparison. Using the factorized volume has a
much lower parameter count than the conventional 3D grid (4.9M). Anim-NeRF
has smaller capacity (1.3M) and optimize a 128-dim latent vector for each pose
to predict the deformation fields. NeuralBody has the largest model capacity
(5.0M). On the Nvidia V100 we used for training, DANBO takes on average 170
ms for every gradient descent iteration and around 6 seconds for synthesizing a
512× 512 image. This is faster than A-NeRF with comparable capacity (around
8 seconds) but slower than Anim-NeRF (around 2 seconds).

8 S.-Y. Su et al.

References

1. Adobe: Mixamo. https://www.mixamo.com/ (2020)
2. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu
3. Ionescu, C., Carreira, J., Sminchisescu, C.: Iterated Second-Order Label Sensitive

Pooling for 3D Human Pose Estimation. In: CVPR (2014)
4. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-

struction algorithm. ACM TOG (Proc. SIGGRAPH) (1987)
5. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,

Duckworth, D.: NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In: CVPR (2021)

6. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

7. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural
body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In: CVPR (2021)

8. Su, S.Y., Yu, F., Zollhöfer, M., Rhodin, H.: A-nerf: Articulated neural radiance
fields for learning human shape, appearance, and pose. In: NeurIPS (2021)

9. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. ACM TOG (Proc. SIGGRAPH) (2019)

10. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid,
C.: Learning from synthetic humans. In: CVPR (2017)

11. Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. In: CVPR
(2020)

12. Xu, W., Chatterjee, A., Zollhöfer, M., Rhodin, H., Mehta, D., Seidel, H.P.,
Theobalt, C.: Monoperfcap: Human performance capture from monocular video.
TOG 37(2), 27 (2018)

13. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation repre-
sentations in neural networks. In: CVPR. pp. 5745–5753 (2019)

https://www.mixamo.com/
http: //mocap.cs.cmu.edu

	Supplementary Materials for DANBO: Disentangled Articulated Neural Body Representations via Graph Neural Networks

