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In this supplementary material, we provide a detailed description of the im-
plementation details and the data augmentation we used. We also include more
qualitative examples and a supplementary video which summarizes the method
and the contributions of the paper.

1 Implementation details

We next describe the main implementation details. The code will be made pub-
licly available.

The clipping factor for the learnt gradient is to 18% of the vertical size
of the scan, which we normalize between −0.75 and 0.75. In our experiments,
H = W = 256, f is a stacked hourglass network [10] trained from scratch with
4 stacks and batch normalization replaced with group normalization [17]. The
feature embeddings have size 128×128 with 256 channels each. Therefore, query
points have a feature size of F = 256 × 4 = 1024. The MLP f is formed by 3
fully connected layers with Weight Normalization [15], and deeper architectures
or positional encoding did not help to improve performance. We attribute this
to the fact that the MLP is already obtaining very rich representations from
feature maps. For images, we assume a weak-perspective projection although
our approach is compatible with perspective cameras.

The networks are trained end-to-end with batch size 4, learning rate 0.001
during 500 epochs, and then with linear learning rate decay during 500 epochs
more. We use Adam Optimizer [7] with β1 = 0.9 β2 = 0.999. When considering
point-clouds as input we train an IF-Net backbone[5] from scratch with the same
training conditions and number of iterations.

Implementation-wise f has an output dimension of N = 6890. When esti-
mating an SMPL shape, we input a surface of 6890× 3 and obtain a prediction
tensor with shape 6890×6890×3, from which we sample the diagonal to obtain
per-vertex displacements (6890 × 3) and move each vertex in the correct direc-
tion. For the task of registration of the MANO model [13], we instead predict
778 vertices.

To compare LVD against other baselines, we used their available code. For
SMPL-X, we fitted the SMPL model for better comparison with ours and previ-
ous works, using their most recent code (SMPLify-X) with the variational prior.
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Fig. 1. Convergence plot of the proposed optimization, for voxel-based ex-
periments in comparison to image-based reconstruction. In comparison with
the reported results on image-based reconstruction (which also are shown in the main
paper), volumetric reconstruction takes almost a second to converge with our settings.
Experiments were run on a single GeForce® GTX 1080 Ti GPU. The black line rep-
resents the average of all vertex errors while the remaining colors show how the error
is distributed among different body parts, e.g. . arms and feet accumulate the biggest
error while torso or head generally are the most accurately reconstructed parts.

Image Mask LVD Image Mask LVD

Fig. 2. SMPL reconstruction on images in-the-wild, and the predicted fore-
ground masks[18]. Even with noisy segmentations, the predicted SMPL accurately
represents the body shapes and poses of the target people.
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Fig. 3. More examples of body shapes estimated on images in-the-wild.

2 Data Augmentation for image data

As mentioned in the main document, we use the RenderPeople, AXYZ and
Twindom datasets [12, 1, 16], which consist of 767 3D scans. We first obtain
SMPL registrations and manually annotate the correct fits, leaving 750 scans.
Due to the reduced number of 3D scans, we augment each of them by changing
its pose and body shape. On one side, we label pose vectors for humans walking
and running, and automatically select a random pose + noise for each new
augmentation. To pose the 3D scan, we simply assign the skinning weights of
each 3D surface vertex to those of the closest SMPL vertex. This can lead to
several artifacts, for body parts that are in contact, such as hands, which will
generate very large triangles. We manually prune the generated 3D scans to
remove these cases.

Next, we tune the body shape of each 3D scan by changing the first shape
parameter in the PCA space. We discretize a number of augmentations with
respect to the initial shape and calculate the linear displacement for each body
vertex. For the 3D scan we apply the displacement of the closest vertex. This
augmentation is proven to be really useful and does not significantly create
artifacts since it retains self-contact information. We perform 6 augmentations
for each scan.

For the task of human reconstruction from images, we then render each
augmentation by rotating around the yaw axis to gather views with different
illuminations. As mentioned in the main document, in total we obtain ∼ 680k
rendered images that are used for training and validation.
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Fig. 4. Qualitative comparisons with more methods. For each method, we show
front and side views of the reconstruction.

Note that the original data consisted only of a few hundred 3D scans, all
with very average body shapes. The augmentation led the model represent more
diverse shapes and avoid overfitting, but the proposed Learned Vertex Descent
paradigm was necessary for it to represent them well. The baseline that predicts
SMPL parameters directly did not manage to generalize well beyond the training
set.

3 Experiments

As mentioned in the main document, we train our model without backgrounds
when taking images as input. Therefore at test time we use RP-R-CNN [18] to
automatically segment the foreground person before running the forward pass.
However, this can still generate masks with artifacts or missing parts. We show
in Fig. 2 that the proposed approach is robust to these noisy masks or parts that
were incorrectly segmented.

We also show more qualitative examples of 3D reconstruction from a single
view in-the-wild in Fig. 3, and Fig. 4 shows comparisons with the rest of the
methods that are not shown in the main document. In particular, we noted sev-
eral differences between optimization-based and learning-based body pose/shape
estimation methods. On one hand, optimization-based methods [4, 11] are often
accurate, but have severe failure cases and are slow. On the other hand, learning
based methods [8, 14, 6, 9] regress global parameters from the full image. Hence,
the shape estimates have a strong bias towards the mean. Moreover, learning-
based methods are not able to verify their initial estimates against the image.

Our goal in this paper is to combine the advantages of both methods. LVD
produces varied shape estimates thanks to the learned per vertex descent di-
rections which are conditioned on local image evidence, and can work in real
time.
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Scan LoopReg [3] IP-Net [2] Ours

Fig. 5. SMPL registration of 3D scans showing SMPL and SMPL-D for LoopReg,
IP-Net and LVD.
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3D Scan LVDInput point cloud IP-Net GT

Fig. 6. Registration of 3D Hands using MANO [13]. The input to IP-Net [2]
or LVD is the input point cloud in the left column, while the groundtruth 3D scan is
shown in the second column. IP-Net performs similarly well in most cases, but is most
confused in the presence of other objects or very noisy pointclouds.
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Fig. 7. Failure cases from LVD in body shape estimation from single view
images (first row), 3D registration of humans from point clouds (second
row - left) and 3D registration from hands (second row - right). See Section 4
for more details.

In addition, we focus on designing a general method that is straightforward
to apply to other input modalities such as 3D point clouds. In this direction,
Fig. 5 includes more results on the task of 3D registration of 3D scans and Fig. 6
shows 3D registration results of MANO of LVD in comparison to those of IP-
Net [2]. IP-Net obtains quantitative results close to LVD, and works generally
well for clean 3D scans. However, it might converge to wrong local minima when
tackling 3D point clouds with objects or holes.

4 Failure cases.

We finally include failure cases of LVD in all tasks where we evaluate our ap-
proach, in Fig. 7. For the task of body shape estimation from single view (First
row), the body shapes we can generate are limited by the SMPL model and the
training data, and cannot accurately reproduce body shapes of e.g. pregnant
women (second example). Furthermore, our training data is rather limited in
the diversity of body poses, so challenging body poses is another reason for fail-
ure cases. For instance, examples in Fig. 7 top-left and top-right show scenarios
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that are rare in the train data, and the predicted body does not correctly adjust
to the input image. However, note that the wrong body parts are predicted to
have a big uncertainty (in dark blue).

In Fig. 7 (Second row) we show more examples of failure cases in 3D regis-
tration of human scans and hands.
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