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1 Results of IntegratedPIFu on Real Internet Images

We provide the results of IntegratedPIFu on real Internet Images sourced from
Shutterstock in Fig. 1. The obtained results is consistent with results shown in
the main paper. Unlike PIFuHD, our IntegratedPIFu does not produce wavy
lines on the reconstructed mesh, and it also avoids producing floating artifacts
surrounding the reconstructed mesh. Moreover, fine features such as human fin-
gers are correctly reconstructed by IntegratedPIFu but not PIFuHD.

2 Comparison between SDF and DOS

In this section, in order to facilitate a simpler and more direct comparison be-
tween SDF and DOS, we modify the range of values that our labels can take in
DOS scheme from [0.0, 1.0] to [-0.5, 0.5]. While this range of values differs from
the one mentioned in our main paper, the difference is trivial and will not
affect our conclusions. Our Depth-Oriented Sampling (DOS) drew inspiration
from Signed Distance Function (SDF) used in DeepSDF [1]. The similarities and
distinctions between SDF and DOS can be seen in Fig. 2. The key difference is
that, in DOS, distance is calculated based on the camera direction, but that is
not the case for SDF.

A more detailed comparison between SDF and DOS is given in Fig. 3 (See
Po, P2, P3, P4, P5)- The maximum and minimum values given to a point’s label
are 0.5 and -0.5 respectively. Sample points that are beyond these two thresholds
are discarded. We will explain the magenta fonts in this figure later.

In Fig. 2 of the main paper, we see that PIFu uses an encoder to encode its
inputs (e.g. RGB image) into a set of 128x128 2D feature maps. In Fig. 4, we see
the mapping between a pixel in the RGB image, a cell on a 2D feature map (for
simplicity, we illustrate only one 2D feature map, but extrapolation is trivial),
and a cuboid of space in the 3D camera space (where the reconstructed mesh
is generated). The cuboid’s depth is aligned with the camera’s direction (i.e.
its depth runs along the camera direction). Theoretically, this cuboid of space
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(a) Internet Photo (b) PIFuHD (c) IntegratedPIFu (Ours)

Fig. 1. Results of IntegratedPIFu on Internet Images from Shutterstock, compared
with the same produced by PIFuHD

would have infinite depth. But in practice, the depth of this cuboid is finite and
predefined.

Basically, each cell on the 2D feature map (more accurately, the set of 2D fea-
ture maps) is responsible for reconstructing the mesh vertices in a corresponding
cuboid. This cuboid represents the 3D space in which the 2D feature map cell
is tasked to reconstruct in. Each 2D feature map cell is assigned to a different
cuboid of space.

We will now explain the magenta fonts in Fig. 3, which illustrates why SDF
will not work well in a pixel-aligned implicit model. This figure shows two 2D
feature map cells (¢; and c3) and they correspond to the yellow 2D feature map
cells that we have seen in Fig. 4. The space between each pair of dotted magenta
lines represent the space occupied by a cuboid illustrated in Fig. 4.

As aforementioned, DOS only considers distance in the camera direction.
Thus, unlike DOS, SDF would use ps to reveal to feature map cell ¢; the presence
of the protrusion, but ¢; is not responsible for reconstructing the space (recall the
cuboid of space in Fig. 4) containing the protrusion. This problem is worsened
when there is a cliff (See cz2 and p4). There is no mesh surface or mesh vertices
for co to reconstruct, but py is saying otherwise. Concretely, sample point py’s
label in SDF is saying there is a mesh surface that is moderately near to this
sample point, and ¢ is advised by p4 to be prepared to reconstruct this mesh
surface that is supposedly ‘near’ ps. But as we can see in Fig. 3, the cuboid of
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space that corresponds to feature map cell cs is totally empty, and co should not
be advised to reconstructed anything.

These issues are not encountered in DOS, where point py correctly inform
cell ¢y of the location of the mesh surface that the cell is supposed to reconstruct.
Similarly, in DOS, p4 tells ¢ that there is likely to be nothing to reconstruct.

To see concrete results, refer to Fig. 5 and Tab. 1. Fig. 5 shows that a PIFuHD
trained with SDF would generate spike-like artefacts near the boundary of the
reconstructed human mesh, and this is consistent with our theoretical analysis
of using SDF in a pixel-aligned implicit model (recall the aforementioned issue
with p2 and p4 in Fig. 3 when we use SDF). In contrast, a PIFuHD trained with
DOS will not produce such spike-like artefacts. In Tab. 1, we observe that SDF
performed significantly worse compared to DOS. The reason behind this is due
to the spike-like artefacts generated when SDF is used.
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Fig. 2. Comparison between SDF and DOS. In both SDF and DOS, sample points that
are outside of the mesh are given negative labels, and sample points inside the mesh
are given positive labels. The figure assumes that both SDF labels and DOS labels
range from -0.5 to 0.5

Table 1. Quantitative comparison between a PIFuHD trained using SDF and using
DOS in the THuman2.0 test set

Methods CD(10") P2D(10")
PIFuHD with SDF  4.609 6.481
PIFuHD with DOS 2.638 2.167
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Fig. 3. A more detailed comparison between SDF and DOS. Some labels are bold-faced
to show the difference between SDF and DOS
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Fig. 4. Meaning of pixel alignment in pixel-aligned implicit models

3 More on the Effect of Depth maps and Human parsing
maps in Integrated PIFu

In the ablation studies done in the main paper, we showed that incorporat-
ing depth and human parsing maps into the backbone of an IntegratedPIFu
can make a significant difference in terms of the structural fidelity of the re-
constructed human meshes generated by the backbone. We did that by showing
readers the meshes reconstructed by backbones that are given different combina-
tions of depth and human parsing maps. We assured readers that the problems in
the backbones will almost always be propagated to the final reconstructions pro-
duced by IntegratedPIFu (or PIFuHD). Due to space constraints in that paper,
we are unable to provide comprehensive evidence on this claim. Thus, here, we
will show the final human meshes that are reconstructed by an IntegratedPIFu
(not by just its backbone) when it is given the different backbones. We show the
results in Fig. 6. The human subjects used in this figure are deliberately chosen
to align with the human subjects used in Fig. 5 in the main paper. We do
this so that readers can use the two figures and see for themselves that when



Integrated PIFu 5

e
3o
s
™"
e
D
P |
S\
S e ]
-
L}

";‘T' 30 S '\';«1
T P =
—A A g S \
LB \ﬂ:_?\r D i
; ! R ‘;&( : A
¢
-Z«&/

N
T—
v

|

/Af’ 4 ,~~:\A, 0!%

o
R
L

o

- X“e@ e ] P

'
=
2 /(“e;:gg v

=4
V"
.,/ 2
=

=~

n
(a) Groundtruth (b) SDF (c) DOS

Fig. 5. Qualitative Comparison between using SDF and DOS on a PIFuHD

the backbone of IntegratedPIFu produces an error, that error would usually be
replicated by the IntegratedPIFu itself.

In the first row of Fig. 6, we observe that none of the models produced any
broken limbs. But we notice that an IntegratedPIFu that is given neither depth
nor human parsing maps (i.e. Vanilla IntegratedPIFu) produced an overly large
left arm and left hand. The slim wrist of the human subject is also not captured
by this IntegratedPIFu. In the second row, both (b) the Vanilla IntegratedPIFu
and (d) an IntegratedPTFu that uses only the human parsing maps erroneously
produced a floating right fist. These two models also produced noisy artefacts
in the third row of the figure. In the fourth row, the Vanilla IntegratedPIFu is
unable to reconstructed the right arm correctly as half of the forearm sank into
the shirt of the human mesh. Thus, as aforementioned, most of the errors in Fig.
5 in the main paper are replicated in Fig. 6.

Also, we like to highlight that although the reconstructed outputs produced
by an (c) IntegratedPIFu with only depth maps can appear similar to that
produced by an (e) IntegratedPTFu with both depth and human parsing maps,
there can actually be subtle differences. For example, if we look at the third
row of Fig. 6, we see that left arm produced by (c¢) is unnaturally curvy. In
contrast, the left arm reconstructed by (e) looks more natural and human-like.
There are other subtle differences such as a small floating artefact near the left
elbow reconstructed by (c) in the second row of the figure. Hence, we believe
that incorporating both depth maps and human parsing in an IntegratedPIFu
is a more robust strategy than using only depth maps.



6 K. Chan et al.

(a) Groundtruth (b) IntegratedPIFu (c) IntegratedPIFu (d) IntegratedPIFu (e) IntegratedPIFu
(Vanilla) (Depth only) (Parse only) (Depth + Parse)

Fig. 6. Comparison of the final outputs produced by IntegratedPIFu when it is given
(b) neither depth nor human parse maps, (¢) depth maps only, (d) human parse maps
only, (e) both depth and human parse maps. The human subjects used in this figure
are deliberately chosen to align with the human subjects used in Fig. 5 in the main

paper

4 Depth Prediction

Here, we will discuss techniques which have helped to improve the accuracy of
our depth predictor.

4.1 Using Predicted Normal maps in Relative Depth Prediction

Similar to [2], our IntegratedPIFu uses a pix2pixHD network [3] to predict a
frontal normal map from a RGB image.

We find that using this predicted frontal normal map as an additional input
to the depth predictor helps to significantly improves the accuracy of the depth
predictor’s outputs. Using Tab. 2, we can compare the first row with the third
row to see that not using the frontal normal map as an additional input would
increase the average L1 error in test set by 19.8%.

Predicted frontal normal map would help in depth prediction because the
normal map contains structural information of a human mesh body. For example,
at the area around a male human chest, a normal map would indicate that the
area is mostly flat (normal vectors are facing the camera direction), and this is
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an important hint to the depth predictor to predict similar relative depth values
for all pixels in this area.

4.2 Using a Center indicator map in Relative Depth Prediction

In the groundtruth relative depth maps, the center pixel would always have
a value of zero since it is where the reference vertex is. Ideally, we want our
predicted relative depth maps to have a zero at its center pixel as well. Thus,
we use what we called a center indicator map to indicate to the depth predictor
where the reference vertex is. And, consequently, the center indicator map is
simply a map of zero values except its center pixel (has value of one). Our center
indicator map will have the same size as the RGB image, and it is an additional
input to the depth predictor. If the RGB image is 1024x1024, then no single
pixel would be the center, so we will treat the center as a 2x2 pixel region.

By comparing the second and third rows in Tab. 2, we can observe the impact
of using the center indicator map as an additional input to the depth predictor.
When center indicator map is used, both the average L1 error and the L1 error
incurred by pixels near the center fall.

Table 2. Evaluation of using different configurations in the depth predictor. Results
obtained using the test set of THuman2.0 Dataset. Center error is the sum of L1 error
incurred by pixels near the center of the predicted depth map (We use a 4x4 region at
the center of the predicted depth map to compute the Center error)

Methods L1 error Center error
One-Stage (Center) 10080 40.21
One-Stage (Normal) 8451 26.80
One-Stage (Normal + Center) 8417 21.95

Two-Stage (Normal + Center) 8327 21.33

4.3 Using a Two-staged depth prediction process

The depth predictor consists of two separate U-Nets and predict relative depth
in a two-staged process. In the first stage, the first U-Net would take a RGB
image, a predicted frontal normal map, and center indicator map as inputs, and
it produces a coarse relative depth map. In the second stage, the second U-Net
refines the coarse relative depth map and generates a refined relative depth map.
The second U-Net is given three inputs, namely a RGB image, a predicted frontal
normal map, and a coarse relative depth map.

In Tab. 2, we see the importance of having this two-staged process. By com-
paring the third and fourth rows, we see that the two-stage process is able to
reduce the L1 error of the generated depth maps significantly. Moreover, it also
has an effect of reducing the L1 error incurred by the center pixels.
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5 Human Parsing Prediction

Here, we will discuss techniques which have helped to improve the accuracy of
our human parsing predictor.

5.1 Using Predicted Normal maps in Human Parsing Prediction

The human parsing predictor is a U-Net that takes in a RGB image and a
predicted frontal normal map as inputs, and it outputs a corresponding human
parsing map. Similar to the depth predictor, we find that giving the human
parsing predictor the predicted frontal normal map as an additional input helps
to improve its accuracy (See Tab. 3).

The reason for this could be that the frontal normal maps provide the human
parsing predictor with structural information of the human body (e.g. orientation
of the different human body parts). We believe that this information could have
made it easier for the human parsing predictor to perform its task.

Table 3. Evaluation of using different configurations in the human parsing predictor.
Results are obtained using the test set of THuman2.0 Dataset. The error metric used
in the table is the average number of pixels that are misclassified in each predicted
human parsing map

Methods Misclassified pixels
No Normal 13238.6
Normal 12500.2

6 Implications of using Rear Normal maps in a
Pixel-aligned implicit model

Unlike PIFuHD [2], IntegratedPIFu does not use a rear normal map as an input.
The reason for this is that we do not feel it is practical to expect a model (i.e. a
Rear Normal Predictor) to predict an accurate rear normal map on unseen data
when the model is only given a frontal RGB image as input. To illustrate this, we
show a pair of groundtruth rear normal maps from test data and compare them
with the rear normal maps predicted by a Rear Normal Predictor in Fig. 7. The
Rear Normal Predictor is implemented the same way as in [2], and it is also used
in PIFuHD. As seen in the Fig. 7, the Rear Normal Predictor would hallucinate
creases and wrinkles in random locations, and most of these hallucinations are
incorrect. This is expected because the Rear Normal Predictor has no means of
knowing where the wrinkles and creases would be located just by looking at a
frontal RGB image.

If a pixel-aligned implicit model, such as PIFuHD or IntegratedPIFu, uses a
rear normal map as input, then the human meshes reconstructed by the model
would usually have hallucinated creases and wrinkles on their rear as well. This
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is illustrated in Fig. 8b. The figure (Fig. 8) is produced by training two separate
PIFuHDs, where one of them is given rear normal maps, and the other one is
not given rear normal maps. From this figure, we see that when a rear normal
map is not given, the PIFuHD simply produces a smooth back/rear for the
reconstructed human mesh. Strictly speaking, neither using rear normal maps
nor not using rear normal maps would correctly reconstruct the rearside wrinkles
and creases. The choice to include or exclude rear normal maps may depend on
the specific application scenarios of the pixel-aligned implicit model.

7 Implementation details of Integrated PIFu

Our code is available at https://github.com/kcyt/Integrated PIFu.

The training of IntegratedPIFu is similar to that of PIFuHD. We first train
a Frontal Normal Predictor to predict 1024x1024 frontal normal maps from
1024x1024 RGB images. The architecture of the Frontal Normal Predictor is
the same as the one used in [2]. In addition, we also train our Depth Predictor
and Human Parsing Predictor to predict 1024x1024 relative depth maps and
1024x1024 human parsing maps from 1024x1024 RGB images and 1024x1024
predicted frontal normal maps. In total, we will have predicted frontal normal
maps, predicted relative depth maps, and predicted human parsing maps.

The IntegratedPIFu consists of the Low-Resolution PIFu (Low-PIFu) and
the High-Resolution Integrator (HRI). The Low-PIFu is first trained with four
downsampled inputs: 1. 512x512 RGB images 2. 512x512 predicted frontal nor-
mal maps 3. 512x512 predicted depth maps 4. 512x512 predicted human parsing
maps. We use spatial sampling scheme to train Low-PIFu.

After the Low-PIFu is trained, we would start alternative training of the
Low-PIFu and the HRI. HRI is given two inputs: 1. 1024x1024 RGB images 2.
1024x1024 predicted frontal normal maps. During the alternative training, we
would use only depth-oriented sampling scheme to train both Low-PIFu and
HRI. After the end of the alternative training, we would finetune the HRI by
training only the HRI for five epochs.

For both the spatial sampling scheme and the depth-oriented sampling scheme,
we use 16000 sample points for each RGB image. For depth-oriented sampling,
we reserve 10% of the sample points to be extreme points (either deeply inside a
mesh with respect to the camera direction or outside and very far away from the
mesh surface in the camera direction). These extreme points will have a label of
one if they inside the mesh, and a label of zero if they are outside.
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(a) Groundtruth (b) Predicted Rear Normal Map

Fig. 7. Comparison of the groundtruth rear normal maps and the predicted rear normal
maps in the test dataset. It is impractical to expect the Rear Normal Predictor to
predict rear normal maps accurately with just the frontal RGB image as input
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(c) Without Rear Normal

Fig. 8. Comparison of the outputs produced by a PIFuHD that is given predicted rear
normal maps and a PIFuHD that is not given predicted rear normal maps. Results are

from test data
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