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Abstract. This paper addresses the problem of camera auto-calibration
from the fundamental matrix under general motion. The fundamental
matrix can be decomposed into a symmetric part (a Steiner conic) and
a skew-symmetric part (a fixed point), which we find useful for fully cal-
ibrating camera parameters. We first obtain a fixed line from the image
of the symmetric, skew-symmetric parts of the fundamental matrix and
the image of the absolute conic. Then the properties of this fixed line
are presented and proved, from which new constraints on general eigen-
vectors between the Steiner conic and the image of the absolute conic
are derived. We thus propose a method to fully calibrate the camera.
First, the three camera intrinsic parameters, i.e., the two focal lengths
and the skew, can be solved from our new constraints on the imaged
absolute conic obtained from at least three images. On this basis, we can
initialize and then iteratively restore the optimal pair of projection cen-
ters of the Steiner conic, thereby obtaining the corresponding vanishing
lines and images of circular points. Finally, all five camera parameters
are fully calibrated using images of circular points obtained from at least
three images. Experimental results on synthetic and real data demon-
strate that our method achieves state-of-the-art performance in terms of
accuracy.

Keywords: Auto-calibration, Steiner conic, Fundamental matrix, Gen-
eral motion

1 Introduction

Camera calibration is a very critical step in image measurement or machine vi-
sion applications such as 3D reconstruction [36], [23], [5], vision metrology [22]
and robot navigation [4]. The accuracy and stability of the calibration algorithm
directly affect its usability. In the past few decades, researchers have proposed
many methods to solve the problem of camera calibration, which can be roughly
divided into two categories: calibration with objects [37], [10], [35] and with-
out objects [36], [7], [12], [34], [30]. Calibration methods with objects always
require highly accurate tailor-made calibration objects, such as lines [37], 2D
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planar patterns [36], [10], [15] or 3D objects [35], [32], [24], etc. These meth-
ods can accurately calibrate the camera parameters according to the geometric
constraints provided by the calibration objects. However, the calibration process
is manually cumbersome, which greatly limits the scope of application of these
methods. In contrast, auto-calibration methods can recover the camera intrinsic
parameters through corresponding points [7], [12], [31], [3], [21] or object con-
tours in the scene images [34], [19], [30], [33], [26]. Since no specific objects are
required, auto-calibration methods can avoid the tedious manual process, greatly
expanding its application and can even be applied to pre-shot videos.

Researchers have successfully proposed closed-form solutions for auto-calibr-
ation under constrained motion, such as rotational motion [1], [2], planar motion
[16], [6], [34], [29], etc. For pure rotation, the camera intrinsic parameters can
be calibrated using the rotational conjugation of the infinite homography of the
image pair [13]. For planar motion [16], [6], the translation is always perpendicu-
lar to the rotation axis. The vanishing point of the translation direction and the
image of the rotation axis can be derived from the fundamental matrix, which
provides a pole-polar relationship with respect to the image of the absolute conic
for auto-calibration. In [34], [29], the authors calibrate the three intrinsic param-
eters using the imaged silhouettes of an object under turntable motion. However,
due to insufficient geometric constraints, most of these existing methods can only
calibrate a limited number of camera intrinsic parameters.

The first auto-calibration method for general motion used the Kruppa equa-
tion to obtain the camera intrinsic parameters [13], [7], [12], [31], [3], [21]. It uses
the fundamental matrix as input to obtain the constraints on the dual image
of the absolute conic, which is used for camera calibration. The Kruppa equa-
tion contains two independent constraints on the five unknown camera intrinsic
parameters from two views under general motion. Therefore, at least three im-
ages can be used to fully calibrate the camera. Although algebraic solutions [13],
[7], [28] are available, there are still 25 possible solutions for the five unknowns
from the five quadratic equations [13]. Later in [21], a hybrid method of GA [17]
& PSO [18] was proposed to optimize the accuracy of camera auto-calibration,
which heavily depends on the initial values. Other approaches attempt to sim-
plify the Kruppa equation by eliminating the scale coefficients by some specific
operations, such as applying singular value decomposition (SVD) to the funda-
mental matrix [13], [7], [21], [11] or using the rank constraint on the coefficient
matrix [20], [11]. However, there is still several ambiguity in the obtained con-
straints for camera auto-calibration. Therefore, the inaccuracy and ambiguity of
these methods have made them lose their popularity.

This paper presents a two-step solution to the problem of camera auto-
calibration using the fundamental matrix under general motion. The method
is based on a newly discovered constraint derived from the Steiner conic, the
symmetric part of the fundamental matrix. Inspired by the general eigenvectors
of two separate conics [15], [14], we first obtain a fixed line from the image of
the Steiner conic, the skew-symmetric part of the fundamental matrix and the
image of the absolute conic. Then the properties of this fixed line are presented
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and proved, from which new constraints on general eigenvectors between the
Steiner conic and the image of the absolute conic are derived. We thus propose a
method to fully calibrate the camera. First, the three parameters of the camera
intrinsics, namely the two focal lengths and the skew, can be recovered by our
new constraints on the imaged absolute conic from at least three images. On
this basis, we can initialize and iteratively restore the optimal pair of projection
centers of the Steiner conic, thereby obtaining the corresponding vanishing lines
and images of circular points. Finally, the five camera parameters are fully cali-
brated using images of circular points obtained from at least three images. We
summarize our contributions as follows:

1. We find that a new fixed line can be obtained from the image, which is an
invariant under general motion;

2. New constraints are derived from the general eigenvectors of the image of
the absolute conic and the Steiner conic for calibrating the three intrinsic
parameters of the camera;

3. We obtain the optimal pair of projection centers of the Steiner conic for
fully calibrating all five intrinsic parameters of the camera, and our method
achieves state-of-the-art accuracy for auto-calibration under general motion.

The paper is organized as follows. Section 2 introduces some basic concepts
that will be used in the following sections. Section 3 proposes a method for de-
termining a fixed line under general motion. Section 3 and 4 describe the two
properties of the fixed line and the derived calibration method, respectively. Sec-
tion 5 lists the degenerate cases. Synthetic and real experiments on the proposed
method are shown in Section 6. Conclusions are given in Section 7.

2 Preliminary

This section briefly introduces the basic concepts that will be used for camera
calibration. We use a pinhole camera model to represent camera intrinsics.

2.1 The pinhole camera model

A 3D point P = [X,Y, Z, 1]
T

is projected into the image at p = [u, v, 1]
T

by

µp = K [R|t]P, (1)

where µ is a non-zero scalar, [R|t] denotes the rigid body transformation, and
K is the camera intrinsic matrix, as

K =

fx s u0
0 fy v0
0 0 1

 . (2)

Here f x and f y are the focal lengths along x- and y-axis, respectively. s is the
skew parameter, (u0, v0) is the principal point.
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The absolute conic is a conic at infinity [13], which is projected into the image
of the absolute conic (IAC) ω = K−TK−1, whose dual is ω∗ = KKT . Once at
least five independent constraints on ω is obtained, the intrinsic matrix K can
be determined by the Cholesky decomposition [13], [9] of ω.

2.2 The Steiner conic from the fundamental matrix

The fundamental matrix F can be decomposed into a symmetric part Fs and a
skew-symmetric part Fa [13], i.e.,

Fs =
F + FT

2
, Fa =

F− FT

2
, (3)

so that F = Fs +Fa. Geometrically, Fs is a Steiner conic, which is the image of
the horopter curve (x = x′) formed by a series of intersection points xc of the
corresponding epipolar lines l and l′ in the two views (see Fig. 1).
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Fig. 1. Geometric representation F. The fundamental matrix F is decomposed
into a symmetric part Fs and a skew-symmetric part Fa. Under general motion, Fs

is the Steiner conic formed by the horopter points xc, which are the intersections of
the corresponding epipolar lines {l, l′} in the two views. The line la is polar of xa, the
null-vector of Fa, and intersects Fs at the epipoles e, e′ of the two views.

Fa can be written as Fa = [xa]×, where the point xa is the null-vector of
Fa. The polar of xa with respect to Fs is the line la = Fsxa, intersects with Fs

at the two epipoles {e, e′}, i.e., la = e× e′. Here e and e′ are the null vectors of
F and FT , respectively. Consequently, once F is determined by the normalized
eight-point algorithms [13] or the five-point method [3], Fs, the epipoles {e, e′},
the skew-symmetric point xa and its polar la can be uniquely defined.

3 The fixed line and camera calibration

This section introduces a fixed line and its property, which can be used for
camera calibration. For a pair of views under general motion, let v⊥ = ω∗la is
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Fig. 2. The fixed line ls of two views under general motion. The point v⊥ is
the pole of the line la w.r.t the IAC ω. The lines ls and la are orthogonal with respect
to ω, where the line ls is obtained by connecting the points v⊥ and xa.

the pole of the line la with respect to the IAC ω, the line ls (see Fig. 2) be the
fixed line connecting the points xa and v⊥, as

ls = xa × v⊥

=
[
xa

]
× v⊥

= Faω
∗la.

(4)

As Fa is skew-symmetric, left-multiplying lTaω
∗ on both sides of Eq. 4, we obtain

lTaω
∗ls = lTaω

∗Faω
∗la = 0. (5)

Hence the lines la and ls are orthogonal with respect to ω, where ls and la can
be regarded as the vanishing lines of two perpendicular planes in 3D space [13].

3.1 General eigenvectors of IAC ω and Fs

Here we introduce the location of general eigenvectors of IAC ω and Fs.

Proposition 1. Under general motion, one of the general eigenvectors of the
IAC ω and Steiner conic Fs lies on the line la, and the other two are on ls.

Proof. For two views captured by the same camera under general motion, the
IAC ω and the Steiner conic Fs can be drawn as two separated conics (see
Fig. 3). Inspired by [13], [15], [14], [29], there is a unique common self-polar
triangle4v1v2v3 with respect to these two conics, whose vertices are the general
eigenvectors of ω∗Fs, as

Fsvi ∼ ωvi ⇒ (ω∗Fs − γiI)vi = 03×1, (6)
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Fig. 3. Location of the general eigenvectors of the IAC ω and the Steiner
conic Fs. Under general motion, the IAC ω and Steiner conic Fs can be drawn as
two fixed but separate conics. There is only one common self-polar triangle 4v1v2v3,
whose vertices are the general eigenvectors of ω∗Fs. The general eigenvector v1 is on
the line la. The other two, v2 and v3, lie on the fixed line ls.

where γi is the non-zero eigenvalues with i = 1, 2, and 3. As demonstrated
in [15], [14], the position of 4v1v2v3 is fixed with respect to the two conics.
The vertex v1 locates apart from the two conics, and the other two vertices v2

and v3 are located inside the two conics, respectively. In addition, based on the
pole-polar relationship, the general eigenvectors (v1,v2,v3) satisfy with{

vi ∼ F−1s (vj × vk) ,

vi ∼ ω∗ (vj × vk) ,

(7a)

(7b)

where {i, j, k} = {1, 2, 3}. Let lv be the line joining v2 and v3, v⊥ satisfies with

vT
⊥lv ∼ vT

⊥ (v2 × v3)

∼ vT
⊥FsF

−1
s (v2 × v3)

∼ lTaω
∗Fsv1

∼ lTa v1.

(8)

And from Eq. 7, the point xa = F−1s la satisfies

xT
a lv ∼

(
F−1s la

)T
(v2 × v3)

∼
(
F−1s la

)T
ωω∗ (v2 × v3)

∼ lTaF
−1
s ωv1

∼ lTa v1.

(9)
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From Eq. 8 and 9, we can have xT
a lv = κvT

⊥lv ⇒
(
xT
a − κvT

⊥
)
lv = 0, where κ is

a non-zero scalar. Hence, the line ls connecting xa and v⊥ aligns with the line
lv, thus both v2 and v3 lies on ls, i.e., ls ∼ v2×v3. Furthermore, it can be easily
derived that lTa v1 ∼ xT

a ls = 0, which indicates the eigenvector v1 lies on la. ut

3.2 Calibration of the focal lengths and the skew

In order to eliminate the unknown eigenvalues γi in Eq. 6, we can substitute the
skew-symmetric matrix of the corresponding eigenvectors on both sides of the
equation. Furthermore, since the general eigenvector v1 lies on the line la, the
constraints on the IAC ω for calibrating the camera can be obtained as{

lTa v1 = 0,

[v1]× ω∗Fsv1 = 03×1,

(10a)

(10b)

which include three independent constraints. Let v1 have two unknown coordi-
nates (v1x, v1y) and the camera have only one unknown focal length f. The three
unknowns, i.e., f , v1x, and v1y, can therefore be uniquely recovered by solving
Eq. 10. Furthermore, for a camera with the known principal point, the focal
length (f x, f y), skew s, and six parameters of three distinct v1 for each pair of
views can be recovered through the nine independent constraints (Eq. 10) that
are obtained from three images.

4 Full calibration using the centers of the Steiner conic

This section presents the properties of the centers of the Steiner conic Fs and
then introduces a method to calibrate all the five camera intrinsic parameters.

4.1 The centers of the Steiner conic Fs

Proposition 2. Suppose the Steiner conic Fs is the projection of a circle on
the image plane. Its two projected centers o1,2 are associated with two opposite
viewing directions of Fs, both lying on the fixed line ls. They correspond to
the two planes containing the circle. Furthermore, the general eigenvector v1,
which lies outside the two conic Fs and ω coincides with the intersection of the
vanishing lines of these two planes lh1,2.

Proof. In projective geometry, any non-degenerate conic is projectively equiva-
lent to a circle [13]. Therefore, based on different viewing directions, there are
two projected centers of the Steiner conic Fs [13], [29]. One is along the camera’s
viewing direction, and the other is on the opposite viewing direction. Inspired
by [35], [24], [15], [14], IAC ω and the Steiner conic Fs intersect at four distinct
circular points ii, ji, forming two vanishing lines lhi as (see Fig. 4 (a))

lhi = ii × ji, (11)
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where i = 1, 2. The two pairs of circular points form a quadrangle, i1i2j1j2 (see
Fig. 4 (b)). The diagonal triangle 4v1v2v3 is self-polar triangle for the IAC ω
[13] [14], where the point v1 is the intersection point of the diagonals of the
quadrangle, and the points v2 and v3 are the intersection of two opposite sides
of the quadrilateral. Therefore, we can get v1 = lh1 × lh2.
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Fig. 4. The projected centers of Steiner conic Fs are on the line ls. (a) The
intersection points of IAC ω and the Steiner conic Fs are two pairs of circular points
ii, ji, and form two vanishing lines lhi, where i = 1, 2. Accordingly, based on the pole-
polar relationship with respect to Fs, two projected centers oi associated with lhi and
lie on the line ls. (b) The general eigenvector v1, which lies outside the two conics Fs

and ω, coincides with the intersection of the two vanishing lines lhi.

According to the pole-polar relationship, these two projected centers of Fs

can be obtained by oi ∼ F−1s lhi, which form a line lc as

lc ∼ o1 × o2

∼ F−1s lh1 × F−1s lh2

∼ (F−1s )∗(lh1 × lh2)

∼ Fsv1.

(12)
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From Proposition 1, we can get ls ∼ lc ∼ o1 × o2.
ut

Therefore, once the projected centers oi of the Steiner conic Fs are obtained,
the polar lines lhi with respect to Fs can be recovered. They intersect Fs at two
pairs of circular points ii, ji, which lie on the image of the absolute conic ω as

iTi ωii = jTi ωji = 0. (13)

4.2 Recovery of the centers of the Steiner conic Fs

When the principal point is known, Section 3.2 introduces a method to calibrate
three camera intrinsic parameters using three views. When the principal point
is unknown, it is theoretically possible to fully recover the camera intrinsic pa-
rameters using the method in Section 3.2. However, due to the high order of
ambiguity, full camera calibration is not easy to achieve [13]. Instead, as de-
scribed in Section 4.1, the intersection of the IAC ω and the Steiner conic Fs

are two pairs of imaged circular points, which provide four linear orthogonal
constraints on IAC ω (Eq. 13). Therefore, from three views, six pairs of imaged
circular points are sufficient to calibrate the five camera intrinsic parameters.

Taking the center of the image as the initial value of the principal point, we
can first get the initial focal length f̂x, f̂y, the skew ŝ from three images, using
the method in Section 3.2, and thus the initial IAC ω̂. For any two views, the
image of circular points îi, ĵi can be found by intersecting the initial ω̂ with Fs,
so as the vanishing lines l̂hi, by connecting the îi, ĵi, respectively. The two initial
projected centers ôi of Fs can then be recovered by ôi = F−1s l̂hi (i = 1, 2).

Next, we set the search range for the optimal solution centered on the two
initial centers ôi. We generate a series of uniformly distributed sample points
within these ranges. For each pair of the sample points õi, we can get the line
l̃s = õ1 × õ2. We can also get the corresponding vanishing line l̃hi using the
pole-polar relationship l̃hi = Fsõi with respect to Fs. Then, we can calculate
the new imaged circular points ĩi, j̃i, which are the intersections of the vanishing
line l̃hi and Fs. We then use Eq. 13 to recover the corresponding image of the
absolute conic ω̃. Finally, all the obtained parameters, the conic centers õi, the
image of circular points ĩi, j̃i, the corresponding IAC ω̃, the Steiner conics Fs,
the lines la, and the points xa, are regarded as the input value to substitute into
the cost function for an iterative optimization.

According to the properties of the line ls and its Euclidean geometry property,
our cost function for the optimal conic centers õi by the Levenberg-Marquardt
optimization [27] is

cost =

N∑
3

(̃lTs ω̃
∗la + l̃Ts xa + lTl ω̃

∗lr), (14)

where N is the number of images. l̃Ts ω̃
∗la contains the orthogonality between l̃s

and la, where l̃s is obtained by connecting the two center õi. l̃
T
s xa indicates l̃s

defined by the projected centers of Fs should also pass through the fixed point
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xa. lTl ω̃
∗lr contains the orthogonality between the lines ll and lr (see Fig. 5)

since l̃s passes through the two centers of the conic Fs. Let xc be an arbitrary
point on Fs, ll = p1×xc, lr = p2×xc, where the point p1 and p2 are the image
of the terminal vertexes of the diameter and can be obtained as the intersections
of the line l̃s and Fs.

𝑜!

𝑜!

𝑥"

𝐹#

𝑙#

𝑙$

𝑝!

𝑝%

𝑙&

Fig. 5. The illustration for lTl ω̃
∗lr. The points p1 and p2 are the intersections of ls

and Fs, and are also the endpoints of the diameter. xc is an arbitrary point on Fs. The
lines ll and lr are formed by connecting xc with p1 and p2, respectively. Moreover,
hence lTl ω̃

∗lr contains the orthogonality between the lines ll and lr.

Once the iterative optimization converges, we can obtain three pairs of opti-
mized conic centers oi. Based on the pole-polar relationship, the corresponding
vanishing lines lhi can be recovered with the optimized conic centers oi with
respect to the Steiner conic Fs, i.e., lhi = Fsoi, and then further obtain the
pairs of the image of circular points ii, ji. The IAC ω with five unknown param-
eters can be recovered from three or more images by the linear orthogonality
constraint in Eq. 13. Finally, the intrinsic matrix K can be obtained through
Cholesky decomposition on the IAC ω [9].

5 Degenerate cases

The proposed method cannot be used for camera calibration when the camera
performs degenerate motions such as pure translation, rotation, and planar mo-
tion. Because in these cases, although the point xa and its polar line la can be
recovered from Fs, Fs is degenerate, and we cannot recover the complete Steiner
conic to get the image of the circular points. Another work will be carried out
to introduce detailed camera calibration methods for degenerate motion using
different constraints.

6 Experiments and results

Experiments are carried out on synthetic and real data to evaluate the feasibility
of the proposed methods.
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6.1 Synthetic data

In synthetic experiments, a cube mesh containing 3000 3D points (see Fig. 6) was
projected into images using predefined projection matrices. Image size is 520 ×
480. The camera focal lengths are f x = 1000, f y = 800, the skew is s = 0.1, and
the principal point is (u0, v0) = (270, 250). The external parameters of general
motion are randomly set. We add 0 to 3 pixels of uniform random noise to each
image point with a noise step size of 0.1. For each noise level, 100 independent
trials were conducted to evaluate the feasibility of the proposed method.

Fig. 6. The synthetic object is a cube mesh containing 3000 3D points.

Known Principal Point. The camera is calibrated from three images using the
method described in Section 3.2, with the known principal point. Fig. 7 shows
the results of calibrated focal length f x, f y and the skew s versus different image
noise levels. It can be seen that the medians of the three calibrated parameters
are accurate, all close to the ground truth. The relative errors at noise level 1.0
are f x = 0.02%, f y = 0.17%. Since the scale of the skew s is much smaller than
that of the focal length, its direct estimation tends to be unstable. However, the
errors of skew angle θ in s = −fx cot θ [7] is less than 0.2◦ (0.017%) compared
to the ground truth angle.

Full Camera Auto-Calibration. In this case, the camera is first calibrated
from three images using the method described in Section 3.2, assuming the initial
principal point is at the center of the image. The pair of projected centers of
the Steiner conic are then initialized and used to set the searching ranges for
optimal solutions using the methods described in Section 4.2. In each searching
range, 100 uniformly distributed sample image points are generated. Finally, the
five camera intrinsic parameters are fully calibrated. Fig. 8 shows the results
of calibrated focal length f x, f y, u0, v0 and the skew s versus different image
noise levels. It can be seen that the medians of the calibrated parameters are
accurate, all close to the ground truth. The relative errors at noise level 1.0 are
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Fig. 7. (a) - (c) Boxplots of known principal points, calibrated focal length f x, f y and
skew s under different image noise levels. (d) The relative errors of the calibrated focal
length f x and f y with respect to the number of images under the noise level 1.0.

f x = 0.13%, f y = 0.33%, u0 = 2.35%, and v0 = 4.01%. The errors of skew angle
θ in s = −fx cot θ is less than 0.9◦ (1.0%) compared to the ground truth angle.

Furthermore, the estimate of skew s in this case is worse than when the
principal points are known. In addition to the scale issue we mentioned earlier,
in this case the instability of the principal point here makes f y worse, further
affecting the skewed s estimate. Fortunately, we can adopy the general zero skew
s assumption to provide more stable calibration results [25], [8], [13], [36].
Increased Number of Images. As mentioned in [36], the error decreases
when more images are used. At noise level 1.0, we use more images to verify the
accuracy of the camera calibration for three (see Fig. 7 (d)) or five parameters
(Fig. 8 (f)), respectively. The median value of each obtained camera parameter
is regarded as the best result. As can be seen from Fig. 7 (d) and Fig. 8 (f),
the relative error of the camera intrinsic parameters decreases as the number
of images increases. For both cases, an optimal result can be obtained when at
least six images are used.

6.2 Real scenes

In the real experiment, a set of images is captured by Nikon D300s with the
image size 4032 × 3024. The ground truth is obtained as the calibration results
of the chessboard method [36] from 12 images.
Known Principal Point. The Nikon D300s is calibrated with 3, 6, 10 images
respectively, using the image center as the principal point. The calibration results
of focal length f x, f y and skew s are shown in Table 1. It can be seen that our
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Fig. 8. (a) - (e) Boxplots of calibrated focal length f x, f y, principal point u0, v0 and
skew s under different image noise levels. (f) The relative errors of the calibrated focal
length f x, f y, and principal point u0, v0 with respect to the number of images under
the noise level 1.0.

method can obtain accurate focal length calibration results, and the relative
error of focal length is about 4%. The skew s is not accurately estimated, but
can be assumed to be zero to provide more stable calibration results. Meanwhile,
as more images are used in the calibration, the relative error decreases.

Full camera auto-calibration of intrinsic parameters. Using the method
in Sec. 4.2, we fully calibrate five camera intrinsic parameters with 3, 6, 10
images, respectively. We also provide a comparison with the widely used auto-
calibration method GA-PSO [21] and the results are shown in Table 2. It can be
seen that the relative errors achieve better accuracy compared with GA-PSO.
The skew s is not accurately estimated, but can be assumed to be zero to provide
more stable calibration results [8]. Meanwhile, as more images are used in the
calibration, the relative error decreases.
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Table 1. Results with the known principal point.

Methods fx fy s

GT (12 images) [36] 4486.74 4493.00 -4.07

Ours (3 images) 4213.02 (6.10%) 4722.08 (5.10%) 57.20

Ours (6 images) 4703.82 (4.84%) 4291.95 (4.48%) -46.40

Ours (10 images) 4692.24 (4.58%) 4301.74 (4.25%) -12.46

Table 2. Results of full auto-calibration of intrinsic parameters.

Methods fx fy s u0 v0
GT(12) 4486.70 4493.00 -4.07 2162.40 1464.70

GA-PSO(3) 4073.27 (9.22%) 4059.92 (9.63%) 251.13 1944.27 (10.08%) 1278.97 (12.68%)

Ours(3) 4287.14 (4.45%) 4234.33 (5.76%) 172.72 2005.88 (7.24%) 1334.47 (8.89%)

GA-PSO(6) 4252.29 (5.22%) 4171.24 (7.16%) 148.49 2389.43 (10.50%) 1319.74 (9.90%)

Ours(6) 4343.96 (3.18%) 4730.33 (5.28%) 142.68 2019.71 (6.60%) 1380.54 (5.75%)

GA-PSO(10) 4699.22(4.74%) 4234.33 (5.76%) 104.05 1990.95 (7.92%) 1354.28 (7.53%)

Ours(10) 4333.79 (3.41%) 4678.82 (4.14%) 108.62 2050.43 (5.18%) 1391.40 (5.01%)

7 Conclusions

This paper proposes new constraints derived from the Steiner conic, the sym-
metric part of the fundamental matrix, to solve the problem of camera auto-
calibration. A method has been presented to determine a fixed line between two
views under general motion. We then introduced and proved two properties of
the fixed line that can be used for calibration. Based on a known principal point
and the new constraints, we presented a method that can calibrate the focal
lengths and the skew from three images. Moreover, we proposed a method to
fully calibrate the five camera intrinsic parameters through iterative optimization
from at least three images, by recovering the pair of the projected centers of the
Steiner conic. Finally, we verified the feasibility and accuracy of the proposed
method through synthetic and real experiments and achieved state-of-the-art
calibration results.
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