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Abstract. We propose a novel optimization-based paradigm for 3D
human model fitting on images and scans. In contrast to existing ap-
proaches that directly regress the parameters of a low-dimensional sta-
tistical body model (e.g. SMPL) from input images, we train an en-
semble of per vertex neural fields network. The network predicts, in a
distributed manner, the vertex descent direction towards the ground
truth, based on neural features extracted at the current vertex pro-
jection. At inference, we employ this network, dubbed LVD, within a
gradient-descent optimization pipeline until its convergence, which typ-
ically occurs in a fraction of a second even when initializing all vertices
into a single point. An exhaustive evaluation demonstrates that our ap-
proach is able to capture the underlying body of clothed people with
very different body shapes, achieving a significant improvement com-
pared to state-of-the-art. LVD is also applicable to 3D model fitting
of humans and hands, for which we show a significant improvement to
the SOTA with a much simpler and faster method. Code is released at
https://www.iri.upc.edu/people/ecorona/lvd/

1 Introduction

Fitting 3D human models to data (single images / video / scans) is a highly
ambiguous problem. The standard approach to overcome this is by introducing
statistical shape priors [5,44,82] controlled by a reduced number of parameters.
Shape recovery then entails estimating these parameters from data. There exist
two main paradigms for doing so.

On the one side, optimization-based methods iteratively search for the model
parameters that best match available image cues, like 2D keypoints [57,11,6,37],
silhouettes [41,75] or dense correspondences [29]. On the other side, data-driven
regression methods for mesh recovery leverage deep neural networks to directly
predict the model parameters from the input [35,29,58,19,26,4,53]. In between
these two streams, there are recent approaches that build hybrid methods com-
bining optimization-regression schemes [83,34,37,77].

Regardless of the inference method, optimization or regression, and input
modality, 2D evidence based on the entire image, keypoints, silhouettes, point-
clouds, all these previous methods aim at estimating the parameters of a low-
dimensional model (typically based on SMPL [44]). However, as we will show in

https://www.iri.upc.edu/people/ecorona/lvd/
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Fig. 1. Learned Vertex Descent (LVD) is a novel optimization strategy in which
a network leverages local image or volumetric features to iteratively predict per-vertex
directions towards an optimal body/hand surface. The proposed approach is directly
applicable to different tasks with minimal changes on the network, and we show it
can fit a much larger variability of body shapes than previous state-of-the-art. The
figure depicts results on the three tasks where we have evaluated LVD: body shape
reconstruction from a single image, and 3D fitting of body and hand scans.

the experimental section, these models struggle in capturing detailed body shape,
specially for morphotypes departing from the mean (overweight or skinny people)
or when the person is wearing loose clothing. We hypothesize that this is pro-
duced by two main reasons: 1) the models induce a bias towards the mean shape;
and 2) the mapping from local image / pointcloud features to global shape pa-
rameters is highly non-linear. This makes optimization-based approaches prone
to get stuck at local minima and have slow run times. Global shape regression
methods lack the error-feedback loop of optimization methods (comparing the
current estimate against image / scan input), and hence exhibit an even more
pronounced bias towards mean shapes. Overcoming this problem would require
immense amounts of training data, which is infeasible for 3D bodies.

To recover more detail, recent works regress or optimize a set of displace-
ments on top of SMPL global shape [3,1,4,10,56], local surface elements [45] or
points [47]. Like us, [38] by-pass the regression of global shape parameters and
regress model vertices directly. However, similar to displacement-based meth-
ods [1,4], the proposed regression scheme [38] predicts the position of all points
in a single pass and lacks an error-feedback loop. Hence, these methods regress a
global shape based on global features and also suffer from bias towards the mean.
Works based on implicit surfaces [17,70,71] address these limitations by making
point-wise distributed predictions. Being more local, they require less training
data. However, these methods do not produce surfaces with a coherent param-
eterization (e.g. SMPL vertices), and hence control is only possible with subse-
quent model fitting, which is hard if correspondences are not known [8,9,33,31].

In this paper, we propose a significantly different approach to all prior model
fitting methods. Inspired by classical model-based fitting, where image gradients
drive the direction of vertices and in turn global shape parameters, we propose
to iteratively learn where 3D vertices should move based on neural features. For
that purpose, we devise a novel data-driven optimization in which an ensemble of
per-vertex neural fields is trained to predict the optimal 3D vertex displacement
towards the ground-truth, based on local neural features extracted at the current
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vertex location. We dub this network LVD, from ‘Learned Vertex Descent’. At
inference, given an input image or scan, we initialize all mesh vertices into a
single point and iteratively query LVD to estimate the vertex displacement in a
gradient descent manner.

We conduct a thorough evaluation of the proposed learning-based optimiza-
tion approach. Our experiments reveal that LVD combines the advantages of
classical optimization and learning-based methods. LVD captures off-mean shapes
significantly more accurately than all prior work, unlike optimization approaches
it does not suffer from local minima, and converges in just 6 iterations. We at-
tribute the better performance to the distributed per-vertex predictions and to
the error feedback loop – the current vertex estimate is iteratively verified against
the image evidence, a feature present in all optimization schemes but missing in
learning-based methods for human shape estimation.

We demonstrate the usefulness of LVD for the tasks of 3D human shape
estimation from images, and 3D scan registration(see Fig 1). In both problems,
we surpass existing approaches by a considerable margin.

Our key contributions can be summarized as follows:

– A novel learning-based optimization where vertices descent towards the cor-
rect solution according to learned neural field predictions. This optimization
is fast, does not require gradients and hand-crafted objective functions, and
is not sensitive to initialization.

– We empirically show that our approach achieves state-of-the-art results in
the task of human shape recovery from a single image.

– The LVD formulation can be readily adapted to the problem of 3D scan
fitting. We also demonstrate state-of-the-art results on fitting 3D scans of
full bodies and hands.

– By analysing the variance of the learned vertex gradient in local neighbor-
hoods we can extract uncertainty information about the reconstructed shape.
This might be useful for subsequent downstream applications that require
confidence measures on the estimated body shape.

2 Related work

2.1 Parametric models for 3D body reconstruction

The de-facto approach for reconstructing human shape and pose is by estimating
the parameters of a low-rank generative model [44,57,82,68], being SMPL [44] or
SMPL-X [57] the most well known. We next describe the approaches to perform
model fitting from images.

Optimization. Early approaches on human pose and shape estimation from im-
ages used optimization-based approaches to estimate the model parameters from
2D image evidence. Sigal et al [75] did so for the SCAPE [5] human model, and
assuming 2D input silhouettes. Guan et al [28], combined silhouettes with man-
ually annotated 2D skeletons. More recently, the standard optimization relies on
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2D skeletons [11,57,77], estimated by off-the-shelf and robust deep methods [14].
This is typically accompanied by additional pose priors to ensure anthropomor-
phism of the retrieved pose [11,57]. Subsequent works have devised approaches
to obtain better initialization from image cues [37], more efficient optimization
pipelines [77], focused on multiple people [24] or extended the approach to multi-
view scenarios [42,24].

While optimization-based approaches do not require images with 3D annota-
tion for training and achieve relatively good registration of details to 2D obser-
vations, they tend to suffer from the non-convexity of the problem, being slow
and falling into local minima unless provided with a good initialization and ac-
curate 2D observations. In this work, we overcome both these limitations. From
one side we only use as input a very coarse person segmentation and image fea-
tures obtained with standard encoder-decoder architectures. And from the other
side, the learned vertex displacements help the optimizer to converge to good
solutions (empirically observed) in just a few iterations. On the downside, our
approach requires 3D training data, but as we will show in the experimental
section, by using synthetic data we manage to generalize well to real images.

Regression. Most current approaches on human body shape recovery con-
sider the direct regression of the shape and pose parameters of the SMPL
model [29,6,36,38,58,26,39,69,73,74,18]. As in optimization-based methods, dif-
ferent sorts of 2D image evidence have been used, e.g. keypoints [41], keypoints
plus silhouette [59] or part segmentation maps [53]. More recently, SMPL param-
eters have been regressed directly from entire images encoded by pre-trained deep
networks (typically ResNet-like) [35,29,58,19,26]. However, regressing the param-
eters of a low-dimensional parametric model from a single view is always a highly
ambiguous problem. This is alleviated by recent works that explore the idea of us-
ing hybrid approaches combining optimization and regression [83,34,37,77,51,43].
Very recently, [39] proposed regressing a distribution of parameters instead of
having a regression into a single pose and shape representation. In any event, all
these works still rely on representing the body shape through low-rank models.

We argue that other shape representations are necessary to model body shape
details. This was already discussed in [38], which suggested representing the
body shape using all vertices of a template mesh. We will follow the same spirit,
although in a completely different learning paradigm. Specifically, [38] proposed
regressing all points of the body mesh in one single regression pass of a Graph
Convolutional Network. This led to noisy outputs that required post-processing
to smooth the results by fitting the SMPL model. Instead, we propose a novel
optimization framework, that leverages on a pre-learned prior that maps image
evidence to vertex displacements towards the body shape. We will show that
despite its simplicity, this approach surpasses by considerable margins all prior
work, and provides smooth while accurate meshes without any post-processing.

2.2 Fitting scans

Classical ICP-based has been used for fitting SMPL with no direct correspon-
dences [61,12,13,63,32,25] or for registration of garments [62,10,40]. Integrat-
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ing additional knowledge such as pre-computed 3D joints, facial key points [2]
and body part segmentation [8] significantly improves the registration qual-
ity but these pre-processing steps are prone to error and often require hu-
man supervision. Other works initialize correspondences with a learned regressor
[78,65,27,50] and later optimize model parameters. Like us, more recent meth-
ods also propose predicting correspondences [9] or body part labels [8] extracted
via learnt features. Even though we do not explicitly propose a 3D registra-
tion method, LVD is a general algorithm that predicts parametric models. By
optimizing these predictions without further correspondences, we surpass other
methods that are explicitly designed for 3D registration.

2.3 Neural fields for parametric models

Neural fields [21,66,54,20,86,79] have recently shown impressive results in model-
ing 3D human shape [15,85,23,54,22,52]. However, despite providing the level of
detail that parametric models do not have, they are computationally expensive
and difficult to integrate within pose-driven applications given the lack of corre-
spondences. Recent works have already explored possible integrations between
implicit and parametric representations for the tasks of 3D reconstruction [33,81],
clothed human modeling [72,45,46], or human rendering [60].

We will build upon this direction by framing our method in the pipeline of
neural fields. Concretely, we will take the vertices of an unfit mesh and use image
features to learn their optimal displacement towards the optimal body shape.

3 Method

We next present our new paradigm for fitting 3D human models. For clarity, we
will describe our approach in the problem of 3D human shape reconstruction
from a single image. Yet, the formulation we present here is generalizable to the
problem of fitting 3D scans, as we shall demonstrate in the experimental section.

3.1 Problem formulation

Given a single-view image I ∈ RH×W of a person our goal is to reconstruct
his/her full body. We represent the body using a 3D mesh V ∈ RN×3 with N
vertices. For convenience (and compatibility with SMPL-based downstream al-
gorithms) the mesh topology will correspond to that of the SMPL model, with
N = 6.890 vertices and triangular connectivity (13.776 faces). It is important to
note that our method operates on the vertices directly and hence it is applica-
ble to other models (such as hands [68]). In particular, we do not use the low
dimensional pose and shape parameterizations of such models.

3.2 LVD: Learning Vertex Descent

We solve the model fitting problem via an iterative optimization approach with
learned vertex descent. Concretely, let vt

i be the i-th vertex of the estimated mesh
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Fig. 2. LVD is a novel framework for estimation of 3D human body where local features
drive the direction of vertices iteratively by predicting a per-vertex neural field. At each
step t, g takes an input vertex vt

i with its corresponding local features, to predict the
direction towards its groundtruth position. The surface initialization here follows a
T-Posed body, but the proposed approach is very robust to initialization.

V at iteration t. Let us also denote by F ∈ RH′×W ′×F the pixel aligned image
features, and by fi the F -dimensional vector of the specific features extracted at
the projection of vt

i on the image plane.
We learn a function g(·) that given the current 3D vertex position, and the

image features at its 2D projection, predicts the magnitude and direction of
steepest descent towards the ground truth location of the i-th vertex, which we
shall denote as v̂i. Formally:

g : (vt
i , fi) 7→ ∆vi . (1)

where ∆vi ∈ R3 is a vector with origin at vt
i and endpoint at the ground truth

v̂i. In practice, during training, we will apply a component-wise clipping to the
ground truth displacements with threshold λ. This stabilizes convergence during
the first training iterations.

We learn the vertex descent function g(·) using a joint ensemble of per-
vertex neural field networks, which we describe in Sect. 3.3. Once this mapping
is learned, we can define the following update rule for our learned optimization:

vt+1
i = vt

i +∆vi . (2)

The reconstruction problem then entails iterating over Eq. 2 until the conver-
gence of ∆vi. Fig 2 depicts an overview of the approach.

Note that in essence we are replacing the standard gradient descent rule with
a learned update that is locally computed at every vertex. As we will empirically
demonstrate in the results section, despite its simplicity, the proposed approach
allows for fast and remarkable convergence rates, typically requiring only 4 to 6
iterations no matter how the mesh vertices are initialized.

Uncertainty estimation. An interesting outcome of our approach is that it
allows estimating the uncertainty of the estimated 3D shape, which could be
useful in downstream applications that require a confidence measure. For esti-
mating the uncertainty of a vertex vi, we compute the variance of the points
after perturbing them and letting the network converge. After this process, we
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obtain the displacements ∆xi
j between perturbed points xi

j and the mesh vertex
vi predicted initially. We then define the uncertainty of vi as:

U(vi) = std({xi
j +∆xi

j}Mj=1) . (3)

In Figs. 1 and 4 we represent the uncertainty of the meshes in dark blue. Note
that the most uncertain regions are typically localized on the feet and hands.

3.3 Network architecture

The LVD architecture has two main modules, one that is responsible of extracting
local image features and the other of learning the optimal vertices’ displacement.

Local features. Following recent approaches [70,71], the local features F are
learned with an encoder-decoder Hourglass network trained from scratch. Given
a vertex vt

i = (xt
i, y

t
i , z

t
i) and the input image I, these features are estimated as:

f : (I, π(vt
i), z

t
i) 7→ fi , (4)

where π(v) is a weak perspective projection of v onto the image plane. We
condition f(·) with the depth zti of the vertex to generate depth-aware local
features. A key component of LVD is Predicting vertex displacements based on
local features, which have been shown to produce better geometric detail, even
from small training sets [70,71,16]. Indeed, this is one of our major differences
compared to previous learning approaches for human shape estimation relying
on parametric body models. These methods learn a mapping from a full image
to global shape parameters (two disjoint spaces), which is hard to learn, and
therefore they are unable to capture the local details. This results in poor image
overlap between the recovered shape and the image as can be seen in Fig. 1.

Network field. In order to implement the function g(·) in Eq. 1 we follow recent
neural field approaches [49,55] and use a simple 3-layer MLP that takes as input
the current estimate of each vertex vt

i plus its local F -dimensional local feature
fi and predicts the displacement ∆vi.

3.4 Training LVD

Training the proposed model entails learning the parameters of the functions
f(·) and g(·) described above. For this purpose, we will leverage a synthetic
dataset of images of people under different clothing and body poses paired with
the corresponding SMPL 3D body registrations. We will describe this dataset in
the experimental section.

In order to train the network, we proceed as follows: Let us assume we are
given a ground truth body mesh V̂ = [v̂1, . . . , v̂N ] and its corresponding image I.
We then randomly sample M 3D points X = {x1, . . . ,xM}, using a combination
of points uniformly sampled in space and points distributed near the surface.
Each of these points, jointly with the input image I is fed to the LVD model
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which predicts its displacement w.r.t. all ground truth SMPL vertices. Then, the
loss associated with xi is computed as:

L(xi) =

N∑
j=1

∥∆xj
i − ∆̂xj

i∥1 , (5)

where ∆xj
i is the predicted displacement between xi and v̂j and ∆̂xj

i the ground
truth displacement. ∥·∥1 is the L1 distance. Note that by doing this, we are
teaching our network to predict the displacement of any point in space to all
vertices of the mesh. We found that this simple loss was sufficient to learn smooth
but accurate body prediction. Remarkably, no additional regularization losses
enforcing geometry consistency or anthropomorphism were required.

The reader is referred to the Supplemental Material for additional implemen-
tation and training details.

3.5 Application to 3D scan registration

The pipeline we have just described can be readily applied to the problem of
fitting the SMPL mesh to 3D scans of clothed people or fitting the MANO
model [68] to 3D scans of hands. The only difference will be in the feature
extractor f(·) of Eq. 4, which will have to account for volumetric features. If X
is a 3D voxelized scan, the feature extractor for a vertex vi will be defined as:

f3D : (X,vi) 7→ fi , (6)

where again, fi will be an F -dimensional feature vector. For the MANO model,
the number of vertices of the mesh is N = 778. In the experimental section, we
will show the adaptability of LVD to this scan registration problem.

4 Connection to classical model based fitting

Beyond its good performance, we find the connection of LVD to classical op-
timization based methods interesting, and understanding its relationship can
be important for future improvements and extensions of LVD. Optimization
methods for human shape recovery optimize model parameters to match image
features such as correspondences [28,11,57], silhouettes [75,76]. See [64] for an
in-depth discussion of optimization-based model based fitting.

Optimization based. These methods minimize a scalar error e(p) ∈ R with
respect to human body parameters p. Such scalar error is commonly obtained
from a sum of squares error e = e(p)Te(p). The error vector e ∈ RdN contains
the d dimensional residuals for the N vertices of a mesh, which typically cor-
respond to measuring how well the projected i − th vertex in the mesh fits the
image evidence (e.g, matching color of the rendered mesh vs image color). To
minimize e one can use gradient descent, Gauss-Newton or Levenberg-Marquadt
(LM) optimizer to find a descent direction for human parameters p, but ulti-
mately the direction is obtained from local image gradients as we will show.
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Input ResNet [30] Sengupta [74] LVD Input ResNet [30] Sengupta [74] LVD

Fig. 3. Comparison of LVD to body shape estimation baselines. We first train
a ResNet [30] on the same dataset to predict SMPL parameters. This approach fails
to generalize to novel poses and shapes. We also compare LVD to Sengupta et al [74],
which perform well on real images, even though the predicted shapes do not fit perfectly
the silhouettes of the people. See also quantitative results in Table 1.

Without loss of generality, we can look at the individual residual incurred by
one vertex ei ∈ Rd, although bear in mind that an optimization routine consid-
ers all residuals simultaneously (the final gradient will be the sum of individual
residual gradients or step directions in the case of LM type optimizers). The
gradient of a single residual can be computed as

∇pei =
∂(eTi ei)

∂p
= 2

[
∂ei
∂vi

∂vi

∂p

]T
ei (7)

where the matrices that play a critical role in finding a good direction are the
error itself ei, and

∂ei

∂vi
which is the Jacobian matrix of the i-th residual with

respect to the i-th vertex (the Jacobian of the vertex w.r.t. to parameters p is
computed from the body model and typically helps to restrict (small) vertex
displacements to remain within the space of human shapes). When residuals are
based on pixel differences (common for rendering losses and silhouette terms)
obtaining ∂ei

∂vi
requires computing image gradients via finite differences. Such

classical gradient is only meaningful once we are close to the solution.

Learned Vertex Descent. In stark contrast, our neural fields compute a
learned vertex direction, with image features that have a much higher receptive
field than a classical gradient. This explains why our method converges much
faster and more reliably than classical approaches. To continue this analogy, our
network learns to minimize the following objective error (for a single vertex)

eLVD
i = eTi ei = (vi − vgt

i )T (v − vgt
i ) (8)

whose vertex gradient ∇vie
LVD
i points directly to the ground truth vertex vgt

i .
In fact, our LVD is trained to learn the step size as well as the direction. What
is even more remarkable, and surprising to us, is that we do not need a body
model to constraint the vertices. That is, during optimization, we do not need
to compute ∂vi

∂p , and project the directions to the space of valid human shapes.



10 Corona et al.

Input FrankMocap [69] ExPose [19] ProHMR [39] LVD

Fig. 4. SMPL reconstruction on images on-the-wild. For each method, we show
the reconstruction in posed and canonical space. While previous works focus on pose
estimation, they are prone to generate always an average body shape. In contrast, LVD
generates a much richer distribution of body shapes as shown in the right-most column.

Since LVD has been learned from real human shapes, it automatically learns a
prior, making the model very simple and fast during inference.

5 Experiments

We next evaluate the performance of LVD in the tasks of 3D human recon-
struction from a single image and 3D registration. Additionally, we will provide
empirical insights about the convergence of the algorithm and its shape expres-
siveness compared to parametric models.

Data. We use the RenderPeople, AXYZ and Twindom datasets [67,7,80], which
consist of 767 3D scans. We first obtain SMPL registrations and manually an-
notate the correct fits. Then, we perform an aggressive data augmentation by
synthetically changing body pose, shape and rendering several images per mesh
from different views and illuminations. By doing, this we collect a synthetic
dataset of ∼ 600k images which we use for training and validation. Test will be
performed on real datasets. Please see Suppl. Mat. for more details.

5.1 3D Body shape estimation from a single image

We evaluate LVD in the task of body shape estimation and compare it against
Sengupta et al [74], which uses 2D edges and joints to extract features that are
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Table 1. Single-view SMPL estimation from LVD and base-
lines [57,37,69,19,39,74] in the BUFF Dataset [84], in mm. The experiments
take into account front, side and back views from the original scans and show that
LVD outperforms all baselines in all scenarios and metrics except for back views. *We
also report the results of PIFu, although note that this is a model-free approach in
contrast to ours and the rest of the baselines, which recover the SMPL model.

Vertex-to-Vertex Vertex-to-Surface V2V V2S
Viewing angle: 0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦ Avg. Avg.

*PIFu [70] 36.71 40.55 72.57 39.23 35.16 39.04 71.38 38.51 47.18 46.05
SMPL-X [57] 41.30 77.03 61.40 92.50 40.00 75.68 60.27 91.30 68.07 66.81
SPIN [37] 31.96 42.10 53.93 44.54 30.68 40.87 52.86 43.30 43.13 41.92
FrankMocap [69] 27.24 43.33 47.36 42.36 25.70 41.93 46.15 40.85 40.07 38.66
ExPose [19] 26.07 40.83 54.42 44.34 24.61 39.60 53.23 43.16 41.41 40.15
ProHMR [39] 39.55 49.26 55.42 46.03 38.42 48.18 54.41 44.88 47.56 46.47
Sengupta [74] 27.70 51.10 40.11 53.28 25.96 49.77 38.80 52.03 43.05 41.64
LVD 25.44 38.24 54.55 38.10 23.94 37.05 53.55 36.94 39.08 37.87

used to predict SMPL parameters. We also compare it against a model that
estimates SMPL pose and shape parameters given an input image. We use a
pre-trained ResNet-18 [30] that is trained on the exact same data as LVD. This
approach fails to capture the variability of body shapes and does not generalize
well to new poses. We attribute this to the limited amount of data (only a
few hundred 3D scans), with every image being a training data point, while in
LVD every sampled 3D point counts as one training example. Figure 3 shows
qualitative results on in-the-wild images. The predictions of LVD also capture
the body shape better than those of Sengupta et al [74] and project better to
the silhouette of the input person.

Even though our primary goal is not pose estimation, we also compare
LVD against several recent state-of-the-art model-based methods [57,37,69,19,39]
on the BUFF dataset, which has 9612 textured scans of clothed people. We have
uniformly sampled 480 scans and rendered images at four camera views. Table 1
summarizes the results in terms of the Vertex-to-Vertex (V2V) and Vertex-to-
Surface (V2S) distances. The table also reports the results of PIFu [70], although
we should take this merely as a reference, as this is a model-free approach, while
the rest of the methods in the Table are model-based. Figure 4 shows qualitative
results on in-the-wild images. With this experiment, we want to show that pre-
vious works on pose and shape estimation tend to predict average body shapes.
In contrast, our approach is able to reconstruct high-fidelity bodies for different
morphotypes. It should be noted that our primary goal is to estimate accurate
body shape, and our training data does not include extreme poses. Generalizing
LVD to complex poses will most likely require self-supervised frameworks with
in the wild 2D images like current SOTA [35,39,19,37] , but this is out of the
scope of this paper, and leave it for future work.

Finally, it is worth to point that some of the baselines [57,69,37,19] require
2D keypoint predictions, for which we use the publicly available code of Open-
Pose [14]. In contrast, our work requires coarse image segmentations to mask the
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Fig. 5. Left: Variability of predicted body shape parameters (x-axis) with respect
to vertex error (y-axis, lower is better) for works that fit SMPL to images. Previous
approaches have mostly focused on the task of pose estimation. LVD, instead, aims to
represent a more realistic distribution of predicted body shapes. Right: Convergence
analysis of the proposed optimization, showing the distance from each SMPL vertex
to the groundtruth scan during optimization, averaged for 200 examples of the BUFF
dataset. The first iteration also includes the time to obtain the feature maps used
during the rest of the optimization. Each line color encodes a different body region and
the black line shows the average error of all vertices.

background out because we trained LVD on renders of 3D scans without back-
ground. In any event, we noticed that our model is not particularly sensitive to
the quality of input masks, and can still generate plausible body shapes with
noisy masks (see Supp. Mat.).

5.2 Shape expressiveness and convergence analysis

We further study the ability of all methods to represent different body shapes.
For this, we obtain the SMPL shape for our model and pose estimation baselines
in Tab. 1 and fit the SMPL model with 300 shape components. We then calculate
the standard deviation σ2 of the second PCA component, responsible for the
shape diversity. Fig. 5 (left) depicts the graph of shape σ2 vs. V2S error. It is
clearly shown that LVD stands out in its capacity to represent different shapes.
In contrast, most previous approaches have a much lower capacity to recover
different body shapes, with a σ2 value 3 times smaller than ours.

We also perform an empirical convergence analysis of LVD. Fig. 5 (right)
plots the average V2V error (in mm) vs time, computed when performing shape
inference for 200 different samples of the BUFF dataset. Note that the opti-
mization converges at a tenth of a second using a GTX 1080 Ti GPU. The total
computation time is equivalent to 6 iterations of our algorithm. The color-coded
3D mesh on the side of Fig. 5 (right) shows in which parts of the body the algo-
rithm suffers the most. These areas are concentrated on the arms. Other regions
that hardly become occluded, such as torso or head have the lowest error. The
average vertex error is represented with a thicker black line.

Finally, we measure the sensitiveness of the convergence to different initial-
izations of the body mesh. We randomly sampled 1K different initializations
from the AMASS dataset [48] and analized the deviation of the converged re-
constructions, obtaining a standard deviation of the SMPL surface vertices of
only σ = 1.2mm across all reconstructions. We credit this robustness to the
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Input scan LoopReg [9] IP-Net [8] Ours

Fig. 6. SMPL and SMPL+D registration of 3D scans from LVD in comparison to
LoopReg and IP-Net.

Table 2. Evaluation on SMPL and SMPL+D registration on the RenderPeo-
ple Dataset [67]. The initial SMPL estimation from LVD is already very competitive
against baselines [9,8]. By using these predictions as initialization for SMPL/SMPL+D
registration, we obtain ∼ 28.4% and ∼ 37.7% relative improvements with respect to
the second-best method[8] in joint and SMPL vertex distances respectively.

Forward pass SMPL Registration SMPL+D Registration

LVD No corresp. LoopReg [9] IP-Net [8] LVD No corresp. LoopReg [9] IP-Net [8] LVD

SMPL
error

Joint [cm] 5.89 16.6 9.33 3.60 2.53 16.6 9.32 3.63 2.60
Vertex [cm] 6.27 21.3 12.2 5.03 3.00 21.3 12.3 5.20 3.24

Recons.
to Scan

V2V [mm] 8.98 12.51 10.35 8.84 8.16 1.45 1.43 1.21 1.14
V2S [mm] 6.61 10.53 8.19 6.61 5.87 0.72 0.69 0.53 0.47

Scan to
Recons.

V2V [mm] 12.6 16.92 14.27 12.25 11.31 8.53 8.01 7.22 6.88
V2S [mm] 9.31 13.75 10.49 8.45 7.43 4.22 3.47 2.78 2.44

dense supervision during training, which takes input points from a volume on
the 3D space, as well as around the groundtruth body surface.

5.3 3D Body Registration

LVD is designed to be general and directly applicable for different tasks. We
analyze the performance of LVD on the task of SMPL and SMPL+D registration
on 3D point-clouds of humans. This task consists in initially estimating the
SMPL mesh (which we do iterating our approach) and then running a second
minimization of the Chamfer distance to fit SMPL and SMPL+D. The results are
reported in Tab. 2, where we compare against LoopReg [9], IP-Net [8], and also
against the simple baseline of registering SMPL with no correspondences starting
from a T-Posed SMPL. Besides the V2V and V2S metrics (bi-directional), we also
report the Joint error (predicted using SMPL’s joint regressor), and the distance
between ground truth SMPL vertices and their correspondences in the registered
mesh (Vertex distance). Note that again, LVD consistently outperforms the rest
of the baselines. This is also qualitatively shown in Fig. 6.
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Groundtruth Groundtruth Groundtruth Groundtruth RegistrationRegistrationRegistrationRegistration

Fig. 7. Registration of MANO from input pointclouds. We include more visuals and
qualitative comparisons with baselines in Supplementary Material.

Table 3. Registration of MANO [68] from input 3D pointclouds of hands.

MANO Error Reconstruction to Scan Scan to Reconstruction

Method Joint [cm] Vertex [cm] V2V [mm] V2S [mm] V2V [mm] V2S [mm]
No corresp. 6.49 7.05 5.31 5.28 8.06 6.40
IP-Net [8] 1.44 1.73 3.29 3.23 6.17 4.08
LVD .76 .96 2.73 2.65 5.62 3.33

5.4 3D Hand Registration

The proposed approach is directly applicable to any statistical model, thus we
also test it in the task of registration of MANO [68] from input point-clouds
of hands, some of them incomplete. For this experiment, we do not change the
network hyperparameters and only update the number of vertices to predict (778
for MANO). We test this task on the MANO [68] dataset, where the approach
also outperforms IP-Net[8], trained on the same data. Tab. 3 summarizes the
performance of LVD and baselines, and qualitative examples are shown in Fig. 7.
Note that LVD shows robustness even in situations with partial point clouds.

6 Conclusion

We have introduced Learned Vertex Descent, a novel framework for human shape
recovery where vertices are iteratively displaced towards the predicted body
surface. The proposed method is lightweight, can work real-time and surpasses
previous state-of-the-art in the tasks of body shape estimation from a single
view or 3D scan registration, of both the full body and hands. Being so simple,
easy to use and effective, we believe LVD can be an important building block for
future model-fitting methods. Future work will focus in self-supervised training
formulations of LVD to tackle difficult poses, scenes and multi-person scenarios.
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