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1 Shadow and light extraction network

Since shadow maps are not always available, we train a network to estimate them
from input photometric stereo images. This network runs as a pre-processing step
on the photometric stereo data, to produce shadow maps that DeepShadow can
use as inputs. Our model also estimates the light direction, since this is also not
always available. We use both a publicly available photometric stereo dataset,
as well as our own renders — which are needed since there is no public dataset
that has photometric stereo shadow ground-truth.

Please note that our goal is estimating depth from shadow maps. As we
have shown, in certain cases DeepShadow with shadow maps as inputs may re-
sult in better shape estimation than shape-from-shading techniques. We trained
the shadow and light extraction model solely to be able to use our method on
datasets which do not have ground-truth shadow maps or light directions, so that
we are able to test our method on more types of objects and scenes. Using the
light extraction model, we estimate the direction of lights (located at infinity),
and then convert these to point-lights by projecting onto the unit sphere and
multiplying by a constant, empirically set to twice the distance between camera
and object.

1.1 Network Architecture

The shadow estimation model is illustrated in Fig. 1. It is used for estimating
light directions and shadow maps given photometric stereo image inputs. Al-
though the model also outputs normal maps, these are only used during the
training and are discarded during the inference. The input images have dimen-
sions of S×C×W×H, S being the number of input images (sequence dimension),
C is the image color channel, and H ×W is the spatial image size.

The complete model is composed of four hybrid Transformer-Convolution
layers (ConvTransformers): the first block is a ConvTransformer for extracting
features from the input images, and the second and third blocks are two Con-
vTransformers for estimating shadows and for estimating light directions. The
last custom block is used for estimating the normals from the features (not
illustrated in Fig. 1).
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Fig. 1. Shadow Estimation Model. The model receives as inputs a sequence of pho-
tometric stereo images and outputs the estimated light directions and shadow maps.
Each image is split to patches, and patches are gathered by the sequence index. Each
such sequence is fed separately to the ConvTransformer. The model is composed of a
four layer ConvTransformer which outputs intermediate features. These features are
used to generate the final outputs, using 2 smaller ConvTransformers. The ConvTrans-
former can be viewed in detail in the bottom of the figure.

The feature-extraction ConvTransformer splits each input image into an 8x8
patch, as applied in Vision Transformer (ViT) [5]. In contrast to the regular
ViT, we group all patches along the sequence dimension, since the main target
of the model is predicting per-pixel output for each patch. Since predicting shad-
ows from photometric stereo images is essentially a threshold-based problem, we
choose to use an attention-based model and compare all spatially co-located
patches, instead of comparing all patches in a single image. These patches are
then used as a sequence of inputs to the transformer. Each sequence is passed
separately through a ConvTransformer (sequences can be batched together) to
produce a sequence of intermediate features extracted from the relevant patches.
Once all the patches have passed through the transformer, they are reshaped
back to the original image dimensions, and then passed through a convolution
layer to output the features. The feature-extraction ConvTransformer is com-
posed of 4 Transformer-Convolution pairs, with 16 attention heads and latent
MLP dimension of 1024.

The light direction block uses 2 ConvTransformer blocks, with a 128 dim
MLP and 4 attention heads. The shadow estimation block uses 3 ConvTrans-
former blocks with 6 attention heads and an MLP dimension of 128. It utilizes
a Sigmoid function for outputting values between 0 and 1. We also estimate
the surface normals from the features, using a linear projection layer and two
convolution layers. This is done in order to be able to learn from datasets which
have photometric stereo data and ground-truth normals.
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1.2 Training Details

We use the Blobby and Sculptures datasets [1], which contain photometric stereo
images, light directions and surface normals. We also render a shadow dataset
composed of 10 objects downloaded from Sketchfab1. Each object was rendered
in 32 different view angles and with 32 light angles for each view. We use Blender
[3] to render our datasets. We use all three datasets during training in a ratio of
1:1:10, i.e., for every 10 iterations over the shadow dataset, we iterate once over
the Blobby and Sculptures datasets.

During training, we randomly crop each input images to 64 × 64. We use
random noise and color jitter augmentations, as well as randomize the sequence
length between 16 and 32 inputs, in order to make the transformer agnostic to
the number of input images.

We use the following loss function:

L =
1

M

∑
m

(Lm
N + Lm

S + Lm
L ) (1)

where Lm
N is the normal loss, Lm

S is the shadow reconstruction loss and Lm
L is the

light direction loss. The sum is performed over all m ∈ [0,M ] sets of photometric
images in the dataset. Each such set has k ∈ [0,K] images of size H ×W along
with the associated light directions ℓk and a ground-truth normal map N . Our
rendered dataset also has ground-truth shadow maps Sk. The complete loss
combines between the loss of the ground-truth normals N and the predicted
normals N̂ ,

Lm
N =

1

HW
(1−Nm · N̂m), (2)

the L1 loss of the ground-truth and predicted shadow maps

Lm
S =

1

KHW

∑
k

|Sm
k − Ŝm

k |, (3)

and the cosine embedding loss between the ground-truth light direction ℓmk and

the estimated direction ℓ̂mk

Lm
L =

1

K

∑
k

(1− cos(ℓmk , ℓ̂mk )). (4)

We omit the supervision on the lights when using our dataset, and omit the
shadow supervision when using Blobby and Scupltures datasets. We train using
the Adam optimizer [7] for 1000 epochs with an initial learning rate of 1× 10−4

which is decreased by a factor of 0.8 every 15 epochs.

The results of the shadow estimation can be seen in Fig. 2.

1 https://sketchfab.com/
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Fig. 2. Sculpture head object shadow estimation results.
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Fig. 3. Normal error maps comparing our method to [2] and [8].

2 Additional Results

In this section, we present more results of the DeepShadow method. We also
examine the performance of the shadow estimation network on data which lacks
ground-truth shadows.

2.1 Normal map errors

Fig. 3 shows the previously shown objects’ normal map errors. Our method
produces less normal errors on the Relief, Cactus, Surface and Rose objects
compared to other methods.

2.2 Specular and diffuse objects

We test our method’s resiliency to specular inputs and compare to that of a
shape-from-shading method. We rendered a modified version of our rose object,
with two different materials; highly specular and diffuse (Fig. 4).
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Fig. 4. Effect of specularities on angle error of output normals.

We evaluated our algorithm (including the shadow extraction model) on these
objects, and compared the surface normal results to SDPS [2]. The diffuse object
produces 25.02 MAE and the metallic object produces 34.35 MAE using SDPS,
while our method achieves 26.50 MAE and 27.76 MAE, respectively. With spec-
ularity added, we can see a big drop in accuracy using SDPS, while our method
achieves a smaller drop.

2.3 Shadow maps reconstruction error

We present the shadow reconstruction error on two objects from our rendered
dataset. The reconstruction has two types of errors. The first is due to the nearest
neighbor rounding used for the boundary sampling in the R2 method, and can
be seen clearly in the third row cactus’ shadow error, in the upper area, and
in the surface’s second, third and sixth rows. The second error can mostly be
seen in the edges of the objects (e.g., last row in Fig. 5). The source of the
error are edges in the depth map. Recall we generate a shadow line scan from
the light source to each boundary pixel, and estimate the depth map value for
every pixel in the image. The error can be minimized by sampling each line in
a denser fashion rather than sampling a coordinate for every pixel, although it
would come at a cost of computational cost.

2.4 Results on objects from Dome dataset

We present our results on vase, face and golf ball objects from the Dome dataset
[6]. The vase results can be seen in Fig. 6. Previous shape-from-shadow methods
[4, 9, 10] have used a threshold on gray-scale images to estimate shadows from
images. As can be seen in Fig. 6, simple thresholds fail on an object such as the
vase, which has specular highlights. We show the results for 3 different thresholds
by taking values of 0.4, 0.5 and 0.6. Each threshold fails to produce accurate
shadow maps in specific areas.

We also show our depth and normal estimation results in Fig. 7, which have
been discussed in the main paper.

2.5 Results on real object

We present qualitative results on the hand2 and statue3 in Fig. 8. The objects
were acquired in a half-dome setting with 34 different illuminations. Ground

2 Work of Man Ray, sampled at the Museum of Israel.
3 Privately sampled.
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Fig. 5. Shadow reconstruction error. The top 3 rows are from the cactus object and
the bottom 3 rows are from the surface object. Ground-truth and estimated shadows
are shown, along with the L1 error between them. Each column represents a different
illumination direction.

truth normals and depth are not available on this dataset, as well as light direc-
tions, which were estimated using the model described in Section 1. Our method
requires the intrinsic camera parameters which were not known, thus had to be
roughly estimated by guessing the object’s size, and assuming a typical 50mm
focal length.
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Fig. 6. Vase object shadow estimations. The top row contains the input images, the
second row is our estimated shadow results using the model described in Section 1.
The three bottom rows are a baseline result by taking thresholds of 0.4, 0.5 and 0.6
over the grayscale levels. Each column is a different light direction. A threshold of 0.4
fails on light directions 2, 3, and 4; a threshold of 0.5 fails on light directions 2 and 6
(external region); a threshold of 0.6 fails on light directions 4, 5, and 6.
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Fig. 7. Results on objects from [6]. Each row (from left to right) consists of ground-
truth normals, estimated normals, normal error map and estimated depth. As described
in the paper, the results of DeepShadow on the vase object outperform other attempted
methods. The normal map produced from the golf ball has errors around the edges.
The face’s estimated normal map has errors mostly around the forehead area, since
that area is smooth and sparse in shadows.
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Fig. 8. Input images, shadows, estimated depth and normals. The upper row includes
the hand object images, and the second row their estimated shadows. The third row
contains the estimated depth and surface normals of both objects. The fifth row includes
the statue image inputs and the forth row their estimated shadow maps. We can observe
DeepShadow is able to extract fine detail in areas such as the helmet and hair of the
statue, and fails in smooth areas such as its neck.
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