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In this supplementary, we discuss in more detail about our implementations
and show more qualitative examples to highlight the importance of explicit con-
tact modelling and object pose prediction. We show more qualitative results
on BEHAVE [?], NTU-RGBD [4] as well as images in the wild [3] and discuss
limitations of our method in the end.

1 Implementation details

1.1 Networks and hyper-parameters

Network architecture. The input to our network is an RGB image stacked with
human and object masks: 512 x 512 x 5. The encoder f"° consists of five stacked
hourglass modules, similar to PIFu [6]. All decoders have the same structure:
three FC layers with ReLLU activation and one output FC layer. Specifically, the
input to each decoder is a feature vector of size 256 4+ 64 + 3 = 323 and output
shape is 2,14,9,6 for f*, fP, f, f¢ respectively.

Training details. Our query points for implicit reconstruction are generated using
multi-distribution sampling strategy used in IFNets [2], we also add random grid
samples (- of total samplings) inside a fixed volume, as suggested by [6]. We use
depth-aware scaling for all meshes such that the SMPL mesh center is always at
zo = 2.2m and then generate training labels from scaled meshes. The network
is trained with joint objective L = Ay (Ly, + Ly, ) + ApLp + ArLr + AL, where
we set Ay, Ap, Ar, A¢ as 1.0, 0.006, 500, 1000 in our experiments. The model is
trained with Adam optimizer of learning rate 0.001. Our model is trained on a
cluster server with 3 RTX8000 GPUs, each GPU has 48GB memory capacity. It
takes around 30 hours to converge.

Details for joint optimization. The data term of our joint optimization objective
defined in Eq. 6 is highly non-convex, hence we solve the problem in 3 stages,
namely human reconstruction, object reconstruction and joint optimization. In
human reconstruction stage, we optimize only the human parameters until con-
vergence and in object reconstruction stage we optimize the object parameters
until convergence. And finally in joint optimization stage, we fix the human
parameters and optimize object parameters using the final objective until con-
vergence. The loss weights A, Ap/, Ao, Aoces Areg, Acs Ag, A are set to 900, 0.0025,
8100, 9 x 1079, 900, 104, 0.25, and 1.
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1.2 Adaptive cropping and resizing at test time

The original image from BEHAVE dataset [?] is 1536 x 2048px, which is too
large for our network. We hence make a square crop of size 1200px around the
human object bounding box center and resize it to 512px for the network. The
original camera intrinsic is used for accurate pixel-aligned training. However, at
test time the images have various resolution and unknown intrinsic with person
at diverse range of depth. Since our network is trained with reduced depth-scale
ambiguity, it is able to reconstruct surface centered at a fixed depth and reason
scale (object size) from input pixels. We hence crop and resize the human-object
patch such that the person in the resized patch appears as if they are at z
under the camera intrinsic we used during training. As people usually present
diverse poses during human-object interaction, a fixed pixel size for human [7]
is not accurate. Therefore, we use SMPL mesh estimated from FrankMocap [5]
to compute the patch resizing factor.

More specifically, a depth offset of 2y is added to the SMPL mesh from
FrankMocap (centered at origin). We then compute the body keypoints in 3D
and project them to image plane using the camera intrinsic at training time. For
an image with different resolution, we first resize and pad it to 1536 x 2048px:
images with larger width than height are resized to width at 2048px and pad
along height direction. Similarly, images with larger height than width are resized
to height at 1536px and pad along width direction. We detect the person body
keypoints using Openpose [1] in the resized image and compute the height of the
bounding box that encloses valid body keypoint detections, denoted as h,. Let
hy, denotes the height of the same set of body keypoints obtained from projecting
3D keypoints of FrankMocap SMPL mesh. The resizing factor is then computed
as s = Z—” Intuitively this means if a person’s keypoints are smaller/larger than
the key[;oints projected from FrankMocap mesh, the person is farther/closer
than zg, which requires a scale up/down of the patch so that the person appears
as if it is at 2y, as desired. We apply this scaling factor to resize the square
patch of person and object to 1200px and finally resize it to 512px for the image
encoder.

2 Additional qualitative results for ablation studies

2.1 Importance of contacts

We present a key insight that explicitly modelling the contact is important to
obtain accurate alignment between human and objects. We show more qualita-
tive examples in Fig. 1. It can be clearly seen that our contact prediction can
improve the accuracy and physical plausibility of the joint reconstruction.

2.2 Object pose prediction

In addition to the contacts, we also predict the object orientation and center to
initialize and regularize the object fitting, which is important to obtain accurate
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object pose and joint reconstruction, see Fig. 2. Without our orientation pre-
diction, the fitting easily gets stuck in local minima, and without object center
to initialize and regularize fitting, the object maybe fitted to an incorrect depth
but aligned with input, which leads to inaccurate contact and pose in the end.

3 DMore qualitative examples

We show more comparisons with Weng et al. [8] and PHOSA [9] on the BEHAVE
dataset in Fig. 3. It can be seen that baseline methods may give reasonable results
in front view, but their error in 3D becomes obvious in side view. In contrast,
our method produces coherent 3D reconstruction.

More qualitative comparisons on NTU-RGBD [4] can be found in Fig. 4 and
more results from our method are shown in Fig. 5. Fig. 4 shows that our method
produces more accurate 3D reconstruction than baselines and in Fig. 5 we show
that our method generalizes well across diverse subjects, locations and camera
viewpoints.

We also show significantly more qualitative comparisons with PHOSA on in
the wild images from COCO [3] and internet images in Fig. 6. Note that images
with boxes and yoga balls are from internet and all other images are from COCO.
More results from our method on in the wild images are shown in Fig. 7 and
Fig. 8. Overall, our method trained on BEHAVE generalizes well to NTU-RGBD
as well as in the wild images, without any fine tuning.

One example question from our user studies is shown in Fig. 10.

4 Limitations and future work

Two typical failure cases of our method is shown in Fig. 9. Our method fails when
the object is heavily occluded. In these cases, the object orientation prediction is
incorrect and due to occlusion, our contact prediction can be noisy. These errors
accumulated in the joint fitting and lead to failures.

One direction to improve the robustness of object pose prediction is to first
train our network on other pose prediction or synthetic datasets where objects
are occluded. Another big challenge of single view reconstruction is the lack of
depth information. To add more 3D features to the decoder, one can additionally
train a network to predict an intermediate depth map and stack this to the input
images. One can also use the depth prediction to lift points to 3D and address the
task following single view point cloud reconstruction methods. We leave these
directions for future work.
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Fig. 1: Importance of contacts. We show more examples where our contact prediction
helps improve the accuracy and physical plausibility of the joint reconstruction. With-
out contacts to snap objects to the correct interacting location with the person, the
object maybe optimized towards inaccurate locations, leading to artefacts like floating
objects in the air. For instance, the chair and the suitcase shown in the first row, which

is not physically plausible. Our contacts prediction corrects these errors and leads more
accurate reconstructions.

Input Image w/o ori. pred. w/ ori. pred. Input Image w/o center pred. w/ center pred.
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Fig. 2: Importance of object pose prediction. We compare method without orientation
prediction (left) or object center prediction (right) with our full model. Without our
orientation prediction to initialize object pose, the fitting gets stuck in local minima.
Without object center to initialize and regularize object fitting, the object maybe opti-
mized towards inaccurate depth and leads to incorrect contact and pose reconstruction
in the end.
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Fig.3: More results on BEHAVE dataset [?]. It can be seen that our reconstruction is
more accurate and consistent with input images.
Weng et al PHOSA Ours Ours
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Fig.4: Comparison with Weng et al. [8] and PHOSA [9] on the NTU-RGBD dataset [4].
Our joint reasoning method produces more accurate 3D reconstruction than baselines.
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Fig. 5: More results from ours method on the NTU-RGBD [4] dataset. The human and
object to be reconstructed are highlighted with green and red boxes respectively. It can
be seen that our method generalizes well across diverse subjects, locations and camera
viewpoints, without any fine tuning on this dataset.
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Fig. 6: Comparison with PHOSA on in the wild images. The human and object to
be reconstructed are highlighted with green and red boxes respectively. Our method
generalizes better than PHOSA on in the wild images.
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Fig. 7: More results from our method on in the wild images. It can be seen that our
method generalizes well to images in the wild.
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Ours - Side view

Fig. 8: More results from our method on in the wild images. Our method generalizes
well to images in the wild.
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Fig. 9: We show two typical failure cases mainly caused by severe occlusion: inaccurate
object orientation (a) and contact (b) prediction. It is difficult to predict accurate pose
when over half of the table (a) is occluded and object fitting gets stuck in local minima
due to this incorrect orientation initialization. The network also failed to correctly
reason whether the suitcase (b) is in contact with the person or not and falsely push
it to the person’s foot.

Q38. Please carefully inspect the highlighted human (green box) and object (red
box) on top left of each half panel, think about their 3D spatial arrangement. Pay
attention to the object pose, size, and relative distance to the person. *
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Overall, which reconstruction is better?

(O Nobig difference / both are bad
(O Right
O Left

Fig. 10: Example question from our COCO user study survey. Annotators are asked to
select which reconstruction is better or there is no big difference. Clockwise from top-
left: original image, reconstruction rendered in camera view, side view and top-down
view.
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