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Abstract. Siamese network based trackers formulate 3D single ob-
ject tracking as cross-correlation learning between point features of a
template and a search area. Due to the large appearance variation
between the template and search area during tracking, how to learn
the robust cross correlation between them for identifying the potential
target in the search area is still a challenging problem. In this paper, we
explicitly use Transformer to form a 3D Siamese Transformer network
for learning robust cross correlation between the template and the search
area of point clouds. Specifically, we develop a Siamese point Transformer
network to learn shape context information of the target. Its encoder
uses self-attention to capture non-local information of point clouds to
characterize the shape information of the object, and the decoder utilizes
cross-attention to upsample discriminative point features. After that,
we develop an iterative coarse-to-fine correlation network to learn the
robust cross correlation between the template and the search area. It
formulates the cross-feature augmentation to associate the template with
the potential target in the search area via cross attention. To further
enhance the potential target, it employs the ego-feature augmentation
that applies self-attention to the local k-NN graph of the feature space
to aggregate target features. Experiments on the KITTI, nuScenes,
and Waymo datasets show that our method achieves state-of-the-art
performance on the 3D single object tracking task. Source code is
available at https://github.com/fpthink/STNet.

Keywords: 3D Single Object Tracking, Siamese Network, Transformer,
Point Clouds

1 Introduction

Object tracking is a classic task in computer vision, and contributes to various
applications, such as autonomous driving [39,41,34], visual surveillance [72,59],
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robotics vision [38,8]. Early efforts [32,33,1,11,61] focus on visual object tracking
that uses RGB images obtained by cameras. Recently, with the development of
3D sensors, such as LiDAR, 3D data is easy to acquire and set up 3D object
tracking. Single object tracking is an important task in 3D computer vision. For
example, it can improve the safety of autonomous vehicles by predicting the
trajectory of key targets. However, due to the sparsity and irregular distribution
of 3D points, existing popular schemes on 2D visual tracking cannot be directly
applied to 3D single object tracking. Therefore, how to effectively track 3D
objects in the complex scene is still a challenging problem.

Recently, Siamese network based trackers have raised much attention in the
3D single object tracking task. In [19], Giancola et al. first proposed a shape
completion based 3D Siamese tracker, which encodes shape information into a
template to improve the matching accuracy between the template and candidate
proposals in the search area. However, it is time-consuming and not an end-
to-end method. To this end, Qi et al. [50] proposed the point-to-box (P2B)
network, which can be trained end-to-end and has a shorter inference time.
Based on PointNet++ [49], P2B employs a target-specific feature augmentation
module for the cross-correlation operation and adopts VoteNet [47] to regress
the target center from the search area. Based on P2B, zheng et al. [78] proposed
a box-aware tracker by inferring the size and the part priors of the target object
from the template to capture the structure information of the target. Shan et
al. [52] added a self-attention module in the VoteNet. Due to sparse point clouds,
VoteNet is not suitable for regressing the target center in outdoor scenes. Lately,
based on the bird’s eye view feature map, Cui et al. [9] used cross-attention to
learn the 2D relationship between the template and search to localize the target.
In addition, Hui et al. [26] proposed a voxel-to-BEV tracker, which regresses the
target center from the dense BEV feature map after performing shape completion
in the search area. Nonetheless, due to the large appearance variation between
template and search area, these simple cross-correlation feature learning cannot
effectively characterize the correlation between them well.

In this paper, we propose a novel 3D Siamese Transformer tracking frame-
work, which explicitly uses Transformer to learn the robust cross correlation
between the template and search area in 3D single object tracking. Specifically,
we first develop a Siamese point Transformer network by learning long-range
contextual information of point clouds to extract discriminative point features
for the template and search area, respectively. Our Siamese point Transformer
network is an encoder-decoder structure. On each layer of the encoder, after
aggregating the local features of the point cloud, we develop a non-local
feature embedding module, which uses self-attention to capture the non-local
information of point clouds. It is desired that the points can utilize the
non-local features from the same instance to capture the whole structure of
the object, i.e., shape information. In the decoder, we propose an adaptive
feature interpolation module to propagate features from subsampled points
to the original points to generate discriminative point features. Compared
with the commonly used distance-based interpolation [49], the adaptive feature
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interpolation can effectively obtain discriminative point features through the
learnable weights of the attention. Once we obtain discriminative point features
of the template and the search area, we further develop an iterative coarse-to-fine
correlation network to learn the cross-correlation between them for localizing the
target in the search area. It consists of a cross-feature augmentation module
and an ego-feature augmentation module. In the cross-feature augmentation
module, we fuse the two feature maps from the template and search area by
building cross-correlation between them via cross-attention. In this way, the
template information is embedded into the search area for localizing the potential
target. Once we localize the potential target, we use ego-feature augmentation to
further enhance the potential target by applying self-attention to the local k-NN
graph in the feature space instead of using the common self-attention over the
whole point clouds. By applying self-attention to the k-NN graph in the feature
space, the point features with similar semantic information can be aggregated,
thereby enhancing the potential target. By iteratively performing the cross-
feature and ego-feature modules, we can obtain a more discriminative feature
fusion map for identifying the target from the search area. Finally, we integrate
the Siamese point Transformer network, the iterative cross-correlation network,
and the detection network [26] to form the Siamese Transformer tracking
framework. Experiments on the KITTI [18], nuScenes [4], and Waymo [57]
datasets demonstrate the effectiveness of the proposed method on the 3D single
object tracking task.

The contributions of this paper are as follows:

– We present a Siamese point Transformer network that explicitly uses the
attention mechanism to form an encoder-decoder structure to learn the shape
context information of the target.

– We develop an iterative coarse-to-fine correlation network that iteratively
applies the attention mechanism to the template and the search area for
learning robust cross-correlation between them.

– The proposed 3D Siamese Transformer network achieves state-of-the-art
performance on the KITTI, nuScenes, and Waymo datasets in 3D single
object tracking.

2 Related Work

3D single object tracking. Early single object tracking approaches [3,24]
focus on 2D images. Recently, Siamese network based trackers [23,60,63,22,80]
have significantly improved tracking performance compared to the traditional
correlation filtering based trackers [25,13,12,75]. However, due to the lack of
accurate depth information in RGB images, visual object tracking may not be
able to accurately estimate the depth to the target.

Previous methods [56,40,46,2] adopt RGB-D data for 3D single object
tracking. RGB-D based trackers [36,28,29] heavily rely on RGB information and
adopt the same schemes used in visual object tracking with additional depth
information. Although these approaches can produce very promising results, they
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may fail when critical RGB information is degraded. Recently, researchers [19,45]
have focused on using 3D point clouds for single object tracking. Giancola et
al. [19] first proposed a shape completion based 3D Siamese tracker (SC3D) for
single object tracking. It performs template matching between the template and
plenty of candidate proposals generated by Kalman filter [20] in the search area,
where a shape completion network is applied to the template for capturing the
shape information of the object. Based on SC3D, Feng et al. [17] proposed a two-
stage framework called Re-Track to re-track the lost objects of the coarse stage
in the fine stage. However, SC3D cannot be end-to-end trained. To achieve end-
to-end training, point-to-box (P2B) [50] first localizes the potential target center
in the search area and then generates candidate proposals for verification. Due to
incomplete targets in point clouds, box-aware tracker [78] based on P2B proposes
a box-aware feature fusion module to embed the bounding box information
given in the first frame to enhance the object features, where the size and part
information of the template are encoded. Shan et al. [52] improved P2B by
adding a self-attention module in the detector VoteNet [47] to generate refined
attention features for increasing tracking accuracy. In addition, Cui et al. [9]
proposed a Transformer-based method that first uses 3D sparse convolution to
extract features to form a 2D BEV feature map and then uses Transformer to
learn the 2D relationship between the template and search to localize the target.
Lately, to handle sparse point clouds, Hui et al. [26] proposed a Siamese voxel-to-
BEV tracker, which contains a Siamese shape-ware feature learning network and
a voxel-to-BEV target localization network. It performs shape generation in the
search area by generating a dense point cloud to capture the shape information
of the target.

3D multi-object tracking. Different from 3D single object tracking, 3D
multi-object tracking (MOT) usually adopts the tracking-by-detection paradig-
m [71,53,31,51]. 3D MOT trackers usually first use 3D detectors [54,55,47]
to detect object instances for each frame and then associate the detected
objects across all frames. Early 3D multi-object tracking approaches [7,68] adopt
3D Kalman filters to predict the state of associated trajectories and objects
instances. In [68], Weng et al. first used PointRCNN [54] to obtain 3D detections
from a LiDAR point cloud, and then combined 3D Kalman filter and Hungarian
algorithm for state estimation and data association. With the wide adoption of
deep neural networks, recent methods [76,70,65] use neural networks to learn
the 3D appearance and motion features for increasing accuracy. Lately, Weng et
al. [69] proposed a graph neural network that uses a graph neural network for
feature interaction by simultaneously considering the 2D and 3D spaces. Yin et
al. [74] first proposed CenterPoint to detect 3D objects on the point clouds and
then used a greedy closest-point matching algorithm to associate objects frame
by frame.

Transformer and attention. Transformer is first introduced in [62], which
uses a self-attention mechanism [35] to capture long-range dependences of
language sequences. Based on the Transformer, some further improvements
have been proposed in various sequential tasks, including natural language
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Fig. 1. The framework of our Siamese Transformer network. Given the template P t

and search area P s, we first use the Siamese point Transformer network to extract
features Y t and Y s for the template and search area, respectively. Then, we perform
the iterative coarse-to-fine correlation network to obtain a feature fusion map Ỹ s.
Finally, we apply the detection head on the feature fusion map to localize the target.
Note that Q, K, and V denote query, key, and value in Transformer, respectively.

processing [14,10,73], speech processing [58,42]. Recently, Dosovitskiy et al. [15]
first proposed a vision Transformer for image recognition, which introduces
a Transformer to handle non-sequential problems. The key idea is to split
an image into patches, and feed the sequence of linear embeddings of these
patches into a Transformer. After that, the Transformer is extended to various
visual tasks, such as semantic segmentation [37,64], object detection [5,79],
object tracking [6]. Recently, Liu et al. [37] proposed a hierarchical Transformer
based on shifted windows to greatly reduce the computational cost while
maintaining the capability to capture long-range dependencies in the data. For
point cloud processing, Zhao et al. [77] first proposed a point Transformer
that applies the self-attention mechanism on the local neighborhood of point
clouds to extract local features for 3D semantic segmentation. Lately, inspired
by point Transformer, different 3D vision tasks apply Transformer to yield good
performance, such as point cloud classification [21], point cloud based place
recognition [27], 3D object detection [44,43], 3D object tracking [9,52], and 3D
action recognition [16].

3 Method

3.1 Siamese Point Transformer Network

In 3D single object tracking, given the target (i.e., template) P t = {pt
i}

Nt
i=1

in the first frame, it aims to localize the 3D bounding box (3D BBox) of the
same target in the search area P s = {ps

i}
Ns
i=1 frame by frame. Nt and Ns denote
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the number of points in the template and search area, and pt
i and ps

i are 3D
coordinates. With a slight abuse of notations we use the same symbols for the
sets of points and for their corresponding matrices P t ∈ RNt×3 and P s ∈ RNs×3.
The 3D BBox is formed as a 7-dimensional vector, which contains box center
(x, y, z), box size (w, l, h), and yaw angle θ. Since the 3D BBox of the target is
given in the first frame, we only need to regress the target center and yaw angle
in the subsequent frames. By applying the displacement and yaw angle on the
3D BBox in the previous frame, the 3D BBox of the target in the current frame
can be localized.

Most of existing Siamese trackers use local descriptors (such as PointNet [48]
and PointNet++ [49]) as the feature extraction network. However, it lacks
the ability to learn discriminative features by capturing long-range contextual
information of point clouds. Thus, we propose a Siamese point Transformer
network by utilizing attention to generate discriminative point features. As
shown in Fig. 1, it is a hierarchical feature learning network, consisting of two
key modules: non-local feature embedding and adaptive feature interpolation.

Non-local feature embedding. The encoder consists of three non-local
feature embedding modules. The non-local feature embedding module executes
self-attention on feature maps at different scales, capturing the contextual
information at different scales of the point cloud, respectively. Given the search
area P s of Ns points, we follow P2B [50] to downsample the point cloud to
generate point clouds at different scales by using random sampling. The number
of the subsampled points in the l-th layer is Ns

2l
.

Specifically, in the l-th layer, we first execute the local feature embedding
to capture local geometric structures of point clouds. Inspired by [66], we apply
edge convolution on the k-nearest neighbors (k-NN) in the coordinate space to

aggregate local features, denoted by Es
l ∈ R

Ns
2l

×Cl . Then, we perform the self-
attention on the feature map Es

l to learn long-range context information of the
point cloud. Formally, the attention mechanism is defined as:

F s
l = SelfAttention(Es

l +Xs
l ,E

s
l +Xs

l ,E
s
l +Xs

l ) (1)

whereXs
l ∈ R

Ns
2l

×Cl denotes the position embedding of the sampled points in the
l-th layer. Note that position information of the point cloud is very important,
and thus we add the positional embedding to all matrices. In Eq. (1), the three
inputs from left to right are used as query, key, and value, respectively. The
obtained feature map F s

l in the l-th layer will be used as the input of the (l+1)-
th layer. In this way, we can obtain feature maps F s

1 ,F
s
2 , and F s

3 at three scales.
Adaptive feature interpolation. After the encoder, the original point set

is subsampled. As the number of points on the target is reduced, it is difficult
to identify the target accurately. Although the distance based interpolation [49]
can be used to interpolate new points, it cannot effectively interpolate high-
quality point features for the target, especially in sparse point clouds. Thus, we
design a learnable interpolation module to interpolate point features from the
subsampled points to the original points through the learnable weights of the
attention.
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We define F0 ∈ RNs×3 (i.e., 3D coordinates) as the point feature of the
original point with a size of Ns. Given the obtained feature maps F s

1 ∈
R

Ns
2 ×C1 ,F s

2 ∈ R
Ns
4 ×C2 , F s

3 ∈ R
Ns
8 ×C3 , and F̂ s

3=F s
3 , we gradually execute

the adaptive feature interpolation to generate new point features from the low-
resolution point cloud to the high-resolution point cloud, which is written as:

F̂ s
l = CrossAttention(F s

l , F̂
s
l+1, F̂

s
l+1 +Xs

l+1) (2)

where l ∈ {2, 1, 0} and F̂ s
l ∈ R

Ns
2l

×Cl is the interpolated feature map. Xs
l+1 ∈

R
Ns
2l

×Cl is the positional embedding. Note that the query F s
l is the high-

resolution feature map features, while the key (F̂ s
l+1) and value (F̂ s

l+1+Xs
l+1) are

the low-resolution feature maps. In Eq. (2), the feature map F̂ s
l is interpolated

by weighting point features of the low-resolution (value) point cloud, considering
the similarity between the high-resolution (query) and the low-resolution (key)
point clouds. Finally, by applying the Siamese point Transformer on the template
and search area, we obtain the feature maps F̂ t

0 ∈ RNt×C0 and F̂ s
0 ∈ RNs×C0 for

the original point sets of the template and search area. For simplicity, we denote
the obtained feature maps of the template and search area by Y t ∈ RNt×C and
Y s ∈ RNs×C . Note that Y t = F̂ t

0 and Y s = F̂ s
0 .

3.2 Iterative Coarse-to-Fine Correlation Network

In 3D Siamese trackers, a cross-correlation operation is used to compute the
similarity between the template and search area to generate a feature fusion
map for identifying the target. Most of existing trackers use the cosine distance
to generate the similarity map. Due to the large appearance variation between
template and search area, this simple operation cannot effectively associate
the template with the search area. Thus, we develop an iterative coarse-to-fine
correlation network to learn the similarity in a coarse-to-fine manner to mitigate
large appearance variation between them through the attention mechanism.
Fig. 1 shows the detailed structure.

Cross-feature augmentation. We employ the cross-feature augmentation
module to fuse the template and the search area by learning similarity between
them. Given the template feature Y t ∈ RNt×C and search area feature Y s ∈
RNs×C , we use the cross-attention mechanism between the template and search
area to generate a coarse feature fusion map. Specifically, the cross-feature
augmentation operation is formulated as:

Ŷ s = CrossAttention(Y s,Y t,Y t +Xt) (3)

where Ŷ s ∈ RNs×C is the obtained coarse feature fusion map. Since the 3D
coordinates of the template provide the positional relationship of the target,
we add the positional embedding of the template Xt ∈ RNs×C to the value
Y t ∈ RNs×C . By learning the similarity between the template (key) and search
area (query), we embed the template (value) into the search area to generate
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the feature fusion map Ŷ s. In this way, the potential target in the feature fusion
map can be associated with the template.

Ego-feature augmentation. Furthermore, we design an ego-feature aug-
mentation module to enhance target information by considering the internal
association in the coarse feature fusion map. Specifically, we first construct the
k-nearest neighbor (k-NN) for each point in the feature space. Given the coarse

feature fusion map Ŷ s ∈ RNs×C with Ns feature vectors ŷs
i ∈ RC , the similarity

between points i and j is denoted as:

ai,j = exp(−∥ŷs
i − ŷs

j∥22) (4)

where ai,j is the similarity metric. For the point i, we select K nearest points in
the feature space as its neighborhood by using the defined similarity. Thus, we
obtain the local k-NN feature map for the point i, denoted by Gs

i ∈ RK×C . Since
the points in the same instance have similar appearances, they are close to each
other in the feature space. By aggregating local k-NN graphs in the feature
space, the differences between different instances can be further magnified.
Therefore, we then use the self-attention on the local k-NN graph to capture
local association to aggregate discriminative point features. Specifically, given
the point feature ŷs

i ∈ RC and its k-NN feature map Gs
i ∈ RK×C , the local

association is defined as:

ỹs
i = SelfAttention(ŷs

i + xs
i ,G

s
i +Zs

i ,G
s
i +Zs

i ) (5)

where xs
i ∈ RC and Zs

i ∈ RK×C are the positional embeddings of the i-th point
and its k-NN neighborhood, and ỹs

i ∈ RC is the extracted point feature. In this

way, we obtain the refined feature fusion map Ỹ s ∈ RNs×C .
We iteratively perform the coarse cross-feature augmentation module and the

fine ego-feature augmentation module to generate a discriminative feature fusion
map for identifying the target. Note that the output in the previous iteration
will replace the search area input in the next iteration. By capturing the external
(template) and internal (search area itself) relationships, our iterative coarse-to-
fine correlation network can gradually generate a discriminative feature fusion
map for identifying the target. Based on the feature fusion map, we use the 3D
detector [26] to regress the target center and yaw angle.

4 Experiments

4.1 Experimental Settings

Datasets. We use the KITTI [18], nuScenes [4], and Waymo [57] datasets for
single object tracking. For the KITTI dataset, it contains 21 video sequences.
Following [19], we split the sequences into three parts: sequences 0-16 for training,
17-18 for validation, and 19-20 for testing. For the nuScenes dataset, it contains
700 sequences for training and 150 sequences for validation. Since the ground
truth for the test set in nuScenes is inaccessible offline, we use its validation set to
evaluate our method. For the Waymo dataset, we follow LiDAR-SOT [45] to use
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Table 1. The performance of different methods on the KITTI and nuScenes datasets.
Note that the results on the nuScenes dataset are obtained by using the pre-trained
model on the KITTI dataset. “Mean” denotes the average results of four categories.

Method Success Precision

Category Car Pedestrian Van Cyclist Mean Car Pedestrian Van Cyclist Mean
Frame Num. 6424 6088 1248 308 14068 6424 6088 1248 308 14068

K
IT

T
I

SC3D [19] 41.3 18.2 40.4 41.5 31.2 57.9 37.8 47.0 70.4 48.5
P2B [50] 56.2 28.7 40.8 32.1 42.4 72.8 49.6 48.4 44.7 60.0

MLVSNet [67] 56.0 34.1 52.0 34.3 45.7 74.0 61.1 61.4 44.5 66.6
LTTR [9] 65.0 33.2 35.8 66.2 48.7 77.1 56.8 45.6 89.9 65.8
BAT [78] 60.5 42.1 52.4 33.7 51.2 77.7 70.1 67.0 45.4 72.8
PTT [52] 67.8 44.9 43.6 37.2 55.1 81.8 72.0 52.5 47.3 74.2
V2B [26] 70.5 48.3 50.1 40.8 58.4 81.3 73.5 58.0 49.7 75.2

STNet (ours) 72.1 49.9 58.0 73.5 61.3 84.0 77.2 70.6 93.7 80.1

Category Car Pedestrian Truck Bicycle Mean Car Pedestrian Truck Bicycle Mean
Frame Num. 15578 8019 3710 501 27808 15578 8019 3710 501 27808

n
u
S
ce
n
es

SC3D [19] 25.0 14.2 25.7 17.0 21.8 27.1 16.2 21.9 18.2 23.1
P2B [50] 27.0 15.9 21.5 20.0 22.9 29.2 22.0 16.2 26.4 25.3
BAT [78] 22.5 17.3 19.3 17.0 20.5 24.1 24.5 15.8 18.8 23.0
V2B [26] 31.3 17.3 21.7 22.2 25.8 35.1 23.4 16.7 19.1 29.0

STNet (ours) 32.2 19.1 22.3 21.2 26.9 36.1 27.2 16.8 29.2 30.8

1,121 tracklets, which are split into easy, medium, and hard subsets according
to the number of points in the first frame of each tracklet. Following [26], we use
the trained model on the KITTI dataset to test on the nuScenes and Waymo
datasets for evaluating the generalization ability of our 3D tracker.

Evaluation metrics.We use Success and Precision defined in one pass eval-
uation [33] as the evaluation metrics for 3D single object tracking. Specifically,
Success measures the intersection over union (IOU) between the predicted 3D
bounding box (BBox) and ground truth (GT) box, while Precision measures the
AUC for the distance between both two boxes’ centers from 0 to 2 meters.

Network architecture. Following [50], we randomly sample Nt = 512 for
each template P t and Ns = 1024 for each search area P s. For the Siamese
point Transformer network, it consists of a three-layer encoder (three non-
local feature embedding modules) and a three-layer decoder (three adaptive
feature interpolation modules). In each encoder layer, the number of points is
reduced by half. For example, if we feed the search area of 1024 points to the
encoder, the number of points in each layer is 512, 256, and 128, respectively.
Besides, the neighborhood sizes used to extract local feature are 32, 48, and 48,
respectively. In the decoder, it gradually aggregates feature maps layer by layer
to obtain a discriminative feature map. The obtained feature map sizes of the
template Y t and search area Y s are 512 × 32 and 1024 × 32, respectively. For
the iterative coarse-to-fine correlation network, we use two iterations considering
the computational complexity and inference time. The hyperparameter K of the
neighborhood size is set to 48. The size of the output feature fusion map Ỹ s is
1024 × 32. Note that in this paper, we adopt the linear Transformer [30] and
employ n = 2 attention heads for all experiments.
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Fig. 2. The visualization results of our STNet and BAT on the car category of the
KITTI dataset. The points on the target car are colored in red.

4.2 Results

Quantitative results. As shown in the top half of Tab. 1, we make compre-
hensive comparisons on the KITTI dataset with the previous state-of-the-art
methods, including SC3D [19], P2B [50], MLVSNet [67], BAT [78], LTTR [9],
PTT [52], and V2B [26]. Following [50], we report the results over four categories,
including car, pedestrian, van, and cyclist. From the table, it can be found that
our method outperforms other methods on the mean results of four categories.
For the car category, our method can significantly improve the precision from
81.8% to 84.0% with a gain of about 2% on the car category. In addition to the
large targets, our method can still achieve higher performance for those small
targets, such as cyclists. For the cyclist category, compared with LTTR, our
method obtains a gain of about 3% on the precision. In Fig. 2, we also show
the visualization results of our method and BAT. It can be observed that our
method (red boxes) can accurately localize the target. Most existing methods use
local descriptors to extract point features. Due to the large appearance variation
between template and search area, the extracted features cannot characterize the
differences between them well. Thus, we propose a Siamese point Transformer
network to learn the dense and discriminative point features with a learnable
point interpolation module, where the shape context information of the target
can be captured. Furthermore, we use an iterative coarse-to-fine correlation
network to learn the similarity between the template and search area in a coarse-
to-fine manner to mitigate large appearance variations in sparse point clouds for
accurate object localization.

Visualization of attention maps. In Fig. 3, we show the attention maps
generated by our method on the KITTI dataset, including car, pedestrian, van,
and cyclist. The points marked with the red color can obtain high attentional
weights. It can be observed that our method can accurately focus on the
target in the search area. The visualization results show that when there are
multiple objects, the target can be distinguished from the non-target objects.
It means that the learned shape context information of the object can help to
learn the discriminative relationship between the template and search area by
Transformer.
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Table 2. The performance of different methods on the Waymo dataset. Each category
is split into three levels of difficulty: “Easy”, “Medium”, and “Hard”. “Mean” denotes
the average results of three levels. Note that except for our STNet, the results of other
methods are obtained by running the official codes.

Method Vehicle Pedestrian

Split Easy Medium Hard Mean Easy Medium Hard Mean
Frame Num. 67832 61252 56647 185731 85280 82253 74219 241752

Success

P2B [50] 57.1 52.0 47.9 52.6 18.1 17.8 17.7 17.9
BAT [78] 61.0 53.3 48.9 54.7 19.3 17.8 17.2 18.2
V2B [26] 64.5 55.1 52.0 57.6 27.9 22.5 20.1 23.7

STNet (ours) 65.9 57.5 54.6 59.7 29.2 24.7 22.2 25.5

Precision

P2B [50] 65.4 60.7 58.5 61.7 30.8 30.0 29.3 30.1
BAT [78] 68.3 60.9 57.8 62.7 32.6 29.8 28.3 30.3
V2B [26] 71.5 63.2 62.0 65.9 43.9 36.2 33.1 37.9

STNet (ours) 72.7 66.0 64.7 68.0 45.3 38.2 35.8 39.9

Generalization ability. To verify the generalization ability of our method,
we transfer the trained model of the KITTI dataset to obtain the testing results
on the nuScenes and Waymo datasets. Following [26], we use the pre-trained
models on four categories (car, pedestrian, van, cyclist) of the KITTI dataset
to evaluate the corresponding categories (car, pedestrian, truck, bicycle) on
the nuScenes dataset. The results are listed in the bottom half of Tab. 1.
Note that except for our results, the results of other methods are taken from
paper [26]. It can be observed that our method outperforms other methods on
the mean results of four categories. In addition, Tab. 2 shows the results of
vehicle and pedestrian categories on the Waymo dataset. It can be observed
that our method outperforms other methods in terms of different subsets,
including easy, medium, and hard. KITTI and Waymo datasets are built by
64-beam LiDAR, while nuScenes dataset is built by 32-beam LiDAR. Due to
the large discrepancy between data distributions of datasets caused by different
LiDAR sensors and sparsity of point clouds, it is very challenging to directly
use the pre-trained model of the KITTI dataset to generalize it on nuScenes.
The previous method V2B only achieves the performance of 25.8%/29.0% on
the average of four categories. Our method achieves the gains of +1.1%/+1.8%
over V2B. However, due to similar data distributions of the KITTI and Waymo
datasets, the generalization results of the Waymo dataset are higher than those
in the nuScenes dataset. The generalization results further demonstrate the
effectiveness of our method for unseen scenes.

Ability to handle sparse scenes. We report the results of different
methods in the sparse scenarios. Following [26], we divide the number of points
into four intervals, including [0, 150), [150, 1000), [1000, 2500), and [2500, +∞).
In Tab. 3, we report average Success and Precision for each interval on the car
category of the KITTI dataset. Note that except for our results, other results
are taken from [26]. It can be observed that our method achieves the best
performance on all four intervals. Especially in the sparse point clouds below 150
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Fig. 3. The attention maps generated by our method on the KITTI dataset.

Table 3. The average Success and Precision for each interval on the car category in
the KITTI dataset.

Method Success Precision

Intervals [0, 150) [150, 1k) [1k, 2.5k) [2.5k, +∞) [0, 150) [150, 1k) [1k, 2.5k) [2.5k, +∞)
Frame Num. 3293 2156 693 282 3293 2156 693 282

SC3D [19] 37.9 36.1 33.8 23.7 53.0 53.1 48.7 35.3
P2B [50] 56.0 62.3 51.9 43.8 70.6 78.6 68.1 61.8
BAT [78] 60.7 71.8 69.1 61.6 75.5 83.9 81.0 72.9
V2B [26] 64.7 77.5 72.3 82.2 77.4 87.1 81.5 90.1

STNet (ours) 66.3 77.9 79.3 83.1 79.9 87.8 89.6 91.0

points, our method can improve the performance by about 2% on both Success
and Precision compared with V2B. Moreover, as the number of points increases,
the performance of our method gradually increases. Due to the good results of
our method in sparse point clouds, it will lead to more accurate template updates
on the subsequent dense frames, resulting in better performance.

Running speed. We also report the average running time of all test frames
in the car category on the KITTI dataset. Specifically, we evaluate our model
on a single TITAN RTX GPU. Our method achieves 35 FPS, including 4.6
ms for processing point clouds, 22.7 ms for network forward propagation, and
1.3 ms for post-processing. In addition, on the same platform, V2B, P2B and
SC3D in default settings run with 37 FPS, 46 FPS, and 2 FPS, respectively.
Due to Transformer, the forward time of our method is longer than that in P2B.
However, the performance of our method is significantly better than that of P2B.

4.3 Ablation Study

In this section, we conduct the ablation study to validate the effectiveness of the
designed modules. Due to a large number of test samples in the car category of
the KITTI dataset, the ablated experiments on it can truly reflect the impact
of different settings on the tracking accuracy.

Non-local embedding and adaptive interpolation. To verify the
effectiveness of our Siamese point Transformer network, which adopts the
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non-local feature embedding and the adaptive feature interpolation, we con-
duct experiments to study their effects on performance. Specifically, we use
PointNet++ [49] as the baseline and add the non-local embedding (dubbed
“NL emb.”) and the adaptive feature interpolation (dubbed “AF inte.”) to
conduct experiments. The results are listed in Tab. 4. It can be observed
that the performance of only PointNet++ is worse than using both non-
local feature embedding and adaptive feature interpolation (“NL emb. + AF
inte.”). According to the results in the ablation study, capturing shape context
information of the object can effectively improve tracking performance.

Coarse-to-fine correlation. Here we conduct experiments to study the
effects of coarse-to-fine correlation on performance. Specifically, we perform the
simple feature augmentation used in P2B [50], only cross-feature augmentation
(dubbed “CF aug.”), and cross- and ego-feature augmentations (dubbed “CF
aug. + EF aug.”), respectively. The results are listed in Tab. 4. It can be found
that when the cross- and ego-feature augmentations are used at the same time,
we can obtain the best results. Since P2B’s feature augmentation only uses
the cosine distance to measure the similarity between the template and search
area, it cannot obtain a high-quality feature fusion map. However, our method
iteratively learns the similarity in a coarse-to-fine manner between them, so the
target information in the feature fusion map can be further enhanced.

Comparison of attention maps of different components. In Fig. 4, we
show the attention maps of the extracted features using our proposed different
components. It can be observed that only using the Siamese point Transformer or
only using the iterative coarse-to-fine correlation cannot effectively focus on the
target object, while STNet using all components is able to effectively distinguish
the car from the background. Furthermore, it can be observed that the target car
can be clearly recognized from three cars since learned shape information of the
target is helpful to learn the discriminative relationship between the template
and search area by Transformer.

Table 4. The ablation study results of different
components.

Method Success Precision

PointNet++ [49] 66.1 76.9
only NL emb. 69.9 81.8
only AF inte. 68.1 80.9
NL emb. + AF inte. 72.1 84.0
feature aug. in P2B [50] 69.4 80.8
CF aug. 71.0 82.4
CF aug. + EF aug. 72.1 84.0

Table 5. The ablation study results of
different hyperparameters.

STNet Parameters Success Precision

Neighbors

K = 16 68.1 79.6
K = 32 71.0 82.4
K = 48 72.1 84.0
K = 64 69.6 81.7
K = 80 68.7 80.5
K = 96 67.2 78.6

Iterations

iter. = 1 69.1 81.7
iter. = 2 72.1 84.0
iter. = 3 71.8 84.2
iter. = 4 72.0 84.0

Different K in ego-feature augmentation. The neighbor size K is a key
parameter in the ego-feature augmentation. Here we study the effects of different
values of K on tracking accuracy. In Tab. 5, we report the performance in the
cases of different neighbor sizes, including 16, 32, 48, 64, 80, and 96, respectively.
It can be observed that when the neighbor size is set to 48, we can obtain the
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Fig. 4. The attention maps generated by different components of our STNet on the
KITTI dataset. The leftmost column shows the input raw point cloud, and we circle
the target object to distinguish the background.

best results. If K is too small, our transformer cannot characterize the local
geometry structures of point clouds, while if K is too large, background points
in the scene are incorporated to localize the target.

Different numbers of iterations. We also study the effects of the number
of iterations of coarse-to-fine correlation on performance. In Tab. 5, we list the
quantitative results in the cases of different numbers of iterations. It can be
observed that the performance of our method with two iterations is comparable
to that of our method with three or four iterations. As the number of iterations
increases, the GPU memory will gradually increase. Thus, considering the
memory consumption, we choose to iterate twice.

5 Conclusions

In this paper, we proposed a 3D Siamese Transformer framework for single object
tracking on point clouds. We developed a Siamese point Transformer network
that uses the attention mechanism to formulate a encoder-decoder structure to
learn shape context information of the target. Also, we constructed an iterative
coarse-to-fine correlation network to produce a feature fusion map by using the
attention mechanism on the template and the search area. In this way, we can
effectively associate the template and the search area in a coarse-to-fine manner
so as to mitigate large appearance variations between them in sparse point
clouds. The experiments show that the proposed method achieves state-of-the-
art performance on the KITTI, nuScenes, and Waymo datasets on 3D single
object tracking.
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