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Abstract. We present a system for the creation of realistic one-shot
mesh-based (ROME) human head avatars. From a single photograph,
our system estimates the head mesh (with person-specific details in both
the facial and non-facial head parts) as well as the neural texture en-
coding, local photometric and geometric details. The resulting avatars
are rigged and can be rendered using a deep rendering network, which
is trained alongside the mesh and texture estimators on a dataset of in-
the-wild videos. In the experiments, we observe that our system performs
competitively both in terms of head geometry recovery and the quality
of renders, especially for cross-person reenactment.

1 Introduction

Personalized human avatars are becoming a key technology across several appli-
cation domains, such as telepresence, virtual worlds, and online commerce. In
many practical cases, it is sufficient to personalize only a part of the avatar’s
body, while the remaining areas can then be picked from a pre-defined library of
assets or omitted from the interface. Towards this end, many applications require
personalization at the head level, i.e., the creation of person-specific head models,
thus making it an important and viable intermediate step between personalizing
only the face and the entire body. Alone, face personalization is often insuffi-
cient, while the full-body reconstruction remains a complicated task and leads
to the reduced quality of the models or requires cumbersome data collection.

Acquiring human avatars from a single photograph (in a “one-shot” set-
ting) offers the highest convenience for the end-user. However, their creation
process is particularly challenging and requires strong priors on human geom-
etry and appearance. To this end, parametric models are long known to offer
good personalization solutions [3] and were recently adapted to one-shot per-
formance [9,13,41]. Such models can be learned from a relatively small dataset
of 3D scans and represent geometry and appearance via textured meshes, mak-
ing them compatible with many computer graphics applications and pipelines.
However, they cannot be trivially expanded to the whole head region due to the
large geometric variability of the non-facial parts such as hair and neck.
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Fig. 1: Our system creates realistic mesh-based avatars from a single source
photo. These avatars are rigged, i.e., they can be driven by the animation pa-
rameters from a different driving frame. At the same time, our obtainedmeshes
and renderes achieve a high degree of personalization in both appearance and
geometry and are trained in an end-to-end fashion on a dataset of in-the-wild
videos without any additional 3D supervision.

Our proposed system addresses this issue and allows parametric face models
to represent the non-facial parts. In order to handle the increased geometric and
photometric variability, we train our method on a large dataset of in-the-wild
videos [6] and use neural networks to parameterize both the geometry and the
appearance. For the appearance modeling, we follow the deferred neural render-
ing [46] paradigm and employ a combination of neural textures and rendering
networks. In addition, a neural rendering framework [36] is used to enable end-
to-end training and achieve high visual realism of the resulting head models.
After training, the geometric and appearance networks can be conditioned on
the information extracted from a single photograph, enabling one-shot realistic
avatar generation.

To the best of our knowledge, our system is the first that is capable of creating
realistic personalized human head models in a rigged mesh format from a single
photograph. This distinguishes our model from a growing class of approaches
that a) recover neural head avatars without explicit geometry [49,42,53,52], b)
can personalize the face region but not the whole head [45,20,3,9], and c) from
commercial systems that create non-photorealistic mesh avatars from a single
image [1,33]. Alongside our main model, we also discuss its simplified version
based on a linear blendshapes basis and show how to train it using the same
video dataset. Below, we refer to the avatars generated by our system as ROME
avatars (Realistic One-shot Mesh-based avatars).

2 Related work

Parametric models of human faces. Over the recent decades, 3D face re-
construction methods have been actively employed to tackle the problems of
face tracking and alignment [15,13], face recognition [2,47], and generative mod-
elling [45,20,29,35,25,26]. In all these scenarios, statistical mesh-based models,
aka parametric models [3], remain one of the widely used tools [8,34]. State-of-
the-art parametric models for human heads consist of rigged meshes [23] which
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support a diverse range of animations via disentangled shape and expression
blendshapes and rigid motions for the jaw, neck, and eyeballs. However, they
only provide reconstructions for the face, ears, neck, and forehead regions, lim-
iting the range of applications. Including full head reconstruction (i.e., hair and
shoulders) into these parametric models is possible, but existing approaches re-
quire significantly more training data to be gathered in the form of 3D scans.
Instead, in our work, we propose to leverage existing large-scale datasets [6] of
in-the-wild videos via the learning-by-synthesis paradigm without any additional
3D annotations.

Neural 3D human head models. While parametric models provide sufficient
reconstruction quality for many downstream applications, they are not able to
depict the fine appearance details that are needed for photorealistic modelling. In
recent years, the problem of representing complex geometry and appearance of
humans started being addressed using high-capacity deep neural networks. Some
of these works use strong human-specific priors [35,9,39,27], while others fit high-
capacity networks to data without the use of such priors [28,32,29,26,25,19,31].
The latter methods additionally differ by the type of data structure used to
represent the geometry, namely, mesh-based [9,26,25,12], point-based [28,51], and
implicit models [29,32,35,39,31,27,50]. Additionally, recently there have emerged
the hybrid models [55,10] where authors integrate face priors from parametric
models with implicit representations to learn geometry and rendering for the
specific person from the video.

However, mesh-based models arguably represent the most convenient class
of methods for downstream applications. They provide better rendering quality
and better temporal stability than point-based neural rendering. Also, unlike
methods based on implicit geometry, mesh-based methods preserve topology
and rigging capabilities and are much faster during fitting and rendering. How-
ever, current mesh-based methods either severely limit the range of deforma-
tions [9], making it infeasible to learn more complex geometry like hair and
clothed shoulders, operate in the multi-shot setting [12] or require 3D scans as
training data [26,25]. Our proposed method is also mesh-based, but we allow the
prediction of complex deformations without 3D supervision and using a single
image, lifting the limitations of the previous and concurrent works.

One-shot neural head models. Advances in neural networks also led to
the development of methods that directly predict images using large ConvNets
operating in the 2D image domain, with effectively no underlying 3D geome-
try [42,53,52] or very coarse 3D geometry [49]. These methods achieve state-of-
the-art realism [49], use in-the-wild images or videos with no 3D annotations for
training, and can create avatars from a single image. However, the lack of an
explicit geometric model makes these models incompatible with many real-world
applications and limits the span of camera poses that these methods can handle.

Neural mesh rendering. Recently, approaches that combine explicit data
structures (point clouds or meshes) with neural image generation have emerged.
These methods gained popularity thanks to the effectiveness of the pioneering
Deferred Neural Rendering system [46], as well as recent advances in differen-
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Fig. 2: Overview of our approach and the detailed scheme of the head mesh
reconstruction. Given the source photo, we first estimate a neural texture that
encodes local geometric and photometric details of visible and occluded parts.
We then use a pre-trained system [9] for face reconstruction to estimate an
initial mesh with a reconstructed facial part. We call this step face and 3D
pose estimation. During head mesh reconstruction (bottom), using the estimated
neural texture and the initial mesh, we predict the offsets for the mesh vertices,
which do not correspond to a face. The offsets are predicted with a combination
of a convolutional network Egeom and a perceptron network Ggeom. We then
render the personalized head mesh using the camera parameters, estimated by
a pre-trained regressor [9] while superimposing the predicted neural texture.
Finally, the rendering network Eimg estimates the RGB image and the mask
from the render.

tiable mesh rendering [36,24,22]. Neural mesh rendering uses 2D convolutional
networks to model complex photometric properties of surfaces. It achieves high
realism of renders with fine details present even when they are missing in the
underlying geometric model. In this work, we adapt these advances to human
head modelling while training using a large dataset of in-the-wild videos.

3 Method

Our goal is to build a system that jointly learns to produce photorealistic renders
of human heads and estimate their 3D meshes using only a single image without
any 3D supervision.

To achieve that, we use a large-scale dataset [6] of in-the-wild videos with
talking speakers. All frames in each video are assumed to depict the same person
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in the same environment (defined by lighting, hairstyle, and person’s clothing).
At each training step, we sample two random frames xs and xt from a random
training video. Our goal is to reconstruct and render the target image x̂t given
a) the personal details and the face shape extracted from the source image xs,
as well as b) the head pose, the facial expression, and the camera pose estimated
from the target image xt. The final reconstruction loss is backpropagated and
used to update the parameters of the model’s components.

After training, we can create a personalized head model by estimating all
parameters from a single image. This model can then be animated using face
tracking parameters extracted from any talking head sequence and rendered from
a range of viewpoints similar to those present in the training dataset (Figure 1).

3.1 Model overview

In our model, we jointly train multiple neural networks that perform rendering
and mesh reconstruction. The training pipeline proceeds as follows (Figure 2):

Neural texture estimation. The source image xs is encoded into a neural
texture Ts, which describes both person-specific appearance and geometry. The
encoding is done by a convolutional neural network Etex.

Face and 3D pose estimation. In parallel, we apply a pre-trained DECA
system [9] for face reconstruction to both the source and the target image, which
estimates facial shape, expression, and head pose. Internally, it uses the FLAME
parametric head model [23], which includes mesh topology, texture mapping, and
blendshapes. We use the face shape from the source image xs as well as the facial
expression and the camera pose from the target image xt for further processing.

Head mesh reconstruction. The vertices of the DECA mesh with per-
sonalized face region and generic non-facial parts are rendered into an xyz-
coordinate texture using the predefined texture mapping. The xyz-texture and
the neural texture Ts are concatenated and processed with the U-Net net-
work [37] Egeom into a new texture map Zt, called latent geometry map. The
3D displacements for each mesh vertex are then decoded independently by the
multi-layer perceptron Ggeom that predicts a 3D offset ∆v̂ for each vertex. This
step reconstructs the personalized model for non-face parts of the head mesh.
The obtained reconstructions are compatible with the topology/connectivity of
the FLAME mesh [23].

Deferred neural rendering. The personalized head mesh is rendered using
the pose estimated by DECA for the target image and with the superimposed
neural texture. The rendered neural texture and the rasterized surface normals
are concatenated and processed by the decoding (rendering) U-Net network Eimg

to predict the rendered image x̂t and the segmentation mask ŝt. During training,
the difference between the predictions and the ground truths is used to update
all components of our system.

Below we discuss our system and its training process in more detail. We
also describe a training procedure for a simplified version of our model, which
represents head geometry using a linear basis of blendshapes.
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3.2 Parametric face modeling

Our method uses a predefined head mesh with the corresponding topology, tex-
ture coordinates w, and rigging parameters, which remain fixed for all avatars.
More specifically, we use FLAME [23] head model that has N base vertices
vbase ∈ R3N , and two sets of K and L basis vectors (blendshapes) that encode
shape B ∈ R3N×K and expression D ∈ R3N×L. The reconstruction process is
carried out in two stages. First, the basis vectors are blended using the person-
and expression-specific vectors of linear coefficients ϕ and ψ. Then, the linear
blend skinning [23] function W is applied, parameterized by the angles θ, which
rotates the predefined groups of vertices around linearly estimated joints. The
final reconstruction in world coordinates can be expressed as follows:

v(ϕ, ψ, θ) = W
(
vbase + Bϕ+Dψ, θ

)
.

In previous works [45], a similar set of parameters for the 3DMM [3] paramet-
ric model was obtained via photometric optimization. More recently, learning-
based methods [9,13] capable of feed-forward estimation started to emerge. In
our work, given an input image, we use a pre-trained feed-forward DECA sys-
tem [9] to estimate ϕ, ψ, θ, and the camera parameters.

During training, we apply DECA to both source image xs and the target
image xt. The face shape parameters ϕs from the source image xs alongside the
expression ψt, head pose θt and camera parameters from the target image xt are
then used to reconstruct the initial FLAME vertices vt = v(ϕs, ψt, θt), as well
as camera transform Pt.

3.3 Head mesh reconstruction

The FLAME vertices vt estimated by DECA provide good reconstructions for
the face region but lack any person-specific details in the remaining parts of
the head (hair and shoulders). To alleviate that, we predict person-specific mesh
offsets for non-facial regions while preserving the face shape predicted by DECA.
We additionally exclude ear regions since their geometry in the initial mesh is
too complex to be learned from in-the-wild video datasets.

These mesh offsets are estimated in two steps. First, we encode both the xyz-
coordinate texture and the neural texture Ts into the latent geometry texture
map Zt via a U-Net network Egeom. It allows the produced latent map to contain
both positions of the initial vertices vt and their semantics, provided by the
neural texture.

From Zt we obtain the vectors zwt by bilinear interpolation at the fixed tex-
ture coordinates w. The vectors zwt and their coordinates w are then concate-
nated and passed through a multi-layer perceptron Ggeom to predict the coeffi-
cients m̂t ∈ R3N×3 independently for each vertex in the mesh. These coefficients
are multiplied elementwise by the normals nt, calculated for each vertex in vt, to
obtain the displacements: ∆v̂t = m̂ ⊙ nt. These displacements are then zeroed
out for face and ear regions, and the final reconstruction in world coordinates is
obtained as follows: v̂t = vt +∆v̂t.
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3.4 Deferred neural rendering

We render the reconstructed head vertices v̂t using the topology and texture
coordinates w from the FLAME model with the superimposed neural texture
Ts. For that, we use a differentiable mesh renderer R [36] with the camera
transform Pt estimated by DECA for the target image xt.

The resulting rasterization, which includes both the neural texture and the
surface normals, is processed by the rendering network Eimg to obtain the pre-
dicted image x̂t and the segmentation mask ŝt. Eimg consists of two U-Nets that
separately decode an image and a mask. The result of the deferred neural ren-
dering is the reconstruction of the target image x̂t and its mask ŝt, which are
compared to the ground-truth image xt and mask st respectively.

3.5 Training objectives

In our approach, we learn the geometry of hair and shoulders, which are not
reconstructed by the pre-trained DECA estimator, without any ground-truth
3D supervision during training. For that we utilize two types of objectives:
segmentation-based geometric losses Lgeom and photometric losses Lphoto.

We found that explicitly assigning subsets of mesh vertices to the neck and
the hair regions helps a lot with the quality of final deformations. It allows us
to introduce a topological prior for the predicted offsets, which is enforced by.

To evaluate the geometric losses, we calculate two separate occupancy masks
using a soft rasterization operation [24]. First, ôhair

t is calculated with detached
neck vertices, so that the gradient flows through that mask only to the offsets
corresponding to the hair vertices, and then ôt is calculated with detached hair
vertices. We match the hair occupancy mask to the ground-truth mask shairt

(which covers the hair, face, and ears), and the estimated occupancy mask to

the whole segmentation mask st: Locc = λhair
∥∥ôhair

t − shairt

∥∥2
2
+ λo

∥∥ôt − st
∥∥2
2
.

We also use an auxiliary Chamfer loss to ensure that the predicted mesh
vertices cover the head more uniformly. Specifically, we match the 2D coordinates
of the mesh vertices projected into the target image to the head segmentation
mask. We denote the subset of predicted mesh vertices, visible in the target
image, as p̂t = P ′

t(v̂t), and the number of these vertices as Nt, so that p̂t ∈
RNt×2. Notice that operator P ′

t here not only does the camera transformation
but also discards the z coordinate of the projected mesh vertices. To compute
the loss, we then sample Nt 2D points from the segmentation mask st and
estimate the Chamfer distance between the sampled set of points pt and the
vertex projections:

Lchm =
1

2Nt

∑
p̂t∈p̂t

∥∥∥p̂t − arg min
p∈pt

∥∥p− p̂t
∥∥∥∥∥+

1

2Nt

∑
pt∈pt

∥∥∥pt − arg min
p̂∈p̂t

∥∥p̂− pt
∥∥∥∥∥.
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Lastly, we regularize the learned geometry using the Laplacian penalty [43].
Initially, we found that regularizing offsets ∆v̂ worked better than regularizing
full coordinates v̂ and stuck to that approach for all experiments. Our version
of the Laplacian loss can be written as:

Llap =
1

V

V∑
i=1

∥∥∥∆v̂i −
1

N (i)

∑
j∈N (i)

∆v̂j

∥∥∥
1
,

where N (i) denotes a set indices for vertices adjacent to the i-th vertex in the
mesh.

We also use photometric optimization that matches the predicted and the
ground truth images. This allows us to obtain photorealistic renders and aid in
learning proper geometric reconstructions. We utilize perceptual loss Lper [18],
the face recognition loss Lidt [5] and adversarial loss Ladv [11,48]. We also use
the Dice loss Lseg [30] to match the predicted segmentation masks.

The final objective is weighted sum of the geometric and the photometric
losses described above.

3.6 Linear deformation model

In addition to the full non-linear model introduced above, we consider a sim-
plified parametric model with a linear basis of offsets ∆v̂. While this model is
similar to parametric models [23,56], we still do not use 3D scans for training
and instead obtain our linear model by “distilling” the non-linear model. Addi-
tionally, we train a feed-forward estimator that predicts the linear coefficients
from the input image.

The motivation for training this additional model is to show that the de-
formations learned by our method can be approximated using a system with
a significantly lower capacity. Such a simple regression model can be easier to
apply for inference on low-performance devices.

To train the linear model, we first obtain the basis of offsets F ∈ R3N×K ,
which is similar to the blendshapes used in the FLAME parametric model. This
basis is obtained by applying a low-rank PCA [14] to the matrix of offsets ∆V̂ ∈
R3N×M , calculated using M images from the dataset. Following [23], we discard
most of the basis vectors and only keepK components corresponding to maximal
singular values. The approximated vertex offsets ṽ for each image can then be
estimated as following ṽ = Fη, where η is obtained by applying the pseudo-

inverse of a basis matrix F to the corresponding offsets∆v̂: η =
(
FTF

)−1FT∆v̂

We then train the regression network by estimating a vector of basis coef-
ficients ηt, given an image xt. For that, we minimize the mean squared error
(MSE) loss ∥η̂t − ηt∥22 between the estimated coefficients and the ground truth,
as well as the segmentation loss Locc and a Chamfer distance between predicted
and ground truth meshes.
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Fig. 3: Qualitative comparison of the representative cases from the H3DS dataset.
While neither of the two methods achieves perfect results, arguably, ROME
achieves more realistic renders and better matches the head geometry than H3D-
Net in the single-shot mode. Furthermore, an important advantage of ROME is
that the resulting avatars are ready for animation and are obtained in a feed-
forward manner without the lengthy fine-tuning process employed by H3D-Net.

4 Experiments

We train our models on the VoxCeleb2 [6] dataset of videos. This large-scale
dataset contains an order of 105 videos of 103 different speakers. It is widely
used [7,49,52] to train talking head models. However, the main drawback of this
dataset is the mixed quality of videos and the heavy bias towards frontal poses.

To address these well-known limitations, we process this dataset using an
off-the-shelf image quality analysis model [44] and a 3D face-alignment net-
work [4]. We then filter out the data which has poor quality and non-diverse
head rotations. Our final training dataset has ≈ 15000 sequences. We note that
filtering/pruning does not fully solve the problem of head rotation bias, and our
method still works best in frontal views. For more details, please refer to the
supplementary materials.

We also use the H3DS [35] dataset of photos with associated 3D scans to
evaluate the quality of head reconstructions.

4.1 Implementation details

In the experiments, unless noted otherwise, we train all architectures jointly
and end-to-end. We use the following weights: λhair = 10, λper = 1, λidt = 0.1,
λadv = 0.1, λseg = 10, and enable the neck and the 2D Chamfer loss λchm = 0.01)
and λlap = 10. We ablate all geometry losses and method parts below.
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Table 1: Evaluation results on the H3DS dataset in the one-shot scenario for our
models, H3D-Net, and DECA. We compute Chamfer distance (lower is better)
across all available scans, reconstructed from three different viewpoints. Both of
the ROME variants significantly exceed H3D-Net in the one-shot reconstruction
quality.

Method DECA H3D-Net ROME LinearROME

Chamfer Distance 15.0 15.1 12.6 12.5

We train our models at 256× 256 resolution using ADAM [21] with the fixed
learning rate of 10−4, β1 = 0, β2 = 0.999, and a batch size of 32. For more
details, please refer to the supplementary materials.

4.2 Evaluation

3D reconstruction. We evaluate our head reconstruction quality using a novel
H3DS dataset [35]. We compare against the state-of-the-art head reconstruction
method H3D-Net [35], which uses signed distance functions to represent the ge-
ometry. While providing great reconstruction quality in the sparse-view scenario,
their approach has several limitations. For example, H3D-Net requires a dataset
of full head scans to learn the prior on head shapes. Additionally, its results
do not have fixed topology or rigging and their method requires fine-tuning per
scene, while our method works in a feed-forward way.

We carry out the comparison with H3D-Net in a single-view scenario, which
is native for our method but is beyond the capabilities stated by the authors in
the original publication [35]. However, to the best of our knowledge, H3D-Net
is the closest system to ours in single-view reconstruction capabilities (out of
all systems with either their code or results available). Additionaly, we tried to
compare our system with PIFuHD [38], which unfortunately failed to work with
heads images without body (see supplementary).

We show qualitative comparison in Figure 3. We evaluate our method and
H3D-Net both for frontal- and side-view reconstruction. We note the significant
overfitting of H3D-Net to the visible hair geometry, while our model provides
reconstructions more robust to the change of viewpoint.

In total, we compared our models on all scans available in the test set of the
H3DS dataset, and each scan was reconstructed from three different viewpoints.
We provide the measured mean Chamfer distance both for our method and
baselines across all scans in Tab. 1.

Rendering. We evaluate the quality of our renders on the hold-out subset Vox-
Celeb2 dataset. We use a cross-driving comparison scenario for qualitative com-
parison to highlight the animation capabilities of our method, and self-driving
scenario for quantitative comparison.

First, we compare with a FLAMETex [23] rendering system, which works
explicitly with mesh rendering. From the source image, FLAMETex estimates
the albedo via a basis of RGB textures, and then combines it with predicted
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Source Driver FOMM Bi-Layer FLAMETex ROME

Fig. 4: Comparison of renders on a VoxCeleb2 dataset. The task is to reenact
the source image with the expression and pose of the driver image. Here, we
picked diverse examples in terms of pose variation to highlight the differences
in performance of compared methods. We observe that for the large head pose
rotations, purely neural-based methods (FOMM, Bi-Layer) struggle to main-
tain consistent quality. In contrast, our rendering method produces images that
are more robust to pose changes. Admittedly, for small pose changes, neural-
based methods exhibit a smaller identity gap than ROME (bottom row) and
overall outperform our method in terms of rendering quality. As a reference, we
also include a non-neural FLAMETex rendering method, which is employed
in state-of-the-art one-shot face reconstruction systems [9] but is not able to
personalize the avatar at the head level.

scene-specific shading. On the contrary, our method predicts a rendered image
directly and avoids the complexity of explicit albedo-shading decomposition.

We then compare with publicly available geometry-free rendering methods,
which were trained on the same dataset. For that, we use the First-Order Mo-
tion Model (FOMM) [42], the Bi-Layer Avatar Model [52] and recently proposed
Thin-Plate-Spline-Motion-Mode (TPSMM) [54]. Both these systems bypass ex-
plicit 3D geometry estimation and rely only on learning the scene structure via
the parameters of generative ConvNets. Other methods [49,7], which internally
utilize some 3D structures, like camera rotations, were out of the scope of our
comparison due to the unavailability of pre-trained models.

We present the qualitative comparison in Figure 4, and a quantitative com-
parison across a randomly sampled hold-out VoxCeleb2 subset in Table 2. We
restrict the comparison to the face and hair region as the shoulder pose is not
controlled by our method (driven by DECA parameters), which is admittedly
a limitation of our system. We thus mask the results according to the face and
hair mask estimated from the ground truth image.
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Table 2: Here we present the quantitative results on the VoxCeleb2-HQ dataset in
the self-reenactment and cross-reenactment modes. Our ROME system performs
on par with FOMM and TPSMM in self-reenactment, notably outperforming
them in the most perceptually-plausible LPIPS metrics. On the contrary, in the
cross-driving scenario, when the task is complex for pure neural-based systems,
our method obtains better results.

self-reenactment cross-reenactment

Method LPIPS↓ SSIM↑ PSNR↑ FID↓ CSIM↑ IQA↑
FOMM 0.09 0.87 25.8 52.95 0.53 55.9
Bi-Layer 0.08 0.83 23.7 51.4 0.56 50.48
TPSMM 0.09 0.85 26.1 49.27 0.57 59.5
ROME 0.08 0.86 26.2 45.32 0.62 66.3

Generally, we observe that over the entire test set, the quality of ROME
avatars in the self-reenactment mode is similar to FOMM and better than the
Bi-layer model. For the cross-reenactment scenario, our model is clearly better
than both alternatives according to three metrics, that help to asses unsupervised
quality of the images in three aspects: realism, identity preservation and blind
quality of the image. The huge gap for IQA [44] and FID [17] is also noticeable
in the qualitative comparison, especially for strong pose change (see CSIM [53]
column in Tab. 2). The PSNR and SSIM metrics penalize slight misalignments
between the sharp ground truth and our renderings much stronger than the
blurriness in FOMM reconstructions. The advatage of ROME avatar is noticable
even for self-driving case according to LPIPS. We provide a more extensive
qualitative evaluation in the supplementary materials.

4.3 Linear basis experiments

As discussed above, we distill our ROME head reconstruction model into a linear
parametric model. To do that, we set the number of basis vectors to 50 for the
hair and 10 for the neck offsets and run low-rank Principle Component Analysis
(PCA) to estimate them. The number of components is chosen to obtain a low
enough approximation error. Interestingly, the offsets learned by our model can
be compressed by almost two orders of magnitude in terms of degrees of freedom
without any practical loss in quality (Figure 6a), which suggests that the capacity
of the offset generator is underused in our model. We combine estimated basis
vectors with the original basis of the FLAME.

After that, we train feed-forward encoders that directly predict the coeffi-
cients of the two basis from the source image. The prediction is performed in
two stages. First, face expression, pose and camera parameters are predicted
with a MobileNetV2 [40] encoder. Then a slower ResNet-50 encoder [16] is used
to predict hair, neck and shape coefficients. The choice of architectures are mo-
tivated by the fact that in many practical scenarios only the first encoder needs
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Input Full w/o ∆v̂ w/o n⃗ w/o Locc w/o Llap w/o Lchm

Fig. 5: Ablation study. We qualitatively evaluate the individual components of
our full model. w/o ∆v̂: without the per-vertex displacements, we obtain a
significantly worse render quality. w/o n⃗: when we apply per-vertex deformations
instead of per-vertex displacements (i.e., deformations alongside the normals), we
obtain noisy reconstructions in neck area and worse renders. w/o Locc: without
silhouette-based losses, our model fails to learn proper reconstructions. w/o Llap:
Laplacian regularization smooths the reconstructions. w/o Lchm: chamfer loss
allows us to constrain the displaced vertices to lie inside the scene boundaries,
which positively affects the smoothness of the visible part of the reconstruction.

to be invoked frequently (per-frame), while the second can run at much lower
rate or even only at the model creation time.

4.4 Ablation study

We demonstrate results of ablation study at Figure 5. As expected, predicting
more accurate geometry affect the renders (first row). Also, we verify the neces-
sity of all terms of geometry loss. We observe significant improvement in quality
of renders with additional geometry (see supplementary), which leads us to an
optimistic conclusion that our learned coarse mesh may be integrated into other
neural rendering systems [49] to improve their quality. Additionally, we observe
that geometry losses allows to correctly model coarse details on the hair without
noise and reconstruct the hair without sticking with neck. Similar artifacts are
removed by adding shifts along the normals.

Our current model is trained at roughly fixed scale, though explicit geometry
modeling allows it to generalize to adjacent scale reasonably well. Still, strong
changes of scale lead to poor performance (Figure 6b). More examples are pro-
vided in the supplementary materials. Addressing this issue via mip-mapping
and multi-scale GAN training techniques remains future work.

Lastly, our model can have artifacts with long hair (Figure 6b, left) or ears
(Figure 6b, middle). Handling such cases gracefully are likely to require a depar-
ture from the predefined FLAME mesh connectivity to new person-specific mesh
topology. Handling such issues using a limited set of pre-designed hair meshes is
an interesting direction for future research.
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Image ROME Distilled

(a) Linear model

Long hair Ear cover Failed renders

(b) Limitations

Fig. 6: Linear model results and the examples of limitations. On the left, we
show how reconstructions learned by our method, ROME, could be distilled
using a linear parametric model. We are able to compress the learned offsets
into a small basis, reducing the degrees of freedom by two orders of magnitude.
We can then distill these offsets using a much faster regression network with a
small gap in terms of the reconstruction quality. On the right, we highlight the
main limitations of our method, which include the failure related to long hair
modelling, caused by an incorrect topological prior, no coverage of ears and
unrealistic renders under a significant change of scales.

5 Summary

We have presented ROME avatars: a system for creating realistic one-shot mesh-
based human head models that can be animated and compatible with FLAME
head models. We compare our model with representative state-of-the-art models
from different classes, and show that it is highly competitive both in terms of
geometry estimation and the quality of rendering.

Crucially, our system can learn to model head geometry without direct su-
pervision in the form of 3D scans. Despite that, we have observed it to achieve
state-of-the-art results in head geometry recovery from a single photograph. At
the same time, it also performs better than previous one-shot neural rendering
approaches in the cross- and self-driving scenario. We have thus verified that the
resulting geometry could be used to improve the rendering quality.

As neural rendering becomes more widespread within graphics systems, ROME
avatars and similar systems can become directly applicable, while their one-shot
capability and the simplicity of rigging derived from DECA and FLAME could
become especially important in practical applications.
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