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1 Overview

We present additional details on experiments, qualitative results as figures and
videos in the following sections. We present complete derivations and further
detailed analysis in this supplemental.

Details of experiments for scene and ray based evaluation appear under §2.1
along with the new ray based evaluations. In §2.2 we provide full experiment
evaluation of different decoding strategies of baselines. In §3 we discuss complete
details for all the datasets. In §4 we discuss the important implementation details,
followed by a discussion on rays vs. scene distances in §5 Then in §6 we discuss
the detailed behavior of different distance functions under uncertainty and graph
them. We follow this up with additional qualitative results on all the three
datasets with randomly sampled images from the test set in §7. In §8 we derive
the results mathematically to showcase the analysis technique for other distance
functions.

2 Experiments

2.1 Additional Evaluation for Baselines

In the main paper we presented results from Tab. 1 (scene based evaluation) and
Tab. 2 (ray based evaluation on occluded points). Additionally we also present
ray based evaluation on all intersections/points along the ray in Tab. 3. We
present results on all the three datasets Matterport, 3DFront, and ScanNet like
in the main paper. Now for completeness we revisit the metrics again.
Scene (Acc/Cmp/F1). Like [10,13], we report accuracy/Acc ( % of predicted
points within t of the ground-truth), completeness/Cmp ( % of ground-truth
points within t of the prediction), and their harmonic mean, F1-score. This
gives a summary of overall scene-level accuracy. Results are reported in Tab. 1
as presented in the main paper.
Rays (Acc/Cmp/F1), Occluded Points. We additionally evaluate each ray
independently, measuring Acc/Cmp/F1 on each ray and reporting the mean.
Occluded points are defined as all the surfaces past the first for both the ground-
truth and predicted. Evaluating each ray independently applies a more stringent
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test for occluded surfaces compared to scenes: with scene-level evaluation on
a high resolution image, a prediction can miss a hidden surface (e.g., the 2nd
surface) on every other pixel since the missing predictions will be covered for
by hidden surfaces in adjacent rays. Ray-based evaluation requires each pixel to
have all hidden surfaces present to receive full credit. Results are reported in
Tab. 2.
Rays (Acc/Cmp/F1), All Points. We evaluate each ray independently, mea-
suring Acc/Cmp/F1 on each ray and reporting the mean. Unlike the occluded
version of this metric we do not drop the first surface and evaluate using all the
ground truth and predicted intersections. This metric has similar properties as
the Occluded metric but applies the stringent test to all intersections. Results
are reported in Tab. 3. We note that, except for SAL on ScanNet [4] which gives
higher Cmp. as compared to DRDF at the cost of accuracy where DRDF is the
next best; DRDF always outperforms all the baselines on Acc/Cmp/F1

Table 1: (From Main Paper) Scene Acc/Comp/F1Score. Thresholds: 0.5m
(MP3D [2], 3DFront [7]), 0.2m (ScanNet [4]). Bold is best, underline is 2nd best per
column. DRDF is best in F1 and accuracy, and always comparable to the best in
completeness.

MP3D [2] 3DFront [7] ScanNet [4]
Method Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

LDI [11] 66.2 72.4 67.4 68.6 46.5 52.7 19.3 28.6 21.5
LDI +C 64.8 55.1 57.7 70.8 45.1 52.4 19.9 32.0 23.3
SAL [1] 66.1 25.5 34.3 80.7 28.5 39.5 51.2 70.0 57.7
UDF [3] 58.7 76.0 64.7 70.1 51.9 57.4 44.4 62.6 50.8
ORF 73.4 69.4 69.6 86.4 48.1 59.6 51.5 58.5 53.7
URDF [3] 74.5 67.1 68.7 85.0 47.7 58.7 61.0 57.8 58.2
DRDF (ours) 75.4 72.0 71.9 87.3 52.6 63.4 62.0 62.7 60.9

2.2 Effect of different Decodings

Decoding strategies are important and different for all distance functions. The
performance of all methods that predict distance function depend’s on their de-
coding strategy. Therefore methods with almost no hyper-parameters in decod-
ing strategies are desirable. UDF, URDF, ORF all require rigorous optimization
of a decoding strategy. DRDF’s decoding strategy is simple and hyperparameter
free which involves only finding positive to negative zero crossings. For other
methods we optimize this strategy extensively. We discuss the impact of alter-
nate decoding strategies for baselines in detail here. For the sake of brevity we
reported numbers only on Scene-F1 score for all decoding strategies in the text
of the main paper . Here we report the numbers on all the metrics for baseline
and their alternate decoding strategies in Tab 4. We first describe UDF, followed
by URDF and then followed by ORF.
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Table 2: (From Main Paper) Ray Acc/Comp/F1Score on Occluded Points.
Thresholds: 0.5m (MP3D [2], 3DFront [7]), 0.2m (ScanNet [4]). DRDF is best on F1
and Acc, and is occasionally 2nd best on Cmp. Gains on occluded points are even larger
than the full scene.

MP3D [2] 3DFront [7] ScanNet [4]
Method Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

LDI [11] 13.9 42.8 19.3 17.8 35.8 22.2 0.5 9.0 2.4
LDI +C 18.7 21.7 19.3 17.7 22.6 19.9 1.1 2.4 3.5
SAL [1] 5.5 0.5 3.5 24.1 4.3 11.4 2.4 38.7 5.6
UDF [3] 15.5 23.0 16.6 29.3 21.3 23.4 1.8 7.8 5.5
ORF 26.2 20.5 21.6 53.2 22.0 31.0 6.6 12.3 11.4
URDF [3] 24.9 20.6 20.7 47.7 23.3 30.2 8.4 11.6 13.8
DRDF (ours) 28.4 30.0 27.3 54.6 56.0 52.6 9.0 20.4 16.0

Table 3: (Supplemental Table) Ray Acc/Comp/F1Score on All Points. Thresh-
olds: 0.5m (MP3D [2], 3DFront [7]), 0.2m (ScanNet [4]). DRDF is best on F1 and Acc,
and is occasionally 2nd best on Cmp. Gains on occluded points are even larger than
the full scene.

MP3D [2] 3DFront [7] ScanNet [4]
Method Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

LDI [11] 28.8 50.7 35.7 34.1 49.8 39.0 7.3 18.2 11.7
LDI +C 26.8 30.1 27.8 30.6 33.9 31.6 4.7 7.4 8.0
SAL [1] 27.2 19.1 22.4 43.9 25.8 31.6 31.0 60.4 40.8
UDF [3] 32.7 45.3 36.8 51.5 57.1 52.0 27.8 38.9 32.5
ORF 46.4 49.8 46.9 71.8 66.2 67.1 34.1 39.7 36.6
URDF [3] 45.2 46.6 44.8 66.0 56.9 59.3 37.3 39.4 38.7
DRDF 48.3 55.0 50.3 74.9 76.3 74.1 40.3 45.7 43.0

UDF. We tried two other decoding strategies with UDF namely, absolute thresh-
olding (UDF + Th.) and Sphere tracing followed by gradient based optimization
(UDF + Sph.) as proposed by Chibane et al. [3]. We observe as reported in the
main paper that these two strategies do slightly worse on Scene F1 Score than
our best reported strategy of using scipy.argrelextrema to find minimas of
the distance function along the ray.

On other metrics of Ray based Acc/Cmp/F1 we observe that our strategy
does especially well on discovering occluded regions. We speculate that using ab-
solute thresholding is especially bad because of the behavior of global unsigned
distance under uncertainty. Moreover, due to the model’s inability to mimic the
GT URDF we find that using sphere tracing as proposed by Chibane et al. [3]
is not as effective.

URDF. We use three alternate decoding strategies to best recover the surface
locations for model trained with unsigned ray distance. First, we use absolute
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Table 4: (Supplemental Table) Effect of different decodings. Thresholds: 0.5m
(MP3D [2]). Bold is best per column and section (created by horizontal lines).
We compare alternate decoding strategies for baseline methods and report their
performance on the three metrics ; Scene Acc/Cmp/F1, Ray Acc/Cmp/F1 All, Ra
Acc/Cmp/F1 Occluded

Scene Ray All Ray Occluded
Method Acc Cmp F1 Acc Cmp F1 Acc Cmp F1

UDF + Th. 79.3 49.7 58.8 46.2 27.6 32.9 18.0 2.6 5.2
UDF + Sph. 50.8 32.8 37.5 19.3 22.6 20.1 11.4 2.1 4.7
UDF 58.7 76.0 64.7 32.7 45.3 36.8 15.5 23.0 16.6

URDF + Th. 82.5 55.1 63.3 56.7 47.7 50.1 16.6 30.6 18.6
URDF + Grd. 48.5 75.8 57.4 24.6 50.9 32.2 11.4 37.2 16.1
URDF + Sph. 59.1 69.4 62.4 45.9 46.5 44.8 23.8 15.3 16.7
URDF 74.5 67.1 68.7 45.2 46.6 44.8 24.9 20.6 20.7

ORF + Sngle. 70.9 62.9 64.7 36.6 37.5 36.2 22.0 18.9 18.9
ORF 73.4 69.4 69.6 46.4 49.8 46.9 26.2 20.5 21.6

DRDF (ours) 75.4 72.0 71.9 48.3 55.0 50.3 28.4 30.0 27.3

thresholding (URDF + Th.) on the predicted distance by considering all points
with value distance prediction ≤ τ . We choose τ by cross-validation. Second, we
use the numerical gradient to find the zero crossings of the gradient functions
hence detecting the minimas (URDF + Grd.). Thirdly, we use sphere tracing
followed by gradient based optimization from Chibane et al. [3] (URDF + Sph.).
As reported in the main text all these strategies perform worse on Scene F1
score with regards to our strategy that does non-maximum suppression on the
thresholded data by finding connected components of the ray that have predicted
distance below a tuned-constant τ .

On other metrics of Ray based Acc/Cmp/F1 we observe that URDF with
our decoding strategy outperforms all alternate choices on considerably on the
occluded points. URDF + Th. and URDF + Grad. tend to high F1 scores on
occluded points but this is due high completion scores that these methods have as
compared to their accuracy. URDF + Sph. does reasonably well on the occluded
points but is outperformed likely as it assumes that the predicted URDF behaves
like a GT URDF.

ORF. Our choice of decoding strategy for ORF is based on the fact that ORF
predicts an onset and a offset zero crossing. We keep the average of onset and
the offset crossings when we find pairs and keep the single crossing otherwise.
An alternate decoding strategy is to only keep only one of the zero crossings.
We report the scene F1 score for keeping on a single zero crossing under ORF
+Sngl. and see that it under performs our strategy by (4.9 points). Additionally
our ORF decoding strategy also outperforms on Ray based metrics.
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3 Dataset Details

We discuss the complete details for all datasets from the main paper. We only use
the images and corresponding 3D meshes from these datasets. We use Trimesh [6]
to process the meshes and compute ray intersections using the embree backend
support.
Matterport3D [2]. Matterport3D is a real dataset of scans collected in houses
using the Matterport3D camera. The datasets provides access to images and
their corresponding ground truth 3D in the form on non-watertight meshes.
Since houses in Matterport3D are big, we clip scene to 8 meters in depth from
the camera and only considering the mesh that is within 8m camera frustum. We
use this mesh to compute the ground truth intersections and distance function
values. Such a large range is necessary as Matterport3D is a collection of rooms
and this allows other models to predict additional rooms behind walls.
3DFront [7]. Similar to Matterport3D, 3DFront is also a collection of houses
with only key difference being it is synthetic. In 3DFront also we clip scene to
8 meters in depth from the camera so only considering the mesh that is within
8m to compute the locations of ground truth intersections.
ScanNet [4]. We use splits from [4] (1045/156/312 train/val/test) and randomly
select 5 images per scene for train set, and 10 images per scene for val/test set.
We then sample to a set of 33K/1K/1K images per train/val/test. For ScanNet
we clip the scene t 4 meters in depth from the camera so only considering mesh
that is within 4m to compute the locations of ground truth intersections. We
use a smaller range than Matterport3D [2] and 3DFront [7] because this dataset
mostly has individual rooms for which this range suffices.

4 Implementation Details

We present important implementation details here.
Training. Given samples {xi, Ii, d(xi)}ni=1 we train our network to minimize
the L1 loss, 1

n

∑n
i=1 |d(xi)−fθ(xi, Ii)|, where the predictions are log-space trun-

cated at 1m following other methods that predict TSDFs [5,12]. We optimize
using AdamW [9,8] with learning rate of 10−4 and weight decay of 10−2. We
sample points xi for each scene in two ways: for each intersection at l and the
corresponding ray −→r through the pixel, we sample 512 points from N (l, 0.1)
along the −→r ; we additionally sample 512 points uniformly on −→r from 0 to a
maximum prediction distance. We train with 20 intersections/ scene for 250K
iterations with 10 scenes/ batch and freeze batch norm after 1

4 th of the iterations.
Inference. At inference time, we extract backbone features at a regular H ×W
grid (H=128,W=128) in one forward pass of the backbone. For every ray cor-
responding to a grid point, we predict the distance function for D = 128 points
linearly spaced from 0 to maximum prediction distance. This entails making
H×W×D predictions with the MLP yielding a frustum-shaped volume of lo-
cations with predictions. Methods vary in their decoding strategies to extract
a surface. DRDF requires finding positive-to-negative zero-crossings which is
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trivial and hyperparameter free; we extensively optimize decoding strategy for
baselines are explained in §5.1 of main paper.

5 Scene vs. Ray Distance Function

We show a statistical plot the scene distance and ray distance within the ±0.5m
for the first intersection in Figure 1. We plot the distribution of numerical
gradeints as a function of distance to the intersection. URDF has major density
concentrated at ±1 while the UDF’s density is spread all over the space. We
do this in addition to qualitatively showing the difference between the distance
function in Figure 2 (from the main paper). URDF has piecewise linear while
the UDF is complex.

Fig. 1: Scene vs. Ray Distribution of gradients of URDF and UDF ±0.5m near the
1st intersection. Given a set of 100K rays, we plot numerical gradients of URDF & UDF
(y-axis) as a function of distance to the intersection (x-axis) at discrete intervals. Apart
from a few low density points where the URDF bends back to another intersection its
gradients are ±1 (high density). The UDF’s gradient is more varied with high density
regions spread out so harder to predict. Density map: Low High.

6 Distance Functions Under Uncertainty

When predicting distance functions for a complex 3D scene for single image
predicting exact distances for the geometry is intrinsically uncertain. It is hard
to predict the exact location of a particular object accurately, but it is often
easier to know the general layout of the scene.

This uncertainty in predicting exact distances coupled with using a network
that is trained to minimized the MSE loss encourages networks to produce the
expected values of distance functions. The predicted distance function lack crit-
ical properties of actual distance function, and we discuss the how these differ



Directed Ray Distance Functions for 3D Scene Reconstruction 7

1 7
Loc. on the ray (s)1

1

Scene Dist. (UDF)
Ray Dist. (DRDF)

(a) Image with ray (b) 3D Views (c) Dist. Func.

Fig. 2: Scene vs ray distances . (a) The red ray intersects the scene at the black
and yellow point shown on the image. Scene vs Ray distances along the points on
red-shaded ray through the camera. (b) 3D views with intersections between the ray
and the scene in blue– these defines the ray distance; green shows the nearest points
in the scene to the ray– these define scene distance; A network learning scene distance
must look farther: e.g., estimating scene distance for points on the ray requires looking
at the bed and chair. (c) distance functions along the ray showing including occluded
intersections for the scene distance (UDF) and ray distance (DRDF)

across different distance functions. This section presents all the results that are
important to understand the differences in behavior of the ray-based distance
function and we directly state them. All the derivations for these results are in
§8 (towards the end of this supplement).

We analyze a single intersection along ray and behavior of distance functions
with it. We will start with the setup, then show key results for different ray
distance functions.

Setup. We assume we are predicting a distance-like function along a ray. Given
surface geometry the ray intersects, the distance function’s value is a function
of the distance z along the ray.

We analyze the case of uncertainty about a single intersection. We assume
the intersection’s location is a random variable S that is normally distributed
with mean µ (the intersection’s location) and standard deviation σ. Throughout,
WLOG, we assume the intersection is at µ = 0 for convenience. This considerably
simplifies some expressions, and can be done freely since we are free to pick the
coordinate system. The rest follows the main paper. Let p(s) denote the density
and Φ(s) denote the CDF for samples from S. We assume that the distance
to the second intersection is n ∈ R+, which we will assume is not a random
variable for simplicity (i.e., the second intersection is at S+n, which is normally
distributed with mean n and standard deviation σ).

Given a value s for the intersection location, we can instantiate the distance
function. We denote the value of the distance function at z if the intersection is
at s as d(z; s) : R→ R that maps a location z on the ray to a (possibly signed)
distance. The distance if s is at the real location is d(z; 0).

Training. During training, a function approximator is trained to minimize a
loss function that measures the distance between its predictions and the ground-
truth. The optimal behavior of this function approximator is to output the value
that minimizes the loss function. One critical value is the expected value of the
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distance function

ES [d(z; s)] =

∫
R
d(z; s)p(s)ds. (1)

Eqn. 1 is important for various loss functions:

– Mean Squared Error (MSE): ES [d(z; s)] is the optimal value when minimiz-
ing the MSE.

– Cross-Entropy: If d(z; s) is an indicator function (i.e., producing either 1/positive
or 0/negative), then ES(d(z; s)] minimizes the cross-entropy loss as well. This
follows from the fact that ES [d(z; s)] is the chance z is positive, and a cross-
entropy loss is minimized by matching frequencies.

– L1 Loss: The median (rather than the mean) is the optimizer for the L1
loss. However, the median and mean are the same for symmetric distribu-
tions. If one calculates d(z;S) (where S is the random variable rather than a
particular value), one obtains a new random variable. If this distribution is
symmetric, then the mean and median are the same, and therefore ES [d(z; s)]
minimizes the L1 loss too. In practice (see §6.5, Fig. 6), we empirically find
that any deviations between the mean and median are small, and thus the
mean and median are virtually identical almost all of the time.

We can think of this setting from two angles:

1. ES [d(z; s)] as a 1D function of z. In our setting, our neural networks are
incentivized to minimize their distance from this value; the S is implicit.
This is the primary way that we look at the problem since it gives us a
function of z. We can then do things like compute ∂

∂z .
2. d(z;S) as a distribution over the distance for some fixed z. We use this angle

to explain why the mean and median are similar in most cases.

We can then analyze the expected distance function (ES [d(z; s)]) for various
distance functions, as well as the derivative ∂

∂zES [d(z; s)], and the difference
between the expected distance function and the underlying distance function
(ES [d(z; s)] − d(z; s)). We plot distance functions and their difference from the
ground truth in Figs. 3, 4.

The expected distance functions usually have two regimes: a regime in which
they closely mimic the underlying distance function and a regime in which there
are substantial distortions that are usually dependent on the level of uncertainty.
These distance functions vary in where the distortions occur – some have them
near the intersection and others have them far away. When analyzing the ex-
pected functions, these regimes are caused by the PDF p going to 0 or the CDF
Φ going to either 0 or 1.

6.1 Signed Ray Distance Function (SRDF)

Ignoring the second intersection, which has limited impact near the first inter-
section, the signed ray distance function (SRDF) is

dSR(z; s) = s− z (2)



Directed Ray Distance Functions for 3D Scene Reconstruction 9

Signed Ray Distance Function
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Fig. 3: Expected distance functions and their deviation from the real distance function.
We plot the expected distance function ES [d(z; s)] (left) and the residual between the
the expectation and the real distance function ES [d(z; s)] − d(z; s)] (right). In each
case, we plot the expectation for four σ. In all cases the next intersection is n = 1 away,
and so if the units were m, one could think of the noise as 5, 10, 20, and 30cm. For the
signed and unsigned distance functions, we plot the full versions that also account for
the next intersection.
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assuming WLOG that z < s is outside and positive. The expected distance
function and its derivative are

ES [dSR(z; s)] = −z, ∂

∂z
ES [dSR(z; s)] = −1. (3)

Considering the second intersection at n creates additional terms in the expected
SRDF that are negligible near 0, specifically

(2z − n)Φ

(
z − n

2

)
+ 2

∫ ∞
z−n

2

sp(s)ds. (4)

Finding intersections. Finding the intersection is straightforward, since it is
a zero-crossing and the expected function behaves like the actual function near
the intersection.

Occupancy Ray Function
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Fig. 4: Expected distance functions and their deviation from the real distance function.
We plot the expected distance function ES [d(z; s)] (left) and the residual between the
the expectation and the real distance function ES [d(z; s)] − d(z; s)] (right). In each
case, we plot the expectation for four σ. In all cases the next intersection is n = 1 away,
and so if the units were m, one could think of the noise as 5, 10, 20, and 30cm.
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6.2 Unsigned Ray Distance Function (URDF)

Likewise ignoring the second intersection, the unsigned ray distance function
(URDF) is

dUR(z; s) = |s− z|. (5)

The expected distance function consists of three terms that trade off in magni-
tude over the values of z:

ES [dUR(z; s)] = zΦ(z) +−z(1− Φ(z)) + 2

∫ ∞
z

sp(s)ds, (6)

which induces three regimes: z when z � 0, −z when z � 0, and a transi-
tional regime near 0. The trade off between the regimes is controlled by Φ and∫∞
z
sp(s)ds (which is ≈ 0 when z � 0 or z � 0). The function’s minimum is 0,

but the minimum value of expectation is σ
√

2/π. The derivatives is

∂

∂z
ES [dUR(z; s)] = 2Φ(z)− 1, (7)

which again has three regimes: −1 for z � 0, +1 for z � 0, and a transitional
regime near 0. Thus, the expected URDF has distance-function-like properties
away from the intersection.
The second intersection. Like the SRDF, accounting for the second intersec-
tion leads to a more complex expression. The expected second intersection also
includes the terms

(n− 2z)Φ

(
z − n

2

)
+

∫ z−n
2

−∞
sp(s)ds, (8)

which are negligible near 0 and produce distortion at the half-way point n/2.
Finding intersections. Finding the intersection is challenging again due to how
σ substantially alters the function at the minimum. Thresholding is challenging
because the minimum value is uncertainty-dependent; searching for where the
gradient approaches zero is difficult because the expected value is substantially
more blunted.

6.3 (Proximity) Occupancy Ray Function (ORF)

A traditional occupancy function (i.e., inside positive, outside negative) is im-
possible to train on non-watertight meshes. One can instead train an occupancy
network to represent the presence of surface. The occupancy ray function (ORF)
is:

dORF(z; s) = 1{x:|x−s|<r}(z). (9)

Its expectation is the fraction of the density within a radius r of z, or

ES [dORF(z; s)] = Φ(z + r)− Φ(z − r), (10)

which has a peak at z = 0.
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Fig. 5: Location of the zero crossing of the DRDF as a function of σ (for n = 1; this
scales with n). The zero-crossing is virtually at zero until σ becomes a substantial
fraction of the distance to the next intersection. The smallest σ for which the zero-
crossing location exceeds 0.01 (i.e., 1cm if n = 1m) is 0.21; for 0.05, it is 0.27.

Finding intersections. Finding the intersection is challenging due to the strong
interaction between the radius r and the the uncertainty σ. For instance, suppose
one looks for when the occupancy probability crosses a threshold τ (e.g., τ = 0.5).
This crossing may never happen, since if r = 1

2σ, then maxz ES [dORF(z; s)] ≈
0.38. Moreover, setting a global threshold is difficult: the distance from which
the τ -crossing is from the true peak depends entirely on σ. On the other hand,
looking for a peak is also challenging: if r > 3σ, then many values are near-one
and roughly equal, since (z+ r, z− r) will cover the bulk of the density for many
z; if r < σ, then the peak’s magnitude is less than one.

6.4 Directed Ray Distance Function

We show the equation of directed ray distance function in case of two intersec-
tions. This is special case of our general equation presented in the main paper
that calculates the DRDF for any number of intersections. The directed ray
distance function in case of two intersections at s and n is.

dDRDF(z; s) =

{
s− z : z ≤ n/2 + s

n+ s− z : z > n/2 + s.
(11)

Despite the complexity of the function, the expectation is relatively a straight-
forward

ES [dDRDF(z; s)] = nΦ

(
z − n

2

)
− z, (12)

which can be seen to have three regimes: −z when z � n/2, n−z when z � n/2,
and a transition near n/2. These regimes are traded off by whether Φ(z − n

2 )
is 0, 1, or something in between. Moreover, so long as p(z − n/2) ≈ 0 (i.e. the
uncertainty is smaller than the distance to the next intersection), the function
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has a zero-crossing at ≈0 – note that if one sets n = 1 (fixing the scale) the value
at z = 0 is Φ(−1/2). The derivative of the expected distance function is

∂

∂z
ES [dDRDF(z; s)] = np

(
z − n

2

)
− 1, (13)

which again has two regimes: −1 when p(z − n
2 ) ≈ 0, which happens when z is

far from n
2 , which in turn happens for z � n/2 and z � n/2; and a transitional

regime near n/2, where the derivative is not −1.
The location of the zero-crossing is controlled by σ. For most σ of interest,

the zero-crossing is nearly at zero. This value can be computed as the ẑ such that
nΦ(ẑ− n

2 )−ẑ = 0. We plot the location of the zero-crossing ẑ as a function of σ in
Fig. 5, assuming n = 1 (note that n scales with σ). ẑ first crosses 0.01 (i.e., 1cm
error) when σ = 0.21, or when the standard deviation of the uncertainty about
surface location is 20% of the distance to the next intersection. The DRDF does
break down at for large σ (e.g., σ = 0.3, where it is off by ≈0.1.
Finding intersections. Finding the intersection is made substantially easy
because the uncertainty-dependent contortions of the function are pushed else-
where. The discontinuity at n/2 does create a phantom zero-crossing, but this
is easily recognized as a transition from negative to positive.

6.5 Median vs Expectation

All the analysis presented in the above sections has been under the assumption
for networks trained with L2 loss, and the above analysis also holds for networks
trained with L1 loss as in case of random variable under symmetric distribution
about the mean the analysis follows as is. The above analysis is in terms of the
expected distance function since this is easiest to derive. However, the median
distance function closely tracks the expected distance function for the distance
functions we study.
Empirical results. Empirically, the results for the median are virtually iden-
tical. We sample intersections independently from the distributions shown in
Fig. 6, where the variance is depth-dependent. We then numerically calculate
the expectation/mean and the median over 1M samples from this distribution.
The plots are virtually identical. Two small differences are visible: the median
URDF is slightly smaller than the mean URDF near intersections, and the me-
dian DRDF more closely resembles the ground-truth DRDF by better capturing
the discontinuity. We do not plot the ORF since cross-entropy training minimizes
the mean.
Analysis. These empirical results occur because if we treat the distance function
at a location z as a random variable, then the mean and median are similar. More
specifically, for a fixed z, if we plug in the random variable S into the distance
function d(z;S), we can analyze a new random variable for the distance to the
surface at location z. For instance, the SRDF at location z is S − z if we ignore
the second intersection; in turn, S − z is normally distributed with mean −z.
The mean and median are identical for the normal since it is symmetric.
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URDF. A more involved case is the URDF. The URDF at location z is |S − z|,
which is a folded normal with mean −z and standard deviation σ (with the σ
inherited from the uncertainty about the intersection location). We’ll focus on
bounding the gap between the mean and median value at each location.

To the best of our knowledge, there is no closed form expression for the
median, and Chebyshev gives vacuous bounds, and so we therefore compute it
numerically (using the fact the the median of the folded normal is the m such
that Φz(m) = 0.5 + Φz(−m) where Φz is the CDF of a normal centered at z).
Note that when z is far from the intersection, the folded normal and normal are
virtually identical – close to none of the normal’s density is on negative values.
In general, one can bound the gap between mean and median by numerical
search over different possible values for z. For σ = 1, the largest difference is
≈0.135. Changing σ scales this: σ = 0.5 yields ≈0.067. Note that the minimum
is σ

√
2/π = 0.797σ, so for σ = 1, the median’s minima is ≥ 0.663. Thus, in

general, the median has to be quite close to the mean.
DRDF. The DRDF has a larger distortion near n

2 because the random variable
near n

2 is bimodal. The mean splits the difference between the modes while
the median sharply transitions depending on which mode is more likely. This
discrepancy, however, occurs far from the intersection and is therefore not of
concern. For z near the intersection, the resulting random variable resembles a
normal distribution.

6.6 Unsigned Distance Function to A Plane in 3D

All of our analysis above was for ray distance functions where we only need to
analyse them in a 1D case with multiple intersections. We extend the above anal-
ysis to unsigned distance function by analyzing the behavior distance functions
to a 2D plane. Suppose we are given a plane consisting of a normal n ∈ R3 with
||n||2 = 1 and offset o (where points x on the plane satisfy nTx + o = 0). Then
dU (x; n, o) is the unsigned distance function (UDF) to the plane, or

dU(x) = |nTx + o|. (14)

Suppose there is uncertainty about the plane’s location in 3D. Specifically, let
us assume that the uncertainty is some added vector s∼N(0, σ2I) where I is the
identity matrix and 0 a vector of zeros. Then the expected UDF at x is

Es[dU(x; s)] =

∫
R3

|nT (x + s) + o| (s) ds. (15)

This ends up being the expected URDF, but replacing distance with point-plane
distance. Specifically, if p = |nTx + o|, then

Es[dU (x; s)] = pΦ(p)− p(1− Φ(p)) + 2

∫ ∞
p

sp(s)ds. (16)

Thus, the minimum value remains σ
√

2/π.
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Fig. 6: Median-vs-Expectation/Mean for UDF, SDF, and DRDF. We sample intersec-
tions from a set of per-intersection distributions (top left). We then compute at each
point along the ray, the mean and median distance function. The mean and median
are virtually identical apart from a slight shift in the UDF minimums, and sharpening
in the DRDF near the discontinuity.

One nuance is that the rate at which p changes is different for different rays
through the scene and is proportional to the cosine between the normal n and
the ray. So the function is stretched along its domain.
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7 Qualitative Results

We show qualitative results on rrandomly sampled images from the test set on 3
datasets. In Figure 7 and Figure 8 we compare on Matterport3D [2] with respect
to ground truth and baselines. Similarly we show results for 3DFront [7] on
Figure 9 and Figure 10. Results for in ScanNet [4] in novel views in Figure 11 and
comparison against baseline is in Figure 12. We show some selected results from
these random samples (2 per dataset) in the supp qual.mp4. We recommend
watching this video.



Directed Ray Distance Functions for 3D Scene Reconstruction 17

Fig. 7: Matterport Novel Views We randomly sample examples from the test set
and show results and show generated 3D outputs in a new view for them in novel
view. Video results for Row 1 and Row 4 are present in the supp qual.mp4. Cols 2 & 3
show regions in red as visible in camera view and blue as occluded in camera view. We
colors the visible regions with image textures and the occluded regions with surface
normals( , scheme from camera inside a cube) in Col 4, 5, 6, 7. We observe that our
model is able to recover parts of the occluded scene shown in blue and colored with
surface normal map; floor behind the wall(row 1), walls and floor behind couch (row
4).
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Fig. 8: Matterport Comparison with Baselines We randomly sample samples
from the test set and show results comparing DRDF to other baselines. DRDF shows
consistently better results as compared to UDF and LDI. Both UDF and LDI have
blobs and inconsistent surfaces in output spaces (all rows). URDF always is unable to
recover hidden regions (row 3 behind the couch on the right), URDF is missing the
floor on lower right (row 4) as compared to DRDF.
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Fig. 9: 3DFront Novel Views We randomly sample examples from the 3DFront [7]
test set and show results. Video results are available for row 2, 6 in the supp qual.mp4.
We observe our model recovers portion of floor occluded by the table (row 2, bottom
right of the image) ; our model is also able to identify small occluded regions in a
complicated scene (row 6)
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Fig. 10: 3DFront Comparison with Baselines We randomly sample samples from
the test set and show results comparing DRDF to other baselines. DRDF shows con-
sistently better results as compared to UDF and LDI. Both UDF and LDI have blobs
and inconsistent surfaces in output spaces (all rows). URDF always is unable to recover
hidden regions (row 2 behind the couch on the right) while DRDF does. DRDF also
speculates another room in the scene (row 3, 5)
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Fig. 11: ScanNet Novel Views We randomly sample examples from the ScanNet [4]
test set and show results. Video results are available for row 2, 4 in the supp qual.mp4.
We observe our model recovers portion of wall occluded by the chair (row 2, bottom
right of the image View 1) ; ScanNet does not have lot of occluded surfaces as we
can see from ground-truth and hence a lot of regions in novel views are visible in the
camera view.
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Fig. 12: ScanNet Comparison with Baselines We randomly sample samples from
the test set and show results comparing DRDF to other baselines. DRDF shows con-
sistently better results as compared to UDF and LDI. Both UDF and LDI have blobs
and inconsistent surfaces in output spaces (all rows). DRDF outputs look more closer
to the groud-truth as compared to URDF (row 4)
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8 Derivations

For completeness, we show the derivation of some of the results presented in
§6. This is meant to help in verifying the solutions or deriving the solution for
another function. Assume S ∼ N(0, σ) with density p(s) and CDF Φ(s).

Useful identities:

1.
∫∞
−∞ sp(s)ds = 0 (ES [s] = 0).

2. c
∫∞
−∞ p(s)ds = c (Total probability is 1)

3.
∫ a
−∞ sp(s)ds =

∫∞
−∞ sp(s)ds−

∫∞
a
sp(s)ds

4.
∫ a
−∞ sp(s)ds = −

∫∞
a
sp(s)ds (since

∫∞
−∞ sp(s)ds = 0).

5.
∫ a
−∞ = Φ(a)

6.
∫∞
a

= (1− Φ(a))

8.1 Signed Ray Distance Function

We will start with a signed ray distance function. The expected signed ray dis-
tance function is

ES [dSR(z; s)] =

∫
R

(s− z)p(s)ds, (17)

which can be rewritten as ∫
R
sp(s)ds−

∫
R
zp(s)ds. (18)

The first term is the expected value of S, or 0. The second term is −z
∫
R p(s)ds.

Since
∫
p(s)ds = 1, this reduces to −z. This yields

ES [dSR(z; s)] = −z. (19)

Alternately, one can recognize S − z as normally distributed with mean −z,
which has a mean of −z.
General form. The more general form of dSR that accounts for the second
intersection is done in two cases:

dSR′(z; s) =

{
s− z : z < s+ n/2

z − n− s : z ≥ s+ n/2.
(20)

The expectation ES [dSR′(z; s)] = can be computed in two parts∫ z−n
2

−∞
(z − n− s)p(s)ds+

∫ ∞
z−n

2

(s− z)p(s)ds. (21)

For notational cleanliness, let t = z−n
2 , and pull out constants and re-express any

integrals as CDFs. Then the first integral expands to zΦ(t)− nΦ(t)−
∫ t
−∞ sp(s)ds,

and the second integral expands to
∫∞
t
sp(s)ds− z(1− Φ(t)). We can then group
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and apply
∫ t
−∞ sp(s)ds = −

∫∞
t
sp(s)ds, which yields (2z−n)Φ(t)−z+2

∫∞
t
sp(s)ds.

A little re-arranging, and expanding out t yields:

ES [dSR′ ](z; s) =− z + (2z − n)Φ

(
z − n

2

)
+

2

∫ ∞
z−n

2

sp(s)ds.

(22)

This expression has ES [dSR] in it (−z), plus terms (all but the first one) that
activate once z approaches n

2 .

8.2 Unsigned Ray Distance Function

The expected unsigned ray distance function is

ES [dUR(z; s)] =

∫
R
|s− z|p(s)ds. (23)

Before calculating it in general, we can quickly check what value the expected
distance function takes on at the actual intersection by plugging in z = 0, or

ES [dUR(0; s)] =

∫
R
|s|p(s)ds. (24)

This integral evaluates to σ
√

2/π, which can be quickly obtained by noting that
it is the expected value of a half-normal distribution. Indeed, the distribution
over dUR(z;S) is a folded normal distribution with mean −z.

We can then derive the more general form, by calculating the integral in two
parts: ES [dUR(z; s)] is∫ z

−∞
(z − s)p(s)ds+

∫ ∞
z

(s− z)p(s)ds. (25)

We can expand and shuffle to yield

z

∫ z

−∞
p(s)ds−z

∫ ∞
z

p(s)ds+ ∫ ∞
z

sp(s)ds−
∫ z

−∞
sp(s)ds. (26)

The first two terms can be written in terms of the CDF Φ, and the last term
can be further simplified by noting

∫ z
−∞ sp(s)ds = −

∫∞
z
sp(s)ds. This yields a

final form for ES [dUR(z; s)],

zΦ(z)− z(1− Φ(z)) + 2

∫ ∞
z

sp(s)ds. (27)
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As seen before, when z is zero, the result is σ
√

2/π, which is the minimum.
For z � 0, both Φ(z) and the integral can be ignored, leading a value of ≈− z.
Symmetrically, the value is ≈z if z � 0. Near zero, the function is more complex.
Derivative. The derivative of Equation 27 can be calculated out in three parts

∂

∂z
zΦ(z) = zp(z) + Φ(z)

∂

∂z
z(1− Φ(z)) = zp(z)− Φ(z) + 1

∂

∂z
2

∫ ∞
z

sp(s)ds = −2zp(z)

(28)

Adding the first, subtracting the second, and adding the third yields the final
result:

∂

∂z
ES [dUR(z; s)] = 2Φ(z)− 1. (29)

In the tails, Φ(z) splits to 0 and 1, and thus ∂
∂zES [dUR(z; s)] splits to −1 and 1.

When z is not in the tail, the derivatives are not one.
General Form. The more general form of dUR that accounts for the second
intersection is

dUR′(z; s) =


s− z : z < s

z − s : z > s, z − n
2 < s

n− z : z − n
2 > s.

(30)

This can be computed in three parts. Again, let t = z − n
2 to reduce notational

clutter. Then ES [dUR′(z; s)] is∫ t

−∞
(n− z)p(s)ds+∫ z

t

(z − s)p(s)ds+∫ ∞
z

(s− z)p(s)ds.

(31)

As usual, we pull out constants and rewrite integrals in terms of the CDF or 1
minus the CDF. This yields

nΦ(t)− zΦ(t)+

z(Φ(z)− Φ(t))−
∫ z

t

sp(s)ds+∫ ∞
z

sp(s)ds− z(1− Φ(z)).

(32)

If we gather terms involving Φ(t) and Φ(z), as well as the integrals, we get

(n− 2z)Φ(t) + 2zΦ(z)− z+

−
∫ z

t

sp(s)ds+

∫ ∞
z

sp(s)ds.
(33)



26 N. Kulkarni et al.

The value −
∫ z
t
sp(s)ds =

∫ t
−∞ sp(s)ds +

∫∞
z
sp(s)ds, which lets us rewrite the

integrals, yielding

(n− 2z)Φ(t) + 2zΦ(z)− z+

2

∫ ∞
z

sp(s)ds+

∫ t

−∞
sp(s)ds,

(34)

where terms from the original URDF are highlighted in orange (note that zΦ(z)−
z(1 − Φ(z)) = 2Φ(z) − z). Re-arranging, and re-substituting back in t = z − n

2
yields

zΦ(z) +−z(1− Φ(z)) + 2

∫ ∞
z

sp(s)ds+

(n− 2z)Φ

(
z − n

2

)
+

∫ z−n
2

−∞
sp(s)ds.

(35)

Again, this is like ES [dUR] but with additional terms (those in the second line)
that activate once z approaches n

2 .

8.3 Occupancy Ray Function

The standard occupancy function (i.e., positive is interior, negative is exterior)
is not defined on non-watertight meshes. We can define an alternate occupancy
function which is positive near a surface and negative away from a surface.

Specifically the expected occupancy function is

ES [dORF(z; s)] =

∫
R

1{x:|x−s|<r}(z)p(s)ds, (36)

where 1 is the indicator function. Equation 36 can be simplified as∫ z+r

z−r
p(s)ds = Φ(z + r)− Φ(z − r). (37)

8.4 Directed Ray Distance Function

We propose instead, to use

dDRDF(z; s) =

{
s− z : z ≤ n/2 + s

n+ s− z : z > n/2 + s,
(38)

which switches over signs halfway to the next intersection. The expectation can
be done the two cases. Let t = z − n

2 for clarity, then the expectation is∫ t

−∞
(n+ s− z)p(s)ds+

∫ ∞
t

(s− z)p(s)ds. (39)
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These can be broken, grouped by content of the integrals, and had constants
pulled out to produce

n

∫ t

−∞
p(s)ds+∫ t

−∞
sp(s)ds+

∫ ∞
t

sp(s)ds+

−z
∫ t

−∞
p(s)ds− z

∫ ∞
t

p(s)ds.

(40)

From here, one can rewrite the first line as nΦ(z− n
2 ). The second line is 0, since

it groups to be
∫
R sp(s)ds = 0. The third line is −z, since the integrals group to

cover all the reals, and
∫∞
−∞ p(s)ds = 1. This leaves the final result

ES [dDRDF(z; s)] = nΦ

(
z − n

2

)
− z (41)

The derivative of this expression is

∂

∂z
ES [dDRDF(z; s)] = np

(
z − n

2

)
− 1 (42)

because ∂
∂zΦ(z) = p(z). This expression is −1 unless np(z − n

2 ) is large.

8.5 Planes

We are given a plane consisting of a normal n ∈ R3 with ||n||2 = 1 and offset
o (where points x on the plane satisfy nTx + o = 0). Our uncertainty about
the plane’s location in 3D is s∼N(0, σ2I) where I is the identity matrix and 0 a
vector of zeros. Then dU(x; s) is the 3D unsigned distance function

dU(x) = |nTx + o|. (43)

We will then compute the expected distance

Es[dU(x; s)] =

∫
R3

|nT (x + s) + o| (s) ds. (44)

First, note that we are free to pick the coordinate system, and so we pick it
so that the plane passes through the origin and is perpendicular to the z-axis.
Thus, n = [0, 0, 1] and o = 0. This does not require the plane to be perpendicu-
lar to the ray; this is merely placing the arbitrary coordinate system to be in a
mathematically convenient configuration. Geometrically, this is precisely identi-
cal to the ray case: any uncertainty that is perpendicular to the plane does not
alter the distance to the plane, leaving a single source of uncertainty (in z).

Algebraically, one can verify this as well. The distance to the plane for any
point x is |nTx − o|. We can add the uncertainty about the plane’s location
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by subtracting it off the point, placing the point at x− s. Then the distance is
|nT (x − s)− o|. Since n = [0, 0, 1] and o = 0, this simplifies to |xz − sz|, where
xz is the z coordinate of x and likewise for sz. The final expected value of the
3D distance is ∫∫

R2

(∫ ∞
−∞
|xz − sz|p(sz)dsz

)
p(sx)p(sy)dsxdsy. (45)

Since the inner integral is constant with respect to sx and sy, we can pull it out;
we can also rewrite |xz − sz| as |sz − xz| to match convention, yielding:(∫ ∞

−∞
|sz − xz|p(sz)dsz

)∫∫
R2

p(sx)p(sy)dsxdsy. (46)

The right double integral is 1, leaving the expected unsigned distance function∫ ∞
−∞
|sz − xz|p(sz)dsz. (47)

A few things follow from this setup. First, the minimum value at the real
intersection will still be σ

√
2/π. Second, the only uncertainty that matters is the

variance in the direction perpendicular to the plane: if s ∼ N(0,diag[σ2
x, σ

2
y, σ

2
z ]),

then only σ2
z controls the distortion of the UDF. Finally, the expected distance

along a ray that is not perpendicular to the plane be stretched proportionally to
the cosine between the ray and the normal. Thus, the qualitative behavior (i.e.,
where the sign of the derivative changes) will be similar, but the rate at which
things change will not be.

References

1. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2565–2574 (2020) 2, 3

2. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3d: Learning from rgb-d data in indoor envi-
ronments. arXiv preprint arXiv:1709.06158 (2017) 2, 3, 4, 5, 16

3. Chibane, J., Mir, A., Pons-Moll, G.: Neural unsigned distance fields for im-
plicit function learning. In: Advances in Neural Information Processing Systems
(NeurIPS) (December 2020) 2, 3, 4

4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5828–5839 (2017)
2, 3, 5, 16, 21

5. Dai, A., Diller, C., Nießner, M.: Sg-nn: Sparse generative neural networks for self-
supervised scene completion of rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 849–858 (2020) 5

6. Dawson-Haggerty, M.: Trimesh [Computer Software] (2020), https://github.

com/mikedh/trimesh/ 5

https://github.com/mikedh/trimesh/
https://github.com/mikedh/trimesh/


Directed Ray Distance Functions for 3D Scene Reconstruction 29

7. Fu, H., Cai, B., Gao, L., Zhang, L., Li, C., Zeng, Q., Sun, C., Fei, Y., Zheng, Y.,
Li, Y., Liu, Y., Liu, P., Ma, L., Weng, L., Hu, X., Ma, X., Qian, Q., Jia, R., Zhao,
B., Zhang, H.: 3d-front: 3d furnished rooms with layouts and semantics. arXiv
preprint arXiv:2011.09127 (2020) 2, 3, 5, 16, 19

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 5

9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 5

10. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and
evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE computer
society conference on computer vision and pattern recognition (CVPR’06). vol. 1,
pp. 519–528. IEEE (2006) 1

11. Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images. In: Proceedings
of the 25th annual conference on Computer graphics and interactive techniques.
pp. 231–242 (1998) 2, 3

12. Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: Real-time coherent 3d
reconstruction from monocular video. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 15598–15607 (2021) 5

13. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do
single-view 3d reconstruction networks learn? In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 3405–3414 (2019) 1


	Supplementary: Directed Ray Distance Functions for 3D Scene Reconstruction
	Overview
	Experiments
	Dataset Details
	Implementation Details
	Scene vs. Ray Distance Function
	Distance Functions Under Uncertainty
	Qualitative Results
	Derivations


