
Realistic One-shot Mesh-based Head Avatars

Taras Khakhulin1,2, Vanessa Sklyarova1,2,
Victor Lempitsky3, and Egor Zakharov1,2

1 Samsung AI Center – Moscow
2 Skolkovo Institute of Science and Technology

3 Yandex Armenia

https://samsunglabs.github.io/rome/

1 Supplementary material

1.1 Implementation details

Photometric training objectives. During training, we use the photometric loss
Lphoto to aid in learning the geometry, as well as to train the rendering. Our
photometric loss is the combination of the perceptual, the identity, the adver-
sarial, and the segmentation losses:

Lphoto = λperLper + λidtLidt + λadvLadv + λsegLseg. (1)

For the perceptual loss Lper, we use a weighted combination of distances be-
tween features of predicted and target images. These features are taken from two
pre-trained convolutional neural networks. We use features from a VGG19 [10]
network pre-trained on ImageNet [9] to match the general content and features
from a VGG16-based gaze detection network [2] to match the gaze direction.
This loss, therefore, can be expressed as follows:

Lper = Lvgg + Lgaze. (2)

In both of these losses, we measure the L1 distance between conv1 1, conv2 1,
conv3 1, conv4 1, and conv5 1 features after ReLU activations. We then sum
these distances with the following weights: 1

32 ,
1
16 ,

1
8 ,

1
4 , and 1 to obtain the loss

value.
In the gaze detection network, we independently process both eyes and aver-

age the losses corresponding to each one of them. Before feature extraction, we
additionally perform alignment of both eyes using the keypoints extracted from
the image via a differentiable interpolation. For more details, please refer to [2].

The face identity loss Lidt is the cosine distance between the embeddings of
a pre-trained face recognition network [1], evaluated for the predicted and the
target images. We use this loss to better preserve the person’s identity in the
renders. We calculate the cosine distance as minus the cosine similarity.

To calculate the adversarial loss Ladv we jointly train a discriminator net-
work alongside our reconstruction and rendering networks. We use a weighted

https://samsunglabs.github.io/rome/


2 T. Khakhulin et al.

combination of the hinge-loss discriminator loss as well as the feature-matching
loss [13]. We additionally apply spectral normalization [7] to the discriminator
network. The configuration of the adversarial training closely follows the related
works on image-to-image translation [12]. In particular, we use the PatchGAN [5]
architecture for the discriminator.

Lastly, we use Dice loss to match the predicted segmentation ŝt to the ground-
truth st:

Lseg = 1− 2
ŝt · st

∥ŝt∥22 + ∥st∥22
, (3)

where · denotes a scalar product. The segmentation loss is calculated using each
batch element separately and then averaged across the batch.

Architectures of the neural networks. We use group normalization [14] paired
with weight standardization [8] in all networks to facilitate training with smaller
batch sizes. Empirically we found this combination to perform better than stan-
dard instance normalization [11].

In the autoencoder Etex, which encodes the input image xs into the neural
texture Ts, we use pre-activation residual blocks [4]. We set the number of
channels in the neural texture Ts to eight (we observed that values between 8
and 16 result in similar performance). We additionally align the input image
using the transformation similar to the one used in the FFHQ dataset [6]. We
only modify the zoom-out factor to 1.25 so that the aligned image contains more
hair and upper-body regions.

For the networks Eimg and Egeom we use a standard U-Net architecture. The
network Eimg is U-Net, which predict an output image and the segmentation
mask. Besides the neural texture, we additionally condition these two networks
on the rendered mesh normals. Specifically, we process each input dimension
of the normal vectors using {sin(kx)}Kk=1 and {cos(kx)}Kk=1 functions. In our
experiments, we set K = 6. We then concatenate the resulting encodings to
the neural texture. We use max-pooling layers for downsampling and nearest
neighbors upsampling in the network, which decodes an image, and average
pooling with bilinear upsampling in the network, which decodes segmentations.
Additionally, the segmentation U-Net network has two times fewer channels than
the image network.

The architecture of Egeom is the same as the image encoding U-Net, albeit
with a different number of input and output channels. We set the dimensionality
of a latent geometry map Zt, which is an output of Egeom, to 32. Additionally, we
encode the xyz-texture using harmonic functions via the same process described
before. We then concatenate the obtained embeddings to the initial xyz-texture.
The resulting feature map has 3 + 3 · 6 · 2 = 39 channels. In total, Egeom has
8 + 39 = 47 input channels, since we also concatenate the embeddings of the
xyz-texture to the neural texture.

Finally,Ggeom consists of an MLP network which we apply separately for each
vertex to predict its offsets. To obtain its inputs, we first resample the latent
geometry map Zt using an irregular grid specified by the texture coordinates



Realistic One-shot Mesh-based Head Avatars 3

w. The obtained features for each vertex are denoted as zwt . These features are
concatenated to the harmonic embeddings of w in the same way as the xyz-
texture. Specifically, each vector w has two dimensions, therefore we encode it
into 2 + 2 · 6 · 2 = 26 features, and then concatenate with 32 channels of zwt
to obtain a vector with the dimensionality of 58 — the number of Ggeom input
dimensions.

Training details. We use the ADAM optimizer to train all networks in our model.
We set the learning rate to 1 · 10−4 for all the networks except for the discrim-
inator. For it, we set the learning rate to 4 · 10−4. We also set β1 = 0, and
β2 = 0.999. We train using eight P40 NVIDIA GPUs to facilitate the batch size
of 32. We observe that decreasing the batch size leads to visible degradation
of both rendering and reconstructions, but we did no ablations to measure this
effect.

1.2 Evaluation

We present additional results for the 3D reconstruction in both self-driving (re-
construction using frames from the same video), and cross-driving (reconstruc-
tion from a photo of one person and animation from a video of a different person)
scenarios. In Figure 2, we present more self-driving results on the H3DS dataset,
as well as a side-by-side comparison with H3D-Net. In Figure 3, we present
cross-driving evaluation results using the hold-out samples from the VoxCeleb2
dataset, as well as paintings, the latter allowing us to evaluate the susceptibility
of our approach to domain shifts.

PIFuHD
Full body

Ours
Head

PIFuHD
Head

(a) Comparison with PIFuHD.

Source
Image

ROME
w/ DECA

ROME(L)
w/ PIXIE

(b) ROME integrated with PIXIE.

Additionally, we show the results in Fig. 1a. PIFuHD can only recover head
geometry from the full-body images, which prevents us from doing a comparison
with this method using existing head reconstruction and reenactment bench-
marks. While having more detailed reconstructions, PIFuHD requires training
with 3D supervision and does not have animation capabilities. Currently, these
limitations can be lifted only at the cost of lengthy multi-shot training per each
avatar (IMAvatars), or by sacrificing some detalization of reconstructions and
retaining both real-time and one-shot capabilities, which is done in our method.



4 T. Khakhulin et al.

Method LPIPS↓ SSIM↑ PSNR↑
w/o ∆v̂ 0.10 0.81 23.1
ROME 0.08 0.86 25.8

Table 1: Quantitative ablation on a hold-out set of the VoxCeleb2 dataset. We
observe that the deferred neural rendering trained without offsets achieves lower
image quality for face and hair regions, than a full ROME system.

To demonstrate the the ease of integration with existing SMPL-X based
models we predict the vertices corresponded to hair using distilled version of the
ROME with PIXIE [3]. The resulted mesh contains the hair from ROME basis
and shoulders from SMPL-X.

We provide an extended cross-driving qualitative comparison with neural-
based rendering methods in Figure 4. Then, we provide an additional self-driving
qualitative comparison in Figure 5. Most of the results are consistent with the
metrics obtained in the main text.

We evaluate the effect that trained offsets have on the quality of rendering.
To do that, we remove the head reconstruction step from the training pipeline
and only train deferred neural rendering system using base FLAME meshes.
The quantitative results are in Table 1. Notice how the quality degrades for
the model with no offsets in the hair and shoulders areas and to the overall
worse quantitatively measured performance. This leads us to the conclusion that
our system for coarse mesh estimation can aid other neural rendering systems
produce better quality reconstructions.

1.3 Linear model

We evaluate visual quality in Figure 7. We note that the value of MSE that is
achieved by our regressor leads to visually similar reconstructions. Our mesh re-
construction model can achieve up to 10 times speed-up without any perceived
degradation in reconstruction quality.

Additionally, we evaluate the semantic manipulation capabilities of the lin-
ear model in a similar way to the face parametric models. Specifically, we pick
individual basis vectors and see how varying their coefficient changes the recon-
structed mesh. The results can be seen in Figure 6. We observe a certain semantic
disentanglement for the first hair and neck basis vectors. This disentanglement
allows us to perform mesh and image editing tasks, like the editing of hairstyle,
which we show in Figure 8. Here, we obtain this modified reconstruction by
simply varying one of the predicted coefficients for the linear basis.



Realistic One-shot Mesh-based Head Avatars 5

Source H3D-Net ROME Target H3D-Net ROME

Fig. 2: Extended qualitative comparison on the H3DS dataset. We compare 3D
reconstructions and renders obtained using a single source image.



6 T. Khakhulin et al.

Source Driver ROME Source Driver ROME

Fig. 3: Additional examples of mesh-based avatars creating using a single source
image, and animated using the camera pose and the expression parameters es-
timated from the driver image. First five rows contains results for samples out
of the train distribution.



Realistic One-shot Mesh-based Head Avatars 7

Source Driver FOMM Bi-Layer ROME

Fig. 4: Additional comparison of renders on a VoxCeleb2 dataset. The task is to
reenact the source image with the expression and pose of the driver image. This
comparison is done in a cross-driving scenario, which we also use for quantitative
comparison.



8 T. Khakhulin et al.

Source Driver FOMM Bi-Layer ROME

Fig. 5: Additional comparison of renders on a VoxCeleb2 dataset. The task is to
reenact the source image with the expression and pose of the driver image. This
comparison is done in a self-driving scenario, which we also use for quantitative
comparison.



Realistic One-shot Mesh-based Head Avatars 9

1

2

4

52

k ηk
(1) ηk

(⌊0.1M⌋) ηk
(⌊0.25M⌋) ηk

(⌊0.75M⌋) ηk
(⌊0.9M⌋) ηk

(M)

Fig. 6: We show how the estimated meshes can be semantically manipulated by
varying the individual components of the PCA basis. We assume that M meshes
were initially predicted by the ROME system. Then, we estimate M coefficients
ηm ∈ RK , each is used to reconstruct m-th mesh via the PCA basis. In our
experiments, the set of 50 basis vectors are used to reconstruct the hair, and the
set of 10 basis vectors are used to reconstruct the neck and the shoulders. We
denote each component of ηm as ηkm. Then, we use the mean vector η = 1

M ηm
to reconstruct the base mesh, and modify its k-th component to the p-th order
statistic ηk(p) over the dataset {ηkm}Mm=1, where p ∈ {1, . . . ,M}. We show the
resulting reconstructions above. Each row corresponds to a component which is
modified, and each column corresponds to its new value (minimum, 10%, 25%,
75%, 90%, maximum). The first three lines correspond to the hair components,
and the last line – to the neck component.



10 T. Khakhulin et al.

Image ROME PCA Distilled Image ROME PCA Distilled

Fig. 7: We provide more examples to qualitatively evaluate the performance of
the distilled linear model.

Image Original Edit 1 Edit 2 Edit 4 Edit 5

Fig. 8: Examples of hair style manipulation using only individual components of
a PCA basis.



Realistic One-shot Mesh-based Head Avatars 11

References

1. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018) pp. 67–74 (2018) 1

2. Cortacero, K., Fischer, T., Demiris, Y.: Rt-bene: A dataset and baselines for real-
time blink estimation in natural environments. 2019 IEEE/CVF International Con-
ference on Computer Vision Workshop (ICCVW) pp. 1159–1168 (2019) 1

3. Feng, Y., Choutas, V., Bolkart, T., Tzionas, D., Black, M.: Collaborative regression
of expressive bodies using moderation. In: International Conference on 3D Vision
(3DV) (2021) 4

4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
ECCV (2016) 2

5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 5967–5976 (2017) 2

6. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 4396–4405 (2019) 2

7. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. ArXiv abs/1802.05957 (2018) 2

8. Qiao, S., Wang, H., Liu, C., Shen, W., Yuille, A.L.: Weight standardization. ArXiv
abs/1903.10520 (2019) 2

9. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. International Journal of Computer Vision (2015)
1

10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. International Conference on Learning Representations (2015) 1

11. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing
ingredient for fast stylization. ArXiv abs/1607.08022 (2016) 2

12. Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Kautz, J., Catanzaro, B.: Few-shot video-
to-video synthesis. Advances in Neural Information Processing Systems (NeurIPS)
(2019) 2

13. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8798–
8807 (2018) 2

14. Wu, Y., He, K.: Group normalization. In: ECCV (2018) 2


