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Abstract. Given a single chair image, could we wake it up by recon-
structing its 3D shape and skeleton, as well as animating its plausible
articulations and motions, similar to that of human modeling? It is a
new problem that not only goes beyond image-based object reconstruc-
tion but also involves articulated animation of generic objects in 3D,
which could give rise to numerous downstream augmented and virtual
reality applications. In this paper, we propose an automated approach
to tackle the entire process of reconstruct such generic 3D objects, rig-
ging and animation, all from single images. A two-stage pipeline has thus
been proposed, which specifically contains a multi-head structure to uti-
lize the deep implicit functions for skeleton prediction. Two in-house 3D
datasets of generic objects with high-fidelity rendering and annotated
skeletons have also been constructed. Empirically our approach demon-
strated promising results; when evaluated on the related sub-tasks of 3D
reconstruction and skeleton prediction, our results surpass those of the
state-of-the-arts by a noticeable margin. Our code and datasets are made
publicly available at the dedicated project website.
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1 Introduction

Presented with a single image of a generic object, say an airplane or a chair, our
goal is to wake it up in the 3D virutal world: this entails reconstructing its 3D
shape and the skeleton, as well as animating its plausible articulations and mo-
tions, such as an airplane flapping its wings or a chair walking as a quadruped,
as illustrated in Fig. 1. This is a relatively new problem that may have many
downstream applications in virtual and augmented reality scenarios. It is worth
noting that there has been research efforts [15] performing 3D manipulations
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from single input images, where the main focus is toward rigid body transforma-
tions. To generate non-rigid shape deformations, it is usually necessary to involve
intensive user interactions and dedicated software tools. Instead, our aim in this
paper is to automate the entire process of object 3D reconstruction, rigging, and
animation. The generic objects considered here are articulated, such that their
shapes are capable of being deformed by a set of skeletal joints. In a way, our
problem may be considered as a generalization of image-based 3D human shape
and pose reconstruction to generic objects encountered in our daily life, as long
as they could be endowed with a skeleton.

(a) Input Images (c) Object Wake-up Results(b) Articulated 3D Models

Fig. 1. Two exemplar visual results of our approach: presented with an input image
of an airplane or a chair, our approach is capable of reconstructing its 3D shape and
skeleton, then animating its plausible articulated motions.

Compared with the more established tasks of human shape and pose estima-
tion [40], there are nevertheless new challenges to tackle with. To name one, there
is no pre-existing parametric 3D shape model for generic objects. Besides, the
human template naturally comes with its skeletal configuration for 3D motion
control, and the precise skinning weights designed by professionals. However,
such skeletal joints are yet to be specified not to mention the skinning weights
in the case of generic objects, which usually possess rather diverse geometric
structures even within the same object category.

These observations have motivated us to propose an automated pipeline con-
sisting of two stages. Stage one involves 3D shape reconstruction from a single
image. It includes a transformer-based [34] encoder as the feature extractor,
followed by a location occupancy prediction decoder and an auxiliary 3D voxel
decoder module with improved loss function [21]. Stage two focuses on predicting
the corresponding skeleton. By formulating it as estimating the multi-head prob-
ability field, a novel multi-head skeleton prediction module is proposed, inspired
by the deep implicit functions of [21]. Specifically, compared with previous skele-
ton prediction methods with voxel-based [44] or mesh-based representations [43],
our approach predict occupancy probability of joints and bones in a continuous
3D space. Moreover, a joint-aware instance segmentation module is also used as
an auxiliary task to incorporate regional features of neighboring points.
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Our major contributions are two folds. 1) A new object wake-up problem
is considered, for which an automated pipeline is proposed to reconstruct 3D
objects and their skeletons from single images. 2) A novel and effective skele-
ton prediction approach with a multi-head structure is developed by utiliz-
ing the deep implicit functions. Moreover, two in-house 3D datasets (SSkel &
ShapeRR) of typical objects are constructed, containing annotated 3D skeletal
joints and photo-realistic re-rendered images, respectively. Empirically our ap-
proach is shown to achieve promising results. Quantitative evaluations on bench-
mark datasets also demonstrate the superior performance of our approach on the
related sub-tasks of image-based shape reconstruction and skeleton prediction.

2 Related Work

Image-based Object Reconstruction. There exist numerous studies on image-
based 3D object reconstruction with various 3D shape representations, including
voxel, octree [29,33,38], deep implicit function, mesh and point cloud [9,18,28,22].
Methods based on different representations have their own benefits and short-
comings. For example, as a natural extension of 2D pixels, voxel representa-
tion [10,36] has been widely used in early efforts due to its simplicity of implemen-
tation and compatibility with the convolutional neural network. However, these
approaches often yield relatively coarse results, at the price of significant memory
demand and high computational cost. Mesh-based representations [13,20,37,16],
on the other hand, become more desirable in real applications, as they are able
to model fine shape details, and are compatible with various geometry regular-
izers. It is however still challenging to work with topology changes [37,25]. Deep
implicit 3D representations [26,6,19,35] have recently attracted wide attention
as a powerful technique in modeling complex shape topologies at arbitrary res-
olutions.

Skeleton Prediction and Rigging. The task of skeleton prediction has
been investigated in various fields and utilized in a variety of applications for
shape modeling and analysis. The best-known example is the medial axis [1,2],
which is an effective means for shape abstraction and manipulation. Curve skele-
ton or meso-skeleton [12,45] have been popular in computer graphics, mostly due
to their compactness and ease of manipulation. It is worth noting the related
research around detecting 3D keypoints from input point clouds, such as skele-
ton merger [31]. Pinocchio [3] is perhaps the earliest work on automatic rigging,
which fits a pre-defined skeletal template to a 3D shape, with skinning obtained
through heat diffusion. These fittings, unfortunately, tend to fail as the input
shapes become less compatible with the skeletal template. On the other hand,
hand-crafting templates for every possible structural variation of an input char-
acter is cumbersome. More recently, Xu et al.[44] propose to learn a volumetric
network for inferring skeletons from input 3D characters, which however often
suffers from the limited voxel resolution. Exploiting the mesh representation,
RigNet [43] utilizes a graph neural network to produce the displacement map
for joint estimation, which is followed by the additional graph neural networks
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to predict joint connectivity and skinning weights. Its drawback is they assume
strong requirements for the input mesh such as a watertight surface with evenly
distributed vertices can be satisfied. Besides, they predict the joints and kine-
matic chains successively causing error propagation from stages. In contrast, a
deep implicit function representation [21] which is capable of predicting the joints
and bones over a continuous 3D space is considered in this paper for inferring
skeleton.

Image based Object Animation. An established related topic is photo
editing, which has already been popular with professional tools such as Photo-
Shop. Existing tools are however often confined to 2D object manipulations in
performing basic functions such as cut-and-paste and hole-filling. A least-square
method is considered in [30] to affine transform objects in 2D. The work of [11]
goes beyond linear transformation, by presenting an as-rigid-as-possible 2D an-
imation of a human character from an image, it is however manual intensive.
In [42], 2D instances of the same visual objects are ordered and grouped to form
an instance-based animation of non-rigid motions. Relatively few research activ-
ities concern 3D animations, where the focus is mostly on animals, humans, and
human-like objects. For example, photo wake-up [40] considers reconstruction,
rig, and animate 3D human-like shapes from input images. This line of research
benefits significantly from the prior work establishing the pre-defined skeletal
templates and parametric 3D shape models for humans and animals. On the
other hand, few efforts including [15,5] consider 3D manipulations of generic ob-
jects from images, meanwhile, they mainly focus on rigid transformations. Our
work could be regarded as an extension of automated image-based human shape
reconstruction & animation to reconstruct & articulate generic lifeless objects
from single images.

3 Our Approach

Given an input image, usually in the form of a segmented object, first the 3D
object shape is to be reconstructed; its skeletons are then extracted to form a
rigged model. In this section, we will present the stage-wise framework in detail.

3.1 Image-based 3D Shape Reconstruction

A Transformer-based occupancy prediction network is developed here, which
performs particularly well on real images when compared with existing meth-
ods [21,41,17]. As illustrated in Fig. 2, it consists of a 2D transformer encoder,
an auxiliary 3D CNN decoder, and an occupancy decoder. The DeiT-Tiny [34] is
used as our transformer encoder network. Similar to the Vision Transformer [8],
the encoder first encodes fixed-size patches splitted from the original image and
processes extract localized information from each of the patches, then outputs
a universal latent representation for the entire image by jointly learning the
patch representation with multi-head attention. An auxiliary 3D CNN decoder
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Fig. 2. An illustration of our overall pipeline. (a) a DeiT image encoder, an auxiliary
3D CNN voxel prediction branch and the location occupancy decoder; (b) SkelNet
accepts a high resolution 3D shape voxel based on the reconstructed 3D mesh, and
predicts articulated skeleton with a multi-head architecture.

is used for reconstructing a low-resolution voxel-based 3D model as well as help-
ing to encode 3D information for the latent representation extracted from the
Transformer encoder. The occupancy decoder then uses the latent representa-
tion as the conditional prior to predict the occupancy probability for each point
by introducing fully connected residual blocks and conditional batch normaliza-
tion [27,24].

It is worth noting that although the voxel prediction branch is only used
for auxiliary training, the highly unbalanced labels where most of the voxel
occupancy are zeros will always make the training more difficult. To this end,
while most of the methods for voxel-based 3D reconstruction simply use the
(binary) cross-entropy loss which is directly related to IoU metric [32], in this
work, the Dice loss is extended to gauge on both the 3D voxel prediction and
the point-based occupancy prediction,

Ldice = 1−
∑N3

n=1 ŷnyn∑N3

n=1 ŷn + yn
−

∑N3

n=1(1− ŷn)(1− yn)∑N3

n=1 2− ŷn − yn
, (1)

where yn is the ground-truth occupancy score, ŷn is the predicted occupancy
score of the n-th element.

3.2 Skeleton Prediction and Automatic Rigging

Our key insight here is instead of predicting the joints inside fixed voxel loca-
tions [44] or indirectly regressing the joints location by estimating the displace-
ment from the mesh [43], we train a neural network utilizing the deep implicit
function to assign every location with a probability score in [0, 1], indicating the
existence of a skeletal joint and bone. Taking the 3D model and any sampled
3D point location as input, the network produces the joint and bone existence
probabilities. In addition, we incorporate joint-aware instance segmentation as
an auxiliary task considering the regional features over neighboring points. In
inference, the feature embedding output from the instance segmentation branch
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is further used in the subsequent step to infer joint locations from the incurred
joints’ probability maps.

As in Fig. 2, four output heads are utilized, which are for predicting the
probability of skeletal joints, the root joint, the bones, and the joint-aware in-
stance segmentation, respectively. The output from the instance segmentation is
a feature embedding.

Feature Extraction. The predicted 3D shape, represented as an occupancy
grid with the dimension of 1283, is converted to a 3D feature embedding grid
by a 3D UNet structure. Inspired by the design of Squeeze and Excitation (SE)
block in 2D image classification, a 3D adaptive channel activation module is
developed as a plug-in module, to be attached after each of the encoder and
decoder blocks of the 3D UNet, detailed design is described in the supplementary.
The ablative study demonstrated the usefulness of this 3D adaptive channel
activation module.

Multi-head Implicit Functions. Given aggregated features from the fea-
ture extraction, we acquire the feature vector for any 3D point v via the trilinear
interpolation from 3D feature embedding. For each of the output heads, a fully-
connected network (empirically it is implemented as 5 fully-connected ResNet
blocks and ReLU activation [27,24]) is engaged to take as input the point v and
its feature vector. The concurrent multi-head strategy eliminates the possible
issue with error propagation of successive prediction [43].

Sampling. In general, the animation joints and bones should lie inside the
convex hull of the object. Therefore, different from previous efforts that uni-
formly sample points in a 3D volume [21,27], points in our 3D space are adap-
tively sampled. Specifically, for each sample in the training batch, we sampled
K points with 10% of the points lying outside but near the surface, and the rest
90% points entirely inside the object.

Joints and Bones Loss. First, for every query point, its joint probability is
computed under a 3D Gaussian distribution measured by its distance to nearest
annotated joint locations. To generate the bone probability field, for every query
point we compute a point-to-line distance to its nearest line segment of the
bones, and the bone probability is computed under the Gaussian distribution
of the measured distance. In training, with the query points v ∈ R3 acquired
through sampling, the network predicts their probabilities of being a joint or
lying on bones. Different from the occupancy prediction [21] task where the
binary cross-entropy loss is used, we use the L1 loss to measure the difference of
the predicted joint probability and their ground-truth values as we are dealing
with the continuous probability prediction: for the i-th sample in training, the
loss function is defined as,

Li
joint(P̂J , PJ) =

∑
v∈Vi

|P̂J(v)− PJ(v)|

Li
jointR( ˆPJR, PJR) =

∑
v∈Vi

| ˆPJR(v)− PJR(v)|
(2)
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In the above equation, P̂J is the predicted joints probability field, and PJ is
the ground-truth probability field. ˆPJR and PJR denote for the probability field
of the root joint. Vi denotes the sampled points for the i-th model.

Similarly, for the sampled points, L1 loss is also applied between predicted
bones probability P̂B and the ground-truth PB . The loss function of the bones
is denoted as Li

bone(P̂B , PB).
Symmetry Loss. Since the objects of interest often possess symmetric 3D

shapes, a symmetry loss is used here to regularize the solution space, as follows,

Li
sym(P̂J , P̂B) = 1Ω′(i)

∑
v∈Vi

|P̂J(v)− P̂J(ϕ(v))|+ 1Ω′(i)
∑
v∈Vi

|P̂B(v)− P̂B(ϕ(v))|,

(3)
Here ϕ(v) denotes the mapping from point v to its symmetric point. To detect the
symmetry planes, as the input 3D mesh models are in the canonical coordinates,
we flip the mesh model according to the xy-, xz- and yz-planes. The symmetry
plane is set as the one with the smallest Chamfer distance computed between
the flipped model and the original model. 1Ω′ is an indicator function where Ω′

is the subset of training models with symmetry planes detected.
Joint-aware Instance Segmentation Loss. The joint-aware instance seg-

mentation maps the sampled point from Euclidean space to a feature space,
where 3D points of the same instance are closer to each other than those belong-
ing to different instances. To maintain consistency between the clustered feature
space and the joints probability maps, the part instance is segmented according
to the annotated ground-truth joints. Basically, for each sampled point we assign
an instance label as the label or index of its closest joint. Following the instance
segmentation method of [39], our joint-aware instance segmentation loss is de-
fined as a weighted sum of three terms: (1) Lvar is an intra-cluster variance term
that pulls features belonging to the same instance towards the mean feature; (2)
Ldist is an inter-cluster distance term that pushes apart instances with different
part labels; and (3) Lreg is a regularization term that pulls all features towards
the origin in order to bound the activation.

Li
var(µ, x) =

1

|J i|

|Ji|∑
c=1

1

Nc

Nc∑
j=1

[ ∥µi
c − xi

j∥ − δvar]
2
+,

Li
dist(µ) =

1

|J i|(|J i| − 1)

|Ji|∑
ca=1

|Ji|∑
cb=1
cb ̸=ca

[ 2δdist − ∥µi
ca − µi

cb
∥] 2

+,

Li
reg(µ) =

1

|J i|

|Ji|∑
c=1

∥µi
c∥. (4)

Here |J i| denotes the number of joints or clusters for the i-th sample model.
Nc is the number of elements in cluster c. xi

j is the output feature vector for the
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query point. [ x] + is the hinge function. The parameter δvar describes the maxi-
mum allowed distance between a feature vector and the cluster center. Likewise,
2δdist is the minimum distance between different cluster centers to avoid overlap.

Joints and Kinematic Tree Construction. In inference, the joints and
bones are obtained from the corresponding probability maps by mean-shift clus-
tering. Instead of clustering over the euclidean space as in classical mean-shift
clustering, we implement the clustering on the feature space with the kernel
defined over the feature embedding output from the joint-aware instance seg-
mentation. In this way, the points belonging to the same joint-aware instance
will all shift towards the corresponding joints. The kernel is also modulated by
the predicted joint probability to better localize the joint location. Mathemat-
ically, at each mean-shift iteration, for any point v it is displaced according to
the following vector:

m(v) =

∑
u∈N (v) PJ(v)κ(∥x(u)− x(v)∥)u∑
u∈N(v) PJ(v)κ(∥x(u)− x(v)∥)

− v (5)

where N (v) denotes the neighboring points of v, x(v) is the feature embedding
output from our joint-aware instance segmentation. Besides, κ() is a kernel func-
tion and in our case we choose to use the RBF kernel. Following [44], the object
kinematic tree (or chains) are constructed using a minimum spanning tree by
minimizing a cost function defined over the edges connecting the joints pair-
wisely. It is realized as a graph structure, with the detected joints as the graph
nodes, and the edges connecting the pairwise joints computed from the prob-
ability maps. Specifically, for every edge, its weight is set by the negative-log
function of the integral of the bones probability for the sampled points over the
edge. The MST problem is solved using Prim’s algorithm [7].

Skinning Weight Computation. For automatic rigging of the reconstructed
3D model, the last issue is to compute the skinning weights that bind each ver-
tex to the skeletal joints. To get meaningful animation, instead of computing the
skinning weights according to the Euclidean distance [3], we choose to assign the
skinning weights by utilizing the semantic part segmentation [39]. Specifically,
for every segmented part, we assign its dominant control joint to the one closest
to the center of the part. In some cases where the center of the part could have
about the same distance to more than one skeletal joint, we choose the parent
joint as the control joint. The skinning weights around the segmentation bound-
aries are smoothed out afterwards. It is worth noting that some semantic parts
are further segmented if skeleton joints are detected inside the part.

3.3 Our In-house Datasets

As there is no existing dataset of general 3D objects with ground-truth skeletons,
we collect such a dataset (named SSkel for ShapeNet skeleton) by designing an
annotation tool to place joints and build kinematic trees for the 3D shapes. To
ensure consistency, a predefined protocol is used for all object categories. For
example, for chairs, we follow the part segmentation in PartNet dataset [23] to



Object Wake-up: 3D Object Rigging from a Single Image 9

segment a chair into the chair seat, back, and legs. The root joint is annotated
at the center of the chair seat, followed by child joints which are the intersec-
tion between chair seat and back, chair seat and legs. More details about the
annotation tool and some sampled annotations are presented in the supplemen-
tary. Without loss of generality, we only consider four categories of objects from
ShapeNet [4], namely chair, table, lamp and airplane. Our SSkel dataset contains
a total of 2,150 rigged 3D shapes including 700 for chair, 700 for table, 400 for
lamp and 350 for airplane.

Moreover, in improving the input image resolution and quality of the original
ShapeNet, we use the UNREAL 4 Engine to re-render photo-realistic images of
the 3D ShapeNet models with diverse camera configuration, lighting conditions,
object materials, and scenes, named ShapeRR dataset for ShapeNet of realistic
rendering. More details are relegated to the supplementary file.

4 Experiments

Datasets. A number of datasets are considered in our paper. In terms of image-
based reconstruction, it contains our ShapeRR dataset for synthetic images and
the Pix3D dataset of real images. In terms of rigging performance, we use the
RigNetv1 dataset for 3D shape-based rigging, and our SSkel dataset for image-
based rigging.

————— Chamfer Distance (↓) ————— ————– Volumetric IoU (↑) ————–
ShapeNet Chair Table Lamp Airplane Avg. Chair Table Lamp Airplane Avg.

OccNet [21] 1.9347 1.9903 4.5224 1.3922 2.3498 0.5067 0.4909 0.3261 0.5900 0.4918
DVR [24] 1.9188 2.0351 4.7426 1.3814 2.5312 0.4794 0.5439 0.3504 0.5741 0.5029
D2IM-Net [17] 1.8847 1.9491 4.1492 1.4457 2.0346 0.5487 0.5332 0.3755 0.6123 0.5231
Ours 1.8904 1.7392 3.9712 1.2309 1.9301 0.5436 0.5541 0.3864 0.6320 0.5339

Pix3D Table Chair Desk Sofa Avg. Table Chair Desk Sofa Avg.

OccNet [21] 7.425 9.399 15.726 14.126 11.625 0.215 0.201 0.143 0.152 0.190
DVR [24] 8.782 6.452 12.826 11.543 9.901 0.187 0.237 0.165 0.187 0.185
D2IM-Net [17] 8.038 7.592 11.310 9.291 9.057 0.205 0.244 0.183 0.207 0.215
Ours 6.449 6.028 8.452 8.201 7.282 0.239 0.277 0.219 0.241 0.242

Table 1. Image-based 3D mesh reconstruction on ShapeRR (i.e. re-rendered ShapeNet
dataset) and Pix3D dataset. Metrics are Chamfer Distance (×0.001, the smaller the
better) and Volumetric IoU (the larger the better). Best results are in bold face.

The Pix3D dataset contains 3D object shapes aligned with their real-world
2D images. Similar to ShapeRR, we focus on a subset of 4 categories in the
dataset, i.e. chair, sofa, desk, and table. The RigNetv1 dataset (i.e. ModelsResource-
RigNetv1 [44]), on the other hand, contains 2,703 rigged 3D characters of hu-
manoids, quadrupeds, birds, fish, robots, and other fictional characters.

4.1 Evaluation on Image-based Reconstruction

For evaluation metrics, we follow the previous works [21] and use volumetric
IoU and Chamfer-L1 distance. We first compare with several state-of-the-art
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methods with released source code on single image object reconstruction where
each of the methods is trained and tested, namely OccNet [21], DVR [24] and
D2IM-Net [17]. We follow the common test protocol on ShapeNet as it has been
a standard benchmark in the literature. All methods are re-implemented (when
the code is not available) and re-trained then evaluated directly on the test split.
We can observe that our method performs reasonably well compared with other
recent methods, and outperforms existing methods in 3 of the 4 categories. And
we are able to achieve a significant advantage over other methods in terms of
the average performance across all 4 categories of our interests.

Considering that our 3D reconstruction is primarily for supporting rigging
and animation purposes on real images, to better compare the generalization
ability with such a situation, we use the complete Pix3D dataset as the test set.

We report both quantitative and visual comparison on Pix3D in Tab. 1 and in
Fig. 3 respectively. As shown in Tab. 1, our proposed method has outperformed
all previous approaches on Pix3D with a large margin in terms of the two met-
rics. To validate the effectiveness of our feature encoder and the incorporated
auxiliary voxel prediction task, we also conduct a group of ablative studies, and
the experiment results are included in the supplementary material.

Input OccNet D2IM-Net OursDVR Ground-truth

Fig. 3. Visualization of image-based 3D reconstruction on the Pix3D dataset. Our
method shows excellent generalization performance on the real images.

4.2 Evaluation on Skeleton Prediction

The evaluation is conducted on both the RigNetv1 dataset and our SSkel dataset,
where our approach is compared with two state-of-the-art methods, RigNet [43]
and VolumetricNets [44].

Metrics. First, we measure the accuracy of the predicted joints by com-
puting the Chamfer distance between the predicted joints and the ground-truth
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which is denoted as CD-J2J. Similarly, the predicted bones are evaluated by
computing the Chamfer distance between the densely sampled points over the
estimated bones and the ground-truth, which is denoted as CD-B2B. CD-J2B
is also considered here by computing the Chamfer distance between predicted
joints to bones. For all metrics, the lower the better.

CD-J2J (↓) CD-J2B (↓) CD-B2B (↓)

Pinocchino [3] 0.072 0.055 0.047
Volumetric [44] 0.045 0.029 0.026
RigNet [43] 0.039 0.024 0.022

Ours 0.029 0.019 0.017

Table 2. Comparison of skeleton prediction on the RigNetv1 dataset.

Quantitative evaluation. In Tab. 2 we show the comparison results of
the predicted skeleton on the RigNetv1 dataset [44]. For the RigNetv1 dataset,
we follow the same train and test split as previous works [44,43]. In Tab. 3
we show the quantitative evaluation and comparison results of the predicted
skeleton on our SSkel dataset. We have re-trained the RigNet [43], which is the
most current work on auto-rigging, on our SSkel dataset. As shown in the tables,
our proposed skeleton prediction method has outperformed the current state-of-
the-art approaches with the smallest error on all reported metrics on both the
RigNetv1 dataset and our SSkel dataset.

——–Chair——– ——-Table——- ——–Lamp——– ——Airplane—— ——Average——
metrics J2J J2B B2B J2J J2B B2B J2J J2B B2B J2J J2B B2B J2J J2B B2B

RigNet-GT 0.052 0.042 0.035 0.061 0.049 0.040 0.132 0.110 0.098 0.096 0.081 0.073 0.061 0.046 0.041
Ours-GT 0.030 0.023 0.021 0.044 0.032 0.028 0.097 0.071 0.063 0.075 0.062 0.056 0.047 0.038 0.033
RigNet-rec 0.048 0.035 0.033 0.060 0.046 0.038 0.143 0.116 0.102 0.103 0.084 0.076 0.063 0.047 0.042
Ours-rec 0.036 0.024 0.022 0.047 0.033 0.029 0.101 0.073 0.065 0.081 0.065 0.059 0.051 0.041 0.036

Table 3. Quantitative comparison of skeleton prediction on our SSkel dataset. The
J2J, J2B, B2B are the abbreviation for CD-J2J, CD-J2B and CD-B2B respectively.
For these values, the smaller the better. Best results are in bold face.

It is worth noting that the evaluation on the SSkel dataset is conducted with
two different inputs. First, we report the skeleton error(RigNet-GT, Ours-GT)
when taking the ground-truth 3D models as input. To evaluate the performance
of the overall pipeline, we also calculate the skeleton error(RigNet-rec, Ours-
rec) when 3D models reconstructed from the color images are taken as input.
Our skeleton prediction performance on the reconstructed 3D models degraded
slightly due to imperfect reconstruction.

Visual results on skeleton prediction. In Fig. 4 and Fig. 5 we demon-
strate the qualitative comparison of the predicted skeleton. First, in Fig. 4, the



12 J. Yang et al.

(a) RigNet

(b) Ours

(c) Ground-truth

Fig. 4. Visual comparison on skeleton prediction. The rightmost model comes from the
RigNetv1 dataset and the others are from our SSkel dataset.

skeletons are predicted with ground-truth 3D models as input. We also evalu-
ated the overall pipeline when taking a single image as input, and the results
are shown in Fig. 5. As shown in the figures, compared with the most current
work, our proposed approach can produce more reasonable results that cor-
rectly predicted the joints’ location and constructed the kinematic chains. On
the other hand, the RigNet method fails to localize the joints. The reason is that
their mesh-based approach requires the vertices to be evenly distributed over
the mesh and they rely on the mesh curvature to pre-train an attention model.
But for the models from the SSkel dataset, there is no close connection between
the mesh curvature and the joint locations.

RigNetv1 SSkel

Baseline 0.037 0.065
Baseline + joint-aware seg 0.033 0.055
Baseline + symmetry loss 0.034 0.058

Baseline + 3D adaptive activation 0.033 0.056
Ours 0.029 0.047

Table 4. Ablation study on joints prediction. CD-J2J metric is used.

Ablation study. To validate the effectiveness of several key components of
the proposed method, we conduct several ablation studies with the quantitative
evaluation results shown in Table 4. We denote our method without the 3D chan-
nel adaptive activation, symmetry loss, and joint-aware instance segmentation
as the Baseline method.
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(a) Input image (b) Reconstructed 
model

(e) Groundtruth(d) Ours(c)  RigNet

Fig. 5. Visual results on articulated 3D models from input images. Taking the color
image (a) as input, we reconstruct the 3D model (b) and predict its skeleton (d), and
also compare with the RigNet [43] on skeleton prediction (c).

4.3 Applications on Animation

After obtaining the rigged 3D models from the input images, in this section, we
present interesting applications of animating the rigged 3D objects. To get the
texture for the 3D models, similar to [41] we have trained a deep neural network
to predict the projection matrix represented as a 6D rotation vector aligning the
3D models from canonical space to image space. Our reconstructed 3D model
is further refined and deformed according to the object silhouettes [40]. The
mirrored texture is applied to the invisible part of the 3D model.

In Fig. 6, we demonstrate the animation of objects as driven by the source
motion of reference articulated models. Specifically, in the upper rows of Fig. 6
we map the motion of a Jumping human to two Chairs as well as a Lamp.
The details of the skeleton mapping from the human template to the animated
objects are shown in each corresponding row of Fig. 6(d). Likewise, in the lower
part of Fig. 6, we demonstrate the manipulation of a Chair and Table driven
by a quadruped. It is conducted by mapping the joints of four legs on the Dog
skeleton to the legs of the chair and table. In addition, the joint of the neck is
mapped to the joint on the chair back. The motion sequence of the dog is from
RGBD-Dog dataset [14]. More results can be seen in the supplementary video.

5 Conclusion and Limitations

We consider an interesting task of waking up a 3D object from a single input
image. An automated pipeline is proposed to reconstruct the 3D object, pre-
dict the articulated skeleton to animate the object with plausible articulations.
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t     …    t+2        …   t+4

(a) Input (b) Our Reconstructed
and Rigged Model

(c) Animated Model Sequence (e) Reference 
Skeleton

(d) Animated Texture Sequence

t            t+1       t+2

Fig. 6. Object animation. Given an input image (i.e. the object segment), its 3D shape
is reconstructed and rigged, followed by the animated sequence (re-targeted from hu-
man or quadruped motions, which is not the main focus of this work). We map the
joints from the human or quadruped skeleton to the objects, and the mapped joints
are marked in red (c). The source human/dog motion is shown in the bottom row.

Quantitative and qualitative experiments demonstrate the applicability of our
work when unseen real-world images are presented at test time.

Limitations. First, the domain gap between synthetic to real images still
exists. Second, in our current stage-wise framework, the skeleton prediction and
final animation rely on the success of 3D shape reconstruction. For future work,
we would like to combine shape reconstruction and skeleton prediction in a
unified network structure to facilitate each task. Moreover, the collected SSkel
dataset is limited in the number of objects and the range of object categories.
For future work, we plan to work with a large-scale dataset containing a much
broader range of generic object categories.
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