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Abstract. Explicit neural surface representations allow for exact and
efficient extraction of the encoded surface at arbitrary precision, as well
as analytic derivation of differential geometric properties such as surface
normal and curvature. Such desirable properties, which are absent in its
implicit counterpart, makes it ideal for various applications in computer
vision, graphics and robotics. However, SOTA works are limited in terms
of the topology it can effectively describe, distortion it introduces to re-
construct complex surfaces and model efficiency. In this work, we present
Minimal Neural Atlas, a novel atlas-based explicit neural surface repre-
sentation. At its core is a fully learnable parametric domain, given by an
implicit probabilistic occupancy field defined on an open square of the
parametric space. In contrast, prior works generally predefine the para-
metric domain. The added flexibility enables charts to admit arbitrary
topology and boundary. Thus, our representation can learn a minimal
atlas of 3 charts with distortion-minimal parameterization for surfaces
of arbitrary topology, including closed and open surfaces with arbitrary
connected components. Our experiments support the hypotheses and
show that our reconstructions are more accurate in terms of the overall
geometry, due to the separation of concerns on topology and geometry.

Keywords: Surface representation · 3D shape modeling

1 Introduction

An explicit neural surface representation that can faithfully describe surfaces
of arbitrary topology at arbitrary precision is highly coveted for various down-
stream applications. This is attributed to some of its intrinsic properties that
are absent in implicit neural surface representations.

Specifically, the explicit nature of such representations entail that the en-
coded surface can be sampled exactly and efficiently, irrespective of its scale and
complexity. This is particularly useful for inference-time point cloud generation,
mesh generation and rendering directly from the representation. In contrast, im-
plicit representations rely on expensive and approximate isosurface extraction
and ray casting. Furthermore, differential geometric properties of the surface can
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also be derived analytically in an efficient manner [5]. Some notable examples of
such properties include surface normal, surface area, mean curvature and Gaus-
sian curvature. Implicit neural representations can at most infer such quantities
at approximated surface points. Moreover, explicit representations are poten-
tially more scalable since a surface is merely an embedded 2D submanifold of
the 3D Euclidean space.

Despite the advantages of explicit representations, implicit neural surface
representations have attracted most of the research attention in recent years.
Nevertheless, this is not unwarranted, given its proven ability to describe general
surfaces at high quality and aptitude for deep learning. This suggests that explicit
representations still have a lot of potential yet to be discovered. In this work, we
aim to tackle various shortcomings of existing explicit neural representations, in
an effort to advance it towards the goal of a truly faithful surface representation.

State-of-the-art explicit neural surface representations [18,5,13,27] mainly
consists of neural atlas-based representations, where each chart is given by a
parameterization modeled with neural networks, as well as a predefined open
square parametric domain. In other words, such representations describe a sur-
face with a collection of neural network-deformed planar square patches.

In theory, these representations cannot describe surfaces of arbitrary topol-
ogy, especially for surfaces with arbitrary connected components. This is clear
from the fact that an atlas with 25 deformed square patches cannot represent a
surface with 26 connected components. In practice, these works also cannot faith-
fully represent single-object or single-connected component surfaces of arbitrary
topology, although it is theoretically capable given sufficient number of charts.
Furthermore, these atlas-based representations generally admits a distortion-
minimal surface parameterization at the expense of representation accuracy. For
instance, distortion is inevitable to deform a square patch into a circular patch.
Some of these works also require a large number of charts to accurately represent
general surfaces, which leads to a representation with low model efficiency.

The root cause of all limitations mentioned above lies in predefining the para-
metric domain, which unnecessarily constrains its boundary and topology, and
hence also that of the chart. While [27] has explored “tearing” an initial open
square parametric domain at regions of high distortion, the limitation on distor-
tion remains unaddressed. Our experiments also show that its reconstructions
still incur a relatively high topological error on general single-object surfaces.

Contributions. We propose a novel representation, Minimal Neural Atlas,
where the core idea is to model the parametric domain of each chart via an
implicit probabilistic occupancy field [24] defined on the (−1, 1)2 open square of
the parametric space. As a result, each chart is free to admit any topology and
boundary, as we only restrict the bounds of the parametric domain. This en-
ables the learning of a distortion-minimal parameterization, which is important
for high quality texture mapping and efficient uniform point cloud sampling.
A separation of concerns can also be established between the occupancy field
and parameterization, where the former focuses on topology and the latter on
geometry and distortion. This enables the proposed representation to describe
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surfaces of arbitrary topology, including closed and open surfaces with arbitrary
connected components, using a minimal atlas of 3 charts. Our experiments on
ShapeNet and CLOTH3D++ support this theoretical finding and show that our
reconstructions are more accurate in terms of the overall geometry.

2 Related Work

Point clouds, meshes and voxels have long been the de facto standard for surface
representation. Nonetheless, these discrete surface representations describe the
surface only at sampled locations with limited precision. First explored in [18,35],
neural surface representations exploits the universal approximation capabilities
of neural networks to describe surfaces continuously at a low memory cost.

Explicit Neural Surface Representations. Such representations provide a
closed form expression describing exact points on the surface. [18,35] first pro-
posed to learn an atlas for a surface by modeling the chart parameterizations
with a neural network and predefining the parametric domain of each chart to
the open unit square. Building on [18], [5] introduced novel training losses to
regularize for chart degeneracy, distortion and the amount of overlap between
charts. [13] additionally optimizes for the quality of overlaps between charts.
Such atlas-based representations have also been specialized for surface recon-
struction [34,3,26]. However, these representations suffer from various limita-
tions outlined in Sec. 1, as a consequence of predefining the parametric domain.
Hence, [27] proposed to adapt to the target surface topology by “tearing” an
initial unit square parametric domain. In addition to the drawbacks mentioned
in Sec. 1, this single-chart atlas representation also theoretically cannot describe
general single-object surfaces. Moreover, the optimal tearing hyperparameters
are instance-dependent, as they are determined by the scale, sampling density
and area of the surface, which cannot be easily normalized.

Implicit Neural Surface Representations. These representations gener-
ally encode the surface as a level set of a scalar field defined on the 3D space,
which is parameterized by a neural network. Some of the first implicit rep-
resentations proposed include the Probabilistic Occupancy Field (POF) [24,9]
and Signed Distance Field (SDF) [28]. These representations can theoretically
describe closed surfaces of arbitrary topology and they yield accurate water-
tight reconstructions in practice. However, these works require ample access to
watertight meshes for training, which might not always be possible. [7,17,1,2,4]
proposed various approaches to learn such representations from unoriented point
clouds. Nevertheless, POF and SDF are only restricted to representing closed
surfaces. [10] proposed to model an Unsigned Distance Field (UDF) so that both
open and closed surfaces can be represented as the zero level set. While this is
true in theory, surface extraction is generally performed with respect to a small
epsilon level set, which leads to a double or crusted surface, since there is no
guarantee that the zero level set exists in practice. Consequently, UDF cannot
truly represent general surfaces.
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Fig. 1: Overview of our proposed method.

3 Our Method

We first present our proposed surface representation and its theoretical motiva-
tion (Sec. 3.1, 3.2). Next, we detail how to learn this representation (Sec. 3.3)
and describe an approach for extracting point clouds and meshes of a specific
size during inference (Sec. 3.4). An illustration of our method is given in Fig. 1.

3.1 Background

Amanifold M is a topological space that locally resembles an Euclidean space. A
surface S is merely a 2-dimensional manifold, or 2-manifold in short. In general,
a manifold can be explicitly described using an atlas, which consists of charts
that each describe different regions of the manifold. Formally, a chart on an
n-manifold M can be denoted by an ordered pair (U,φ), whereby U ⊂ Rn is
an open subset of the n-dimensional Euclidean space and φk : U 7→ M is a
homeomorphism or parameterization from U to an open subset of M. An atlas
for M is given by an indexed family of charts {(Uk, φk) | k ∈ K} which forms
an open cover of M (i.e.

⋃
k∈K φk(Uk) = M).

It is well-known that the Lusternik-Schnirelmann category [16,21,11] of a gen-
eral n-manifold is at most n+1. This implies that irrespective of its complexity,
a general n-manifold always admits an atlas of n+ 1 charts. Consequently, this
defines the notion of a minimal atlas for a general n-manifold.

3.2 Surface Representation

Motivated by such a theoretical guarantee, we propose to represent general sur-
faces S with a minimal atlas of 3 charts modeled using neural networks. Specifi-
cally, we model the surface parameterization of each chart k with a Multi-Layer
Perceptron (MLP) parameterized by θk, which we denote as φθk . Furthermore,
we employ a probabilistic occupancy field [24] defined on the R2 parametric space
to implicitly model the parametric domain Uθk of each chart k.



Minimal Neural Atlas 5

More precisely, we model a probabilistic occupancy field oθk with an MLP
parameterized by θk on the (−1, 1)2 open square of the parametric space. This
allows us to implicitly represent the parametric domain Uθk as regions in the
parametric space with occupancy probability larger than a specific threshold
τ , or occupied regions in short. Our proposed Minimal Neural Atlas surface
representation is formally given as:

{(Uθk , φθk) | k ∈ K} , (1)

where:

Uθk = {u ∈ (−1, 1)2 | oθk(u) > τ} , (2)

φθk : Uθk 7→ S , (3)

oθk : (−1, 1)2 7→ [0, 1] . (4)

While we have formulated the proposed representation in the context of rep-
resenting a single surface, conditioning the representation on a latent code z ∈ Z
encoding any surface of interest facilitates the modeling of a family of surfaces.
The latent code z can be inferred from various forms of inputs describing the
associated surface, such as a point cloud or an image, via an appropriate encoder.

The key component that contrasts this atlas-based representation from the
others is the flexibility of the parametric domain. In contrast to predefining the
parametric domain, we only restrict its bounds. This eliminates redundant con-
straints on the boundaries and topology of the parametric domain and hence
the chart. As a result, the proposed representation can learn a minimal at-
las for general surfaces with arbitrary topology, including closed and open sur-
faces with arbitrary connected components. This also enables the learning of a
distortion-minimal surface parameterization. A separation of concerns can thus
be achieved, where oθk mainly addresses the concern of discovering and repre-
senting the appropriate topology, and φθk addresses the concern of accurately
representing the geometry with minimum distortion.

Decoupling Homeomorphic Ambiguity. Learning a minimal neural atlas in
the present form possesses some difficulties. For a given surface patch described
by a chart (U,φ), there exists infinitely many other charts (U ′, φ′) such that
U ′ = ϕ(U) and φ′ = φ◦ϕ−1, where ϕ is a homeomorphism in the open square of
the parametric space, that can describe the same surface patch. This statement
is true because φ′(U ′) = (φ ◦ ϕ−1)(ϕ(U)) = φ(U). This coupled ambiguity of ϕ
presents a great challenge during the learning of the two relatively independent
components oθk and φθk .

To decouple this homeomorphic ambiguity, we reformulate oθk as:

oθk = õθk ◦ φθk , (5)

where:

õθk : φθk((−1, 1)2) 7→ [0, 1] (6)
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is an auxiliary probabilistic occupancy field defined on themaximal surface patch
φθk((−1, 1)2) ⊂ R3. This also requires us to extend the domain and codomain of
φθk to the open square and R3, respectively. Nonetheless, this is just a matter
of notation since φθk is modeled using an MLP with a natural domain of R2

and codomain of R3. Under this reformulation that conditions oθk on φθk , õθk
can be learned such that it is invariant to ambiguities in ϕ. Particularly, since
the same surface patch is described irrespective of the specific ϕ, it is sufficient
for õθk to be occupied only within that surface patch and vacant elsewhere (i.e.
“trim away” arbitrary surface patch excess). This enables the learning of φθk

with arbitrary ϕ that is independent of õθk .

3.3 Training

To learn the minimal neural atlas of a target surface S∗, we only assume that
we are given its raw unoriented point cloud during training, which we denote as
the set X ∗. For training, we uniformly sample a common fixed number of points
or UV samples in the open square of each chart k to yield the set Vk.

Due to the lack of minimal atlas annotations (e.g. target point cloud for
each chart of a minimal atlas), a straightforward supervision of the surface pa-
rameterization and (auxiliary) probabilistic occupancy field for each chart is not
possible. To mitigate this problem, we introduce the reconstruction loss Lrec,
occupancy loss Locc and metric distortion loss Ldist. Without a loss of general-
ity, the losses are presented similar to Sec. 3.2 in the context of fitting a single
target surface. The total training loss is then given by their weighted sum:

L = λrecLrec + λoccLocc + λdistLdist , (7)

where λrec, λocc and λdist are the hyperparameters to balance the loss terms.

Reconstruction Loss. The concern of topology is decoupled from the param-
eterization in our proposed surface representation. As a result, we can ensure
that the geometry of the target surface is accurately represented as long as
the maximal surface S̃, given by the collection of all maximal surface patches⋃

k∈K φθk((−1, 1)2), forms a cover of the target surface S∗. To this end, we regu-
larize the surface parameterization of each chart with the unidirectional Chamfer
Distance [15] that gives the mean squared distance of the target point cloud and
its maximal surface point cloud

⋃
k∈K φθk(Vk) nearest neighbor:

Lrec =
1

|X ∗|
∑

x∗∈X∗

min
k∈K

min
u∈Vk

∥x∗ − φθk(u)∥22 . (8)

Occupancy Loss. To truly represent the target surface with the correct topol-
ogy, it is necessary for the auxiliary probabilistic occupancy field of each chart
õθk to “trim away” only the surface excess given by S̃ \ S∗.

Näıve Binary Classification Formulation. This is achieved by enforcing
an occupancy of ‘1’ at the nearest neighbors of the target point cloud, and ‘0’
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at other non-nearest neighbor maximal surface points, which effectively casts
the learning of õθk as a binary classification problem. However, this form of
annotation incorrectly assigns an occupancy of ‘0’ at some maximal points which
also form the target surface. Such mislabeling can be attributed to the difference
in sampling density as well as distribution between the target and maximal
surface, and effects of random sampling on the nearest neighbor operator.

Positive-Unlabeled Learning Formulation. Instead of the interpretation
of mislabeling, we can take an alternative view of partial labeling. Specifically,
a maximal point annotated with a label of ‘1’ is considered as a labeled positive
(occupied) sample and a maximal point annotated with a label of ‘0’ is consid-
ered as an unlabeled sample instead of a labeled negative (vacant) sample. This
interpretation allows us to cast the learning of õθk as a Positive and Unlabeled
Learning (PU Learning) problem [14,6] (also called learning from positive and
unlabeled examples).

Our labeling mechanism satisfies the single-training-set scenario [14,6] since
the maximal points are independent and identically distributed (i.i.d.) on the
maximal surface and are either labeled positive (occupied) or unlabeled to form
the “training set”. Following [14], we assume that our labeling mechanism satis-
fies the Selected Completely at Random (SCAR) assumption, which entails that
the labeled maximal points are i.i.d. to, or selected completely at random from,
the maximal points on the target surface. Under such an assumption, the aux-
iliary probabilistic occupancy field defined on can be factorized as:

õθk(x̃) =
l̃θk(x̃)

c
, (9)

where:

l̃θk : φθk((−1, 1)2) 7→ [0, 1] (10)

returns the probability that the given maximal point x̃ is labeled, and c is the
constant probability that a maximal point on the target surface is labeled. In the
PU learning literature, l̃θk and c are referred to as a non-traditional classifier and
label frequency respectively. Note that c is proportional to the relative sampling
density between the target and maximal point cloud.

l̃θk can now be learned in the standard supervised binary classification setting
with the Binary Cross Entropy (BCE) loss as follows:

Locc = − 1∑
k∈K|Vk|

∑
k∈K

∑
u∈Vk

BCE(1V∗
k
(u), l̃θk ◦ φθk(u)) , (11)

where V∗
k ⊆ Vk is the set of UV samples corresponding to the target point cloud

nearest neighbors. As a result of the reformulation of the probabilistic occupancy
field, it can be observed that the surface parameterization of each chart directly
contributes to the occupancy loss. In practice, we prevent the backpropagation
of the occupancy loss gradients to the surface parameterizations. This enables
the parameterizations to converge to a lower reconstruction loss since they are
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now decoupled from the minimization of the occupancy loss. Furthermore, this
also facilitates the separation of concerns between oθk and φθk .

Metric Distortion Loss. To learn a minimal neural atlas with distortion-
minimal surface parameterization, we explicitly regularize the parameterization
of each chart to preserve the metric of the parametric domain, up to a common
scale. We briefly introduce some underlying concepts before going into the details
of the loss function.

Let Jk(u) =
[
∂φθk/∂u ∂φθk/∂v

]
, where u =

[
u v

]⊤
, be the Jacobian of the

surface parameterization of chart k. It describes the tangent space of the sur-
face at the point φθk(u). The metric tensor or first fundamental form gk(u) =
Jk(u)

⊤Jk(u) enables the computation of various differential geometric proper-
ties, such as length, area, normal, curvature and distortion.

To quantify metric distortion up to a specific common scale of L, we adopt a
scaled variant of the Symmetric Dirichlet Energy (SDE) [30,31,29], which is an
isometric distortion energy, given by:

1∑
k∈K|Wk|

∑
k∈K

∑
u∈Wk

1

L2
trace(gk(u)) + L2trace(gk(u)

−1) , (12)

where the distortion is quantified with respect to the set of UV samples denoted
as Wk. We refer this metric distortion energy as the Scaled Symmetric Dirichlet
Energy (SSDE). As the SSDE reduces to the SDE when L = 1, the SSDE can be
alternatively interpreted as the SDE of the derivative surface parameterization,
given by post-scaling the parameterization of interest by a factor of 1/L.

Since we are interested in enforcing metric preservation up to an arbitrary
common scale, it is necessary to deduce the optimal scale L∗ of the SSDE, for
any given atlas (hence given gk). To this end, we determine the L∗ by finding the
L that minimizes the SSDE. As the SSDE is a convex function of L, its unique
global minimum can be analytically derived. Finally, the metric distortion loss
used to learn a minimal neural atlas with distortion-minimal parameterization
is simply given by:

Ldist = 2
√
meanV∗(trace ◦ gk) meanV∗(trace ◦ g−1

k ) , (13)

where:

meanW(f) =
1∑

k∈K|Wk|
∑
k∈K

∑
u∈Wk

f(u) . (14)

Note that we only regularize UV samples corresponding to nearest neighbors
of the target point cloud, which are labeled as occupied. This provides more
flexibility to the parameterization outside of the parametric domain. While [5]
has proposed a novel loss to minimize metric distortion, our metric distortion
loss is derived from the well-established SDE, which quantifies distortion based
on relevant fundamental properties of the metric tensor, rather than its raw
structure. We also observe better numerical stability as Ldist is given by the
geometric mean of two values roughly inversely proportional to each other.
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3.4 Inference

Label Frequency Estimation. The label frequency c can be estimated during
inference with the positive subdomain assumption [6]. This requires the existence
of a subset of the target surface that is uniquely covered by a chart, which
we assume to be true. We refer such regions as chart interiors since they are
generally far from the chart boundary, where overlapping between charts occur.

Similar to training, we uniformly sample the open square to infer a set of
maximal surface points. Given that l̃θk is well-calibrated [14], maximal points on
a chart interior have a l̃θk value of c under the positive subdomain assumption.
In practice, we identify such points by assuming at least η percent of maximal
points lie on a chart interior, and these points correspond to the maximal points
with the highest confidence in l̃θk . We refer η as the minimum interior rate. c
can then be estimated by the mean l̃θk of the interior maximal points [14,6]. As
l̃θk is not explicitly calibrated and the SCAR assumption does not strictly hold
in practice, we adopt the median estimator instead for improved robustness.

Point Cloud and Mesh Extraction. After the label frequency has been es-
timated, the reconstructed minimal neural atlas {(Uθk , φθk) | k ∈ K}, and hence
the reconstructed surface S =

⋃
k∈K φk(Uθk), are then well-defined. As a result,

we can extract the reconstructed surface point cloud X =
⋃

k∈K φθk(Vk ∩ Uθk).
Furthermore, we can also extract a mesh from the reconstructed minimal neural
atlas, similar to [18]. We refer this as the reconstructed mesh. This can be done by
first defining a regular mesh in the open square of each chart and then discard-
ing triangles with vertices outside of the reconstructed parametric domain. The
mesh is then transferred to the reconstructed surface via the parameterization
of each chart.

Nevertheless, it is often useful to extract a point cloud or mesh with a specific
number of vertices. We achieve this in an approximate but efficient manner by
adopting a two-step batch rejection sampling strategy. Firstly, we employ a small
batch of UV samples to estimate the occupancy rate, which quantifies the extent
to which the open square of all charts are occupied. Given such an estimate, we
then deduce the number of additional UV samples required to eventually yield
a point cloud or mesh with approximately the target size.

4 Experiments

We conduct two standard experiments: surface reconstruction (Sec. 4.1) and
single-view reconstruction (Sec. 4.2) to verify that our representation can effec-
tively learn a minimal atlas with distortion-minimal parameterization for sur-
faces of arbitrary topology. The first experiment considers the basic task of
reconstructing the target surface given its point cloud, while the second is con-
cerned with the complex task of surface reconstruction from a single image of
the target. In addition to the benchmark experiments, we also perform ablation
studies to investigate the significance of various components in our representa-
tion (Sec. 4.3).
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Datasets. We perform all experiments on the widely used ShapeNet dataset
[8], which is a large-scale dataset of 3D models of common objects. Specifically,
we adopt the dataset preprocessed by ONet [24]. Instead of the default unit cube
normalization on the point clouds, we follow existing atlas-based representations
on a unit ball normalization. The ShapeNet dataset serves as a strong benchmark
on representing general single-object closed surfaces.

Additionally, we also perform the surface reconstruction experiment on the
CLOTH3D++ [23] dataset, which contains approximately 13,000 3D models
of garments across 6 categories. Following ONet, we preprocess the dataset by
uniformly sampling 100,000 points on the mesh of each garment. The point
clouds are then similarly normalized to a unit ball. With this dataset, we are
able to evaluate the representation power on general single-object open surfaces.

Metrics. We adopt a consistent set of metrics to assess the performance of a
surface representation on all experiments. To quantify the accuracy of surface
reconstruction, we employ the standard bidirectional Chamfer Distance (CD)
[15] as well as the F-score at the default distance threshold of 1% (F@1%)
[22,32], which has been shown to be a more representative metric than CD
[32]. Following prior works on atlas-based representations, we report these two
metrics on the reconstructed surface point cloud, given by regularly sampling the
parametric domain of each chart. Furthermore, we also report the metrics on the
reconstructed mesh point cloud, given by uniformly sampling the reconstructed
mesh. This is similarly done in [19], as well as in implicit representation works.
We refer to the first set of metrics as Point Cloud CD and F@1%, while the second
as Mesh CD and F@1%. The reported reconstruction metrics are computed with
a point cloud size of 25,000 for both the reconstruction and the target.

As pointed out by [28], topological errors in the reconstructed surface are
better accounted for when evaluating on the reconstructed mesh point cloud.
This is due to the non-uniform distribution of the reconstructed surface point
cloud, especially at regions of high distortion where sampled points are sparse.
Nevertheless, we still report the point cloud metrics to assess the reconstruction
accuracy in the related task or setting of point cloud reconstruction.

We employ a set of metrics to quantify the distortion of the chart parame-
terizations. In particular, we use the SSDE at the optimal scale L∗ (Eq. 13) to
measure the metric distortion up to a common scale. We also quantify the area
distortion up to a common scale using a distortion energy, which is derived in a
similar manner from the equi-area distortion energy introduced in [12]. Lastly,
we measure the conformal distortion, or distortion of local angles, using the
MIPS energy [20]. The reported distortion metrics are computed with respect to
the UV samples associated with the reconstructed surface point cloud. We offset
the distortion metrics such that a value of zero implies no distortion.

Baselines. We benchmark minimal neural atlas against state-of-the-art explicit
neural representations that can be learned given raw unoriented target point
clouds for training. Specifically, we compare with AtlasNet [18], DSP [5] and
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Table 1: Surface Reconstruction on CLOTH3D++.
Point Cloud Mesh DistortionNo. of

Charts
Surface

Representation
CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑ Metric ↓ Conformal ↓ Area ↓

AtlasNet 4.074 88.56 18.99 82.40 15.54 3.933 0.8428
AtlasNet++ 4.296 87.88 4.937 86.20 13.22 3.368 0.6767
DSP 7.222 82.41 21.86 78.93 1.427 0.5746 0.1032
TearingNet 6.872 84.99 8.321 83.40 17.40 3.407 1.149
Ours w/o Ldist 4.206 88.38 4.373 87.85 3.263 1.328 0.1516

1

Ours 4.296 88.00 4.476 87.36 1.600 0.5688 0.1652

AtlasNet 3.856 89.78 7.075 86.71 6.411 1.931 0.4031
AtlasNet++ 4.106 88.62 4.734 86.93 20.65 5.095 1.116
DSP 4.710 87.12 5.536 85.91 0.2160 0.0771 0.0283
Ours w/o Ldist 3.603 90.78 3.846 89.91 3.654 1.328 0.2227

2

Ours 3.775 90.08 3.982 89.50 0.9227 0.3582 0.0847

AtlasNet 3.396 91.47 6.269 88.74 8.028 2.485 0.4144
AtlasNet++ 3.368 91.62 3.652 90.67 12.89 3.615 1.073
DSP 3.227 92.06 3.501 91.26 0.4284 0.1252 0.0439
Ours w/o Ldist 3.300 91.87 3.684 90.72 4.603 1.654 0.3047

25

Ours 3.299 91.90 3.554 91.07 0.5637 0.1770 0.0940

Table 2: Surface Reconstruction on ShapeNet.
Point Cloud Mesh DistortionNo. of

Charts
Surface

Representation
CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑ Metric ↓ Conformal ↓ Area ↓

AtlasNet 8.131 79.74 13.37 74.60 21.23 4.151 1.574
AtlasNet++ 8.467 78.46 10.82 75.69 30.40 5.687 2.017
DSP 14.22 70.03 16.29 68.58 0.4684 0.1618 0.0580
TearingNet 11.64 75.96 20.01 70.86 21.96 5.092 1.882
Ours w/o Ldist 6.684 83.05 7.133 81.76 8.264 2.654 0.4130

1

Ours 7.559 80.45 7.959 79.39 2.546 0.8929 0.2246

AtlasNet 7.071 81.98 10.96 77.68 16.27 4.037 1.041
AtlasNet++ 7.516 80.59 9.280 78.17 32.39 6.252 2.626
DSP 10.79 76.39 11.98 74.85 0.4130 0.1571 0.0380
Ours w/o Ldist 6.266 84.04 6.875 82.22 10.23 3.303 0.5155

3

Ours 6.311 83.63 6.761 82.23 2.189 0.7094 0.2521

AtlasNet 6.285 83.98 7.855 81.25 14.48 4.522 0.9469
AtlasNet++ 6.451 83.50 7.333 81.87 20.34 5.643 1.981
DSP 7.995 81.54 8.609 80.08 0.9477 0.2900 0.1040
Ours w/o Ldist 5.844 85.11 6.646 83.52 7.639 2.595 0.4464

25

Ours 5.780 85.28 6.726 83.86 1.178 0.3760 0.1576

TearingNet [27]. Furthermore, a variant of AtlasNet that is trained with the Mesh
CD and SSDE at the optimal scale, in addition to the original Point Cloud CD
loss, is also adopted as an additional baseline, which we refer to as AtlasNet++.
It serves as a strong baseline since topological errors in the reconstructions are
explicitly regularized with the Mesh CD, unlike other baselines. The remaining
losses help to minimize the excessive distortion caused by optimizing the Mesh
CD, as similarly mentioned in [19].

4.1 Surface Reconstruction

In this experiment, we consider the specific setting of reconstructing the target
surface given an input point cloud of size 2,500. The input point cloud also
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AtlasNet AtlasNet++ DSP TearingNet Ours Target Input

Fig. 2: Surface Reconstruction on CLOTH3D++ and ShapeNet.

serves as the target point cloud for training. This is consistent with previous
works such as [18,5,13,19]. Nevertheless, we adopt a larger UV sample size of
5,000 for training in all works.

To evaluate whether a method can faithfully learn a minimal representation,
we benchmark all surface representations at 3 different number of charts, except
for TearingNet. In particular, we evaluate at 1, 2 and 25 charts on CLOTH3D++
and 1, 3 and 25 charts on ShapeNet. The inconsistency of 2 and 3 charts between
both datasets is attributed to the fact that these baselines theoretically admit a
minimal atlas of 2 and 3 charts for general single-object open and closed surfaces
respectively. Benchmarking at 1 and 25 charts, which is the default for the base-
lines, also allows us to assess the limiting performance of a surface representation
as the number of charts decreases or increases, respectively. Furthermore, we also
evaluate at 1 chart because our proposed representation admits a minimal atlas
of 1 chart for general single-object open surfaces.

The quantitative results for surface reconstruction on CLOTH3D++ and
ShapeNet are reported in Table 1 and 2, respectively. In general, our surface
representation achieves higher point cloud reconstruction performance at any
given number of charts, especially on the more complex ShapeNet dataset. This
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Table 3: Single-View Reconstruction on ShapeNet.
Point Cloud Mesh DistortionNo. of

Charts
Surface

Representation
CD, 10−3 ↓ F@1% ↑ CD, 10−3 ↓ F@1% ↑ Metric ↓ Conformal ↓ Area ↓

AtlasNet 3.100 57.78 4.512 52.85 34.60 4.771 3.189
AtlasNet++ 3.254 55.74 4.049 54.13 33.48 6.579 3.657
DSP 5.210 46.28 6.048 44.55 1.113 0.3718 0.1294
TearingNet 3.633 55.27 5.250 51.65 30.52 5.610 2.778
Ours w/o Ldist 3.754 61.63 3.891 60.38 8.148 2.510 0.4778

1

Ours 3.840 59.90 4.002 58.71 2.674 0.9069 0.2420

AtlasNet 2.992 59.08 4.125 54.92 25.00 4.759 2.059
AtlasNet++ 3.077 57.84 3.706 56.26 38.07 6.263 3.419
DSP 4.447 50.12 5.096 48.11 0.5316 0.1505 0.0901
Ours w/o Ldist 3.582 62.11 3.704 60.68 9.972 3.177 0.5906

3

Ours 3.621 61.90 3.744 60.56 1.776 0.5537 0.2304

AtlasNet 2.883 60.68 3.655 57.21 18.77 4.853 1.516
AtlasNet++ 2.961 59.40 3.469 57.88 25.76 6.201 2.522
DSP 3.582 55.60 4.336 52.94 1.492 0.3712 0.2254
Ours w/o Ldist 3.413 62.71 3.464 61.42 6.620 2.206 0.4532

25

Ours 3.437 63.05 3.514 61.93 1.037 0.3321 0.1497

indicates that the overall surface geometry is more accurately reconstructed by
our representation, which can be attributed to the separation of concerns be-
tween oθk and φθk . Furthermore, minimal neural atlas significantly outperforms
the baselines in terms of the mesh reconstruction accuracy at any given number
of charts, which is particularly true for lower number of charts and on ShapeNet.
Together with the observation that our point cloud and mesh reconstruction
metrics are relatively on par with each other, this suggests that minimal neural
atlas can also reconstruct the topology of the target surface more accurately.
These conclusions are also supported qualitatively in Fig. 2, where we show the
reconstructed meshes of all surface representations at 2 and 3 charts, except for
TearingNet, on CLOTH3D++ and ShapeNet.

The reconstruction metrics of our representation are also substantially more
consistent across a wide range of charts. It is also worth noting that despite using
fewer charts, minimal neural atlas often outperforms the baselines in terms of
reconstruction accuracy. This affirms the ability of our representation to learn a
minimal atlas for general surfaces. Moreover, the chart parameterizations of min-
imal neural atlas exhibit inherently lower distortion as it achieves lower metric
values compared to AtlasNet, TearingNet and even AtlasNet++ without explicit
regularization of distortion. Unlike DSP, the reported results also indicate that
our representation is able to significantly reduce distortion without sacrificing
reconstruction accuracy by additionally minimizing the metric distortion loss.

4.2 Single-View Reconstruction

This experiment adopts the exact same setting as the surface reconstruction ex-
periment, except the input is an image of the target surface. The quantitative
results on ShapeNet reported in Table 3 remains largely similar to the previous
experiment. While our representation incurs a relatively higher point cloud CD,
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Table 4: Ablation Study of Minimal Neural Atlas with Ldist.

Variant
Point Cloud Mesh

Metric
Distortion

↓ Occupancy
Rate

↑
CD, 10−4 ↓ F@1% ↑ CD, 10−4 ↓ F@1% ↑

No oθk reformulation 15.60 69.12 16.59 67.31 2.348 80.49
No õθk factorization 327.8 29.51 386.3 27.59 4.951 6.762

No l̃θk pos. encoding 7.419 82.04 8.050 80.23 1.848 83.45
Full Model 6.311 83.63 6.761 82.23 2.189 77.48

it consistently achieves a higher reconstruction performance on the more repre-
sentative F@1% metric [32]. We can thus reach to the same conclusions, as per
the previous experiment.

4.3 Ablation Studies

The ablation studies are conducted in the same setting as surface reconstruction
on ShapeNet using 3 charts. The results reported in Table 4 verifies the immense
importance of decoupling the homeomorphic ambiguity by reformulating oθk
with Eq. 5, as well as casting the learning of õθk as a PU Learning problem,
which can be easily solved given the factorization of õθk in Eq. 9, instead of
a näıve binary classification problem. It also shows that it is crucial to apply
positional embedding [25,33] on the input maximal point coordinates of l̃θk to
learn a more detailed occupancy field for better reconstructions, albeit at a minor
cost of distortion.

5 Conclusion

In this paper, we propose Minimal Neural Atlas, a novel explicit neural surface
representation that can effectively learn a minimal atlas with distortion-minimal
parameterization for general surfaces of arbitrary topology, which is enabled by a
fully learnable parametric domain. Despite its achievements, our representation
remains prone to artifacts common in atlas-based representations, such as inter-
sections and seams between charts. Severe violation of the SCAR assumption,
due to imperfect modeling of the target surface, non-matching sampling distri-
bution etc., also leads to unintended holes on the reconstructed surface, which
we leave for future work. Although we motivated this work in the context of rep-
resenting surfaces, our representation naturally extends to general n-manifolds.
It would thus be interesting to explore its applications in other domains.
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