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Abstract. While category-level 9DoF object pose estimation has emerged
recently, previous correspondence-based or direct regression methods are
both limited in accuracy due to the huge intra-category variances in
object shape and color, etc. Orthogonal to them, this work presents a
category-level object pose and size refiner CATRE, which is able to it-
eratively enhance pose estimate from point clouds to produce accurate
results. Given an initial pose estimate, CATRE predicts a relative trans-
formation between the initial pose and ground truth by means of aligning
the partially observed point cloud and an abstract shape prior. In specific,
we propose a novel disentangled architecture being aware of the inherent
distinctions between rotation and translation/size estimation. Extensive
experiments show that our approach remarkably outperforms state-of-
the-art methods on REAL275, CAMERA25, and LM benchmarks up
to a speed of ≈85.32Hz, and achieves competitive results on category-
level tracking. We further demonstrate that CATRE can perform pose
refinement on unseen category. Code and trained models are available.1

1 Introduction

Estimating the 6DoF pose, i.e., 3DoF orientation and 3DoF localization, of an
object in Euclidean space plays a vital role in robotic manipulation [49,13],
3D scene understanding [36,22] and augmented/virtual reality [35,46]. The vast
majority of previous works [30,64,45,62,53,54,31,52,38] study with instance-level
object pose estimation, which can be decomposed by two procedures: initial pose
estimation and pose refinement. Despite considerable progress has been made in
instance-level settings, the generalizability and scalability w.r.t. unseen objects
are limited due to the high dependency of known exact CAD models during both
training and inference.

To alleviate this problem, recently, increasing attention has been received
on category-level 9DoF pose (i.e., 6DoF pose and 3DoF size) estimation which
aims to handle novel instances among known categories without requiring CAD
models for test. As an early proposed work, Wang et al . [55] predict the nor-
malized object coordinates (NOCS) in image space and then solve the pose and

∗ Equal contribution.
1https://github.com/THU-DA-6D-Pose-Group/CATRE.git

https://orcid.org/0000-0003-1156-2263
https://orcid.org/0000-0002-0759-0782
https://orcid.org/0000-0002-7547-5073
https://orcid.org/0000-0002-7333-9975
https://github.com/THU-DA-6D-Pose-Group/CATRE.git


2 X. Liu et al.

size by matching NOCS against observed depth with Umeyama algorithm [50].
Afterwards, several works [47,7,56,14] attempt to deform the shape prior (i.e.,
the mean shape) of a category towards observed instances to improve the ac-
curacy of correspondences matching. However, those methods highly rely on
the RANSAC procedure to remove outliers thus making them non-differentiable
and time-consuming. Contrary to correspondence-based methods, some more re-
cent works [9,32] propose to directly regress pose and size to achieve a higher
speed during inference. Nevertheless, these end-to-end approaches are oftentimes
error-prone in that they are not sufficiently aware of the inherent distinctions
between rotation and translation/size estimation. To summarize, compared with
the milestones achieved by state of the art in instance-level works, category-level
pose estimation methods are still limited in accuracy.

Previously, when the CAD model is available, one common way of enhancing
pose accuracy is to apply a post-refinement step through matching the rendered
results against observed images given initial estimates, which has been widely
explored in both traditional [2,44] and learning-based [30,59,27,25] methods.
Being motivated by this, we seek to tackle the above problem by investigating
object pose refinement at the category level. However, traditional object pose
refinement methods rely on the CAD model to perform render-and-compare,
which is not accessible when we conduct category-level object pose estimation.

To solve this dilemma, we propose a novel method for CAT egory-level object
pose REfinement (CATRE ), leveraging the abstract shape prior information in-
stead of exact CAD models. As shown in Fig. 1, we aim to directly regress the
relative pose and size transformations by aligning the partially observed point
cloud against the transformed shape prior given initial pose and size predictions.
In specific, we first use the initial pose prediction to focalize the shape prior and
observed point cloud into a limited range. Then, a Siamese PointNet-based [40]
encoder is employed to map the two input point clouds into a common fea-
ture space while maintaining relevant features for rigid transformation. Finally,
we design two distinct heads to predict relative rotation and translation/size
transformations in a disentangled manner. This is based on the observation that
rotation is heavily reliant on point-level local geometry whereas translation and
size reside with the object-level global feature. Besides, the procedure of refine-
ment is conducted iteratively to achieve more accurate results.

Extensive experiments demonstrate that our proposed method can accu-
rately yet efficiently refine and track category-level object poses. Exemplarily,
we achieve a significant improvement over the baseline SPD [47] with an im-
provement of 26.8% on the strict 5° 2 cm metric and 14.5% on the IoU75 metric
on REAL275 dataset.

To sum up, our contributions are threefold: i) To the best of our knowledge,
we propose the first versatile pipeline for category-level pose refinement based on
point clouds leveraging abstract shape prior, without requiring exact CAD mod-
els during training or inference. ii) For the learning of relative transformation, a
pose-guided focalization strategy is proposed to calibrate input point clouds. We
further introduce a novel disentangled architecture being aware of the inherent
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Fig. 1: The framework of CATRE. Given an initial pose and size estimate
[Rinit|tinit|sinit], CATRE predicts a relative transformation [R∆|t∆|s∆] by iter-
atively aligning two focalized point clouds, i.e., shape prior and observed point
cloud. The framework can perform pose refinement and tracking, where blue and
green contours reflect ground-truth and predicted poses, respectively.

attributions in pose estimation. Thanks to these key ingredients, we overcome
the drawback of being error-prone while maintaining the high speed of direct
regression. iii) Our versatile framework can also perform category-level pose
tracking and achieve competitive performance against state of the art, whilst at
7x faster speed. Meanwhile, CATRE can be naturally extended to instance-level
and unseen category pose refinement leveraging appropriate shape priors.

2 Related Work

Category-level Object Pose Estimation Category-level pose estimation aims to
predict the 9DoF pose of a novel instance without the aid of its CAD model.
Existing works can be generally categorized to correspondence-based [55,7,47,56]
and direct regression [32,9,6] approaches. Correspondence-based approaches first
predict dense object coordinates in a normalized canonical space (NOCS) [55]
and then solve the pose by Umeyama algorithm [50]. Notably, SPD [47] proposes
to extract a categorical shape prior and adapt it to various instances via defor-
mation prediction, in an effort to improve the matching of correspondences. On
the other hand, direct regression methods predict object pose in an end-to-end
manner, achieving a higher inference speed. For instance, FSNet [9] decouples
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rotation prediction into two orthogonal axes estimation. DualPoseNet [32] ex-
ploits spherical convolutions to explicitly regress the pose with an auxiliary task
of canonicalizing the observed point cloud meanwhile.

While this field has emerged recently, the accuracy of estimating category-
level pose is still far from satisfactory compared with instance-level settings.
Orthogonally, this work builds an end-to-end category-level pose refinement
pipeline which can largely enhance the performance whilst being fast.

Object Pose Refinement In instance-level cases [30,27,59,64,45,62,53], object
pose refinement has demonstrated to be very effective. Notably, DeepIM [30] pre-
dicts pose transformation by comparing the rendered image against the observed
image. se(3)-TrackNet [59] further leverages this render-and-compare strategy
to object tracking using RGB-D images. Extended from DeepIM, CosyPose [27]
conquers the leaderboard of BOP Challenge 2020 [21], showing the powerful
capability of the render-and-compare technique.

Different from the instance-level settings, category-level pose refinement is
still rarely explored. DualPoseNet [32] refines their prediction by a self-adaptive
pose consistency loss, which is only applicable to specific networks. However, our
work is generalizable to various kinds of baselines [55,47,32] without re-training.

Category-level Object Pose Tracking 6-PACK [51] performs category-level track-
ing by anchor-based keypoints generation and matching between adjacent frames.
CAPTRA [60] tracks rigid and articulated objects by employing two separate
networks to predict the interframe rotation and normalized coordinates respec-
tively. Recently, iCaps [12] leverages a particle filtering framework to estimate
and track category-level pose and size. Note that CAPTRA could be adapted
for refinement in theory, although there are no relevant experiments. Still, there
might be some limitations. First, it relies on CAD models to provide supervi-
sion signals (i.e., NOCS map) for training, while CATRE does not need exact
CAD models during training or inference. Moreover, it was proposed for tracking
where the errors between adjacent frames are minor, so it is unclear if CAPTRA
could handle noises from other estimation methods. However, as CATRE di-
rectly regresses the relative pose, it can perform iterative inference with a faster
speed and more robust performance w.r.t. noises.

Point Cloud Registration A closely related field to depth-based refinement is
point cloud registration. Traditional methods like ICP [2] and its variants [3,44,42]
require reliable pose initialization. To overcome this problem, learning-based
methods are proposed recently [58,1,57,10]. Works like [16,48] use the non-
overlapped prior as CATRE does, but they usually learn the deformation rather
than the relative pose. Besides, shape prior in CATRE can be very different from
the objects, varying from instance-specific keypoints to categorical mean shape
to generic bounding box corners.
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Fig. 2: The network architecture of CATRE. Taking an observed point cloud O
and shape prior P as input, CATRE first focalizes them into a limited range
using initial pose prediction [Rinit|tinit|sinit]. Then, we employ a Siamese ge-
ometric encoder followed by two disentangled heads to predict relative pose
transformation [R∆|t∆|s∆].

3 Category-level Object Pose Refinement

This section first addresses the problem formulation and framework overview
(Fig. 1), and then describes the key ingredients of our approach (Fig. 2) for
category-level object pose refinement. Afterwards, we present the training and
testing protocol and show that CATRE can be naturally applied to pose tracking.

3.1 Problem Formulation

Given an initial pose and size estimate [Rinit|tinit|sinit] and the observed point
cloud O of an object, our goal is to predict a relative transformation [R∆|t∆|s∆]
between the initial prediction and ground truth [Rgt|tgt|sgt] leveraging a shape
prior P, as shown in Eq. (1).

[R∆|t∆|s∆] = CATRE([Rinit|tinit|sinit],O,P). (1)

Thereby, R ∈ SO(3), t ∈ R3 and s ∈ R3 respectively represents rotation, trans-
lation and size. The shape prior P can be the mean shape of a given category or
a generic skeleton like bounding box corners. We use the categorical mean shape
(c.f . Sec. 3.2) as the prior information in our main experiments and illustrations.

3.2 Overview of CATRE

Recapping Fig. 1, we first employ an off-the-shelf instance segmentation network
(e.g ., Mask R-CNN [17]) to cut the object of interest from the observed depth
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map. Then we back-project the depth into camera space and sample No points
within a ball near to the object following [8,60]. The center and radius of this ball
are determined by the initial pose estimate. To this end, we effectively remove
outliers and obtain the observed point cloud O = {oi ∈ R3}No

i=1.
To estimate the pose and size transformations based on the observed point

cloud, we leverage the publicly available shape prior P = {pj ∈ R3}Np

j=1 from
[47]. Thereby, a mean shape is reconstructed from the mean latent embedding
for each category trained with a large amount of synthetic point cloud models
from ShapeNet [5] using an encoder-decoder framework. We normalize the size
of the shape prior such that the length of each side of its bounding box is 1.

Taking the observed point cloud O, and the prior point cloud P as input,
our CATRE network (Fig. 2) essentially predicts the relative transformation to
iteratively refine the initial estimate towards the target pose and size.

3.3 Disentangled Transformation Learning

Point Clouds Focalization As the localization of input point clouds can vary
dramatically in camera space, it would be very hard for the network to exploit
useful information for learning relative transformation. Inspired by the image-
space zooming in operation in DeepIM [30], we propose a novel point cloud
focalization strategy to limit the range of input point clouds. Specifically, after
transforming the prior point cloud P into camera space with the initial pose and
size, we simultaneously shift the observed and estimated point clouds using the
initial translation. Therefore, the input observed point cloud Ô and prior point
cloud P̂ can be obtained as follows

Ô ={ôi | ôi = oi − tinit}No
i=1,

P̂ ={p̂j | p̂j = sinit ⊙Rinitpj}
Np

j=1,
(2)

where ⊙ denotes element-wise product. Geometrically, P̂ and Ô contain all the
information needed for learning the relative transformation between the initial
estimate and the target pose, no matter how we shift them. By fixing the center
of P̂ to the origin, we can let the network focalize on the limited range around
the origin, thus reducing the difficulty of learning for the network. Notice that,
compared with similar strategies in image space proposed for instance-level 6D
pose refinement and tracking [30,59], which rely on rendering with known CAD
models and the costly operation of cropping and resizing, our point cloud focal-
ization is much simpler yet more efficient.

Shared Encoder Inspired by works on learning-based point cloud registra-
tion [28,58,43], we employ a shared encoder to respectively extract embeddings
Fp ∈ RNp×d and Fo ∈ RNo×d from P̂ and Ô for efficiently encoding the geometric
information locally and globally. Here d = 1088 denotes the output dimension.
In point cloud registration, both point-based encoder [40] and graph-based en-
coder [33] have been widely used. However, we experimentally find 3D-GCN [33]
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performing poorly in our work, as it is locally sensitive whilst the local graph
structures of the partially observed point cloud and the full shape prior share
little similarity. Hence we choose the simpler PointNet [40] as the backbone for
better generalizability. Concretely, PointNet maps each point from R3 into a
high-dimensional space, and generates an additional global feature by aggregat-
ing features from all points. The global feature is repeatedN times and appended
to each point-wise feature, where N denotes the number of input points. For de-
tails of the employed encoder, please kindly refer to the supplementary material.

By the prominent weight sharing strategy, we map P̂ and Ô into a common
feature space while remaining sensitive to relevant features for rigid transforma-
tion. Considering that rotation is different from translation and size in essence,
we introduce a disentangled transformation learning strategy for them by means
of two different heads namely Rot-Head and TS-Head in the following.

Rotation Prediction As aforementioned, Ô encodes the information of Rgt,

and P̂ contains Rinit, so the network can predict R∆ by comparing Ô and P̂.
First, we concatenate Fo and Fp along the point dimension to get a unified per-
point feature Fop ∈ R(No+Np)×d. Then, the feature is fed to Rot-Head to predict
a continuous 6-dimensional rotation representation [rx∆|ry∆] following [66,9], i.e.,
the first two columns of the rotation matrix R∆. Finally, the relative rotation
matrix R∆ is recovered as in [66], and the refined rotation prediction can be
computed by Rest = R∆Rinit, where Rest is used for loss calculation and re-
assigned as Rinit for the next iteration.

Noteworthy, since the prediction of relative rotation is sensitive to local ge-
ometry, it is crucial how the network fuses the information of Fop at point level.
Instead of using non-parametric operations like max-pooling which loses the local
information severely, we opt for a trainable way to aggregate the point-wise fea-
tures in Rot-Head. In particular, we employ two parallel branches for Rot-Head
to obtain axis-wise rotation predictions rx∆ and ry∆, respectively. Each branch
is comprised of two 1D convolutional layers each followed by Group Normal-
ization [61] and GELU [18] activation to generate an implicit per-point rotation
prediction fop ∈ R(No+Np)×3 first. Then the explicit global axis-wise prediction is

aggregated from the permuted point-wise implicit prediction f
′

op ∈ R3×(No+Np)

using an extra 1D convolutional layer, reducing the dimension from 3×(No+Np)
to 3 × 1. In this way, the network can preserve the local information regarding
the relative rotation between P̂ and Ô in a trainable way.

Translation and Size Prediction Since O is shifted to Ô by tinit, the transla-
tion transformation t∆ can be derived from Fo directly. Different from predicting
rotation by aggregating point-level information, we argue that translation and
size should be treated differently in that they are both global attributions at
the object level. Therefore, TS-Head first extracts a global feature fo from Fo

by performing max-pooling along the point dimension. Then, the initial scale is
explicitly appended to fo for predicting the size transformation s∆. Afterwards,
two fully connected (FC) layers are applied to the global feature, reducing the
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dimension from 1091 to 256. Finally, two parallel FC layers output t∆ and s∆
separately. The predicted translation and size are obtained by test = tinit + t∆
and sest = sinit + s∆ accordingly. Similar to the rotation prediction, they are
also re-assigned as the initial estimates for the next iteration.

3.4 Training and Testing Protocol

Pose Loss In works for direct pose regression, the design of loss function is
crucial for optimization [54]. Apart from using an angular distance based loss
on rotation [23], and L1 losses for translation and scale, we additionally leverage
a novel loss modified based on point matching [30] to couple the estimation of
[R|t|s]. To summarize, the overall loss function can be written as

L = Lpm + LR + Lt + Ls, (3)

where 
Lpm = avg

x∈P
∥(sgt ⊙Rgtx+ tgt)− (sest ⊙Restx+ test)∥1,

LR =
3−Tr(RgtR

T
est)

4 ,

Lt = ∥tgt − test∥1,
Ls = ∥sgt − sest∥1.

(4)

Here ⊙ denotes element-wise product. For symmetric objects, we rotate Rgt

along the known symmetry axis to find the best match for Rest.

Iterative Training and Testing We employ an iterative training and testing
strategy for pose refinement inspired by [29], namely the current prediction is
re-assigned as the initial pose for the next iteration. By repeating this procedure
multiple times, i.e., 4 in this work, not only the diversity of training pose error
distribution is enriched, but also more accurate and robust inference results can
be obtained. To decouple CATRE from different initial pose estimation methods,
during training we add random Gaussian noise to [Rgt|tgt|sgt] as initial pose in
the first iteration. The network can therefore refine the pose prediction from
various methods [55,32,47] consistently without re-training (see also Table 2).

3.5 Pose Tracking

It is natural to apply CATRE to tracking due to the similarity of pose refine-
ment and tracking. Given a live point cloud stream and the 9DoF pose estimate
[Rt|tt|st] of an object at frame t, the target of category-level pose tracking is to
estimate the object pose [Rt+1|tt+1|st+1] of the next frame t+1. Similar to pose
refinement, we use [Rt|tt|st] as the initial pose to focalize P and O, and predict
the relative pose transformation between frame t and t+ 1.

During inference, we jitter the ground-truth pose of the first frame with the
same Gaussian noise distribution in [60]. The pose is re-initialized if the adjacent
frames are not consecutive.
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4 Experiments

4.1 Experimental Setup

Implementation Details All the experiments are implemented using PyTorch [37].
We train our model using Ranger optimizer [34,65,63] with a base learning rate
of 1× 10−4, annealed at 72% of the training epoch using a cosine schedule [24].
The total training epoch is set to 120 with a batch size of 16. We employ some
basic strategies for depth augmentation, e.g ., randomly dropping depth values,
adding Gaussian noise, and randomly filling 0 points, as well as some pose aug-
mentations like random scaling, random rotation and translation perturbation as
in [9]. Unless otherwise specified, the size of input images are 480×640, No and
Np are empirically set to 1024, and a single model is trained for all categories.

Datasets We conduct experiments on 4 datasets: REAL275 [55], CAMERA25 [55],
LM [19], and YCB-V [62]. REAL275 is a widely-used real-world category-level
pose benchmark containing 4.3k images of 7 scenes for training, and 2.75k im-
ages of 6 scenes for testing. CAMERA25 is a synthetic dataset generated by
a context-aware mixed reality approach. There are 300k composite images of
1085 object instances in total, where 25k images and 184 instances are used for
evaluation. REAL275 and CAMERA25 share the same object categories, i.e.,
bottle, bowl, camera, can, laptop, and mug. LM dataset consists of 13 object
instances, each of which is labeled around the center of a sequence of ≈1.2k clut-
tered images. We follow [4] to split ≈15% images for training and ≈85% images
for testing. Additionally, 1k rendered images for each instance are used to assist
training as in [31]. YCB-V dataset is very challenging due to severe occlusions
and various lighting conditions. We select two objects, i.e., master chef can and
cracker box, out of 21 instances for unseen category refinement.

Metrics On REAL275 and CAMERA25, we follow [55] to report the mean Aver-
age Precision (mAP) of intersection over union (IoU) metric at different thresh-
olds2, as well as mAP at n◦ m cm for evaluating pose accuracy. Additionally,
for the task of tracking, we report mIoU, Rerr, and terr as in [60], respectively
standing for the mean IoU of ground-truth and predicted bounding boxes, aver-
age rotation error, and average translation error. On LM, the ADD metric [19]
is used to measure whether the average offset of transformed model points is less
than 10% of the object diameter. For symmetric objects, the ADD-S metric [20]
is employed. On YCB-V, we use the area under the accuracy curves (AUC) of
ADD(-S) metric varying the threshold from 0 to 10 cm as in [62].

4.2 Category-level Pose Refinement

Results The quantitative results for category-level pose refinement on REAL275
and CAMERA25 are presented in Table 1. We use the results of SPD [47] as

2Note that there is a small mistake in the original IoU evaluation code of [55], we
recalculated the IoU metrics as in [39].
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Table 1: Results of category-level pose refinement on REAL275 and CAMERA25.
SPD∗ denotes our re-implementation of SPD [47].

Dataset Method Refine IoU75 5° 2 cm 5° 5 cm 10° 2 cm 10° 5 cm

REAL275

NOCS [55] 9.4 7.2 10.0 13.8 25.2
DualPoseNet [32] ✓ 30.8 29.3 35.9 50 66.8
CR-Net [56] 33.2 27.8 34.3 47.2 60.8
SGPA [7] 37.1 35.9 39.6 61.3 70.7
SPD [47] 27.0 19.3 21.4 43.2 54.1
SPD∗ 27.0 19.1 21.2 43.5 54.0
SPD∗+Ours ✓ 43.6 45.8 54.4 61.4 73.1

CAMERA25

NOCS [55] 37.0 32.3 40.9 48.2 64.6
DualPoseNet [32] ✓ 71.7 64.7 70.7 77.2 84.7
CR-Net [56] 75.0 72.0 76.4 81.0 87.7
SGPA [7] 69.1 70.7 74.5 82.7 88.4
SPD [47] 46.9 54.3 59.0 73.3 81.5
SPD∗ 46.9 54.1 58.8 73.9 82.1
SPD∗+Ours ✓ 76.1 75.4 80.3 83.3 89.3

Table 2: Ablation on different initial poses on REAL275. (a) The average preci-
sion (AP) of rotation (◦) and translation (cm) at different thresholds before and
after refinement. (b) Quantitative results. ∗ denotes our re-implementation.
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Method Ref. IoU75 5° 2 cm 5° 5 cm

NOCS∗ [55] 9.0 7.3 9.9

w/ Ours ✓ 42.6 40.7↑33.4 47.8↑37.9

SPD∗ [47] 27.0 19.1 21.2

w/ Ours ✓ 43.6 45.8↑26.7 54.4↑33.2

DualPoseNet∗ [32] ✓ 31.4 29.3 35.9

w/ Ours ✓ 44.4 43.9↑14.6 54.8↑18.9

(b)

initial poses during inference in our main experiments and ablation studies. It
clearly shows that our method surpasses the baseline by a large margin, espe-
cially on the strict 5° 2 cm metric, achieving an absolute improvement of 26.7%
on the challenging REAL275 dataset and 21.3% on the CAMERA25 dataset.

The results also demonstrate the significant superiority of CATRE over state-
of-the-art methods [55,32,56,7,47]. Notice that although we do not exploit any
color information in the refinement procedure, we are still very competitive over-
all. More importantly, on the strict metrics IoU75 and 5° 2 cm, we surpass all the
previous methods. We kindly refer readers to the supplementary material for
more qualitative analyses and detailed results for each category.

Ablation Study Table 2 and Table 3 present the ablations on various factors.



CATRE: Category-level Object Pose Refinement 11

Table 3: Ablation studies on REAL275. (a) Accuracy and speed w.r.t. iterations.
(b) Quantitative results, where SPD∗ denotes our re-implementation of SPD [47].
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A0 SPD∗ 27.0 19.1 21.2 23.8 68.6

B0 SPD∗+Ours 43.6 45.8 54.4 58.0 75.1

C0 B0: Mean shape → 3D bounding box 42.9 39.5 47.2 52.7 73.1

C1 B0: Mean shape → 3D axes 42.2 36.7 43.1 49.6 73.2

D0 B0: TS-Head also w/ MaxPool(Fp) 47.8 45.7 52.8 58.4 75.7

D1 B0: w/o focalizing to origin 41.4 40.2 47.5 52.3 70.7

D2 B0: w/o adaptive points sampling 29.0 26.7 42.3 46.3 63.3

E0 B0: PointNet [40] → 3D-GCN [33] 28.4 36.0 43.4 47.7 68.0

E1 B0: w/o weight sharing 23.6 1.7 2.0 2.5 76.0

F0 B0: Single pose head (TS-Head style) 46.4 40.7 46.2 52.6 75.9

F1 B0: Single pose head (Rot-Head style) 45.0 41.1 50.0 55.1 69.1

F2 B0: Rot-Head conv fusion → MaxPool 45.1 41.8 49.5 55.0 76.4

F3 B0: Rot-Head conv fusion → AvgPool 44.9 41.8 48.0 53.4 77.1

F4 B0: TS-Head global feature→point-wise 29.8 32.3 46.3 53.0 57.5

G0 B0: w/o Lpm 44.4 42.5 50.7 55.5 74.1

G1 B0: w/o LR/Lt/Ls 38.4 22.6 30.1 34.0 72.8

(b)

Ablation on Different Initial Poses To demonstrate the generalizability and ro-
bustness of our method w.r.t. different kinds of initial poses, we initialize the
network with predictions of various qualities from [55,47,32] and present the re-
sults in Table 2. The network achieves consistent enhancement using the same
weight, no matter initialized with the early proposed methods [55,47], or recent
state of the art [32]. Table 2a further shows distinct improvement on rotation
estimate after refinement.

Ablation on Shape Prior Aside from the mean shape, CATRE can use the eight
corners of the 3D bounding box (Np = 8) or four points constructing 3D axes
(Np = 4) as shape prior, the sizes of which are determined by sest. As shown
in Table 3b, the results using mean shape (B0) are superior to those using
bounding box corners (C0) or axes (C1). However, the poses can still be refined
taking bounding box corners or axes as input, which implies that the geometric
encoder is able to encode the initial pose information from sparse input without
categorical prior knowledge. Inspired by this, we further extend our method to
pose refinement on the unseen category in Sec. 4.5.

Effectiveness of Point Cloud Focalization To verify the efficiency and accuracy
of predicting relative pose from the focalized point clouds, we conduct several
experiments. Firstly, the input of TS-Head is replaced with a concatenated fea-
ture from both MaxPool(Fo) and MaxPool(Fp). Since the relative translation

can be derived from Ô due to the focalization operation, adding feature from
P̂ introduces unnecessary noise thus leading to a slight performance drop (Ta-
ble 3b B0 vs. D0). Moreover, we translate the center of shape prior P to tinit,
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and keep the pose of the observed point cloud O as it is in camera space. The
initial translation is then appended to the input of TS-Head for better predict-
ing t∆. However, we observe a larger decrease in accuracy (Table 3b B0 vs. D1)
discarding focalization, thus limiting the absolute range of input point clouds is
vital for reducing the complexity of learning relative transformation. To avoid
introducing too many background points, we employed an adaptive strategy to
sample points within a ball determined by the initial pose estimate. Without
this step, the accuracy decreased dramatically (Table 3b B0 vs. D2).

Effectiveness of Shared Encoder As mentioned in Sec. 3.3, 3D-GCN [33] performs
worse than PointNet [40] in our work (Table 3b B0 vs. E0). Moreover, weight
sharing in the encoder is prominent for capturing relevant features regarding
relative transformation by embedding P̂ and Ô into a unified space, which is
especially crucial to the prediction of R∆. Otherwise, it is almost unable to
perform any refinement on rotation, as shown in Table 3b (B0 vs. E1).

Effectiveness of Disentangled Heads We consider two types of single pose heads,
i.e., extending TS-Head to estimate [rx∆|ry∆] (F0), and adding two FC layers in
Rot-Head to predict t∆ and s∆ (F1). Table 3b reveals that the disentangled
design (B0) outperforms a single pose head leveraging a global feature (F0) or
point-wise features (F1) consistently.

The Design Choices of Heads When replacing the trainable point-wise features
aggregation with non-parametric operation MaxPool or AvgPool in Rot-Head,
the accuracy on 5° drops significantly (Table 3b B0 vs. F2, F3). Furthermore,
treating t and s as global attributes rather than collecting point-wise features
like Rot-Head also enhances performance (Table 3b B0 vs. F4).

Effectiveness of Loss Function Table 3b (B0 vs. G0) evinces that Lpm coupling
pose prediction brings performance enhancement, and the individual loss com-
ponents designated for [Rest|test|sest] are crucial as well (Table 3b B0 vs. G1).

Accuracy and Speed vs. Iteration In Table 3a, we show the accuracy and inference
speed w.r.t. iterations. Here we empirically set 4 as the maximum number of
iteration to balance the performance and speed. On a machine with a TITAN XP
GPU and two Intel 2.0GHz CPUs, CATRE runs at ≈85.32Hz for 4 iterations.

4.3 Category-level Pose Tracking

Table 4 summarizes the quantitative results for category-level pose tracking, with
a comparison between our methods and other tracking-based methods [51,12,60].

Leveraging a single model for tracking all objects, our method achieves com-
petitive results with previous state-of-the-art methods. Noticeably, the pipeline
can run at 89.21Hz, which is 7x faster than the state-of-the-art method CAP-
TRA [60] and qualified for real-time application. Moreover, our method exceeds
CAPTRA in the metric of mIoU and terr by a large margin, in that CAPTRA



CATRE: Category-level Object Pose Refinement 13

Table 4: Results of category-level pose tracking on REAL275. Following [60], we
perturb the ground-truth pose of the first frame as the initial pose.

Method Oracle ICP [60] 6-PACK [51] iCaps [12] CAPTRA [60] Ours

Init. GT. GT. Pert. Det. and Seg. GT. Pert. GT. Pert.

Speed (Hz) ↑ - 10 1.84 12.66 89.21

mIoU ↑ 14.7 - - 64.1 80.2

5° 5 cm↑ 0.7 33.3 31.6 62.2 57.2

Rerr(
◦) ↓ 40.3 16.0 9.5 5.9 6.8

terr(cm) ↓ 7.7 3.5 2.3 7.9 1.2

Table 5: Results on LM referring to the Average Recall (%) of ADD(-S) metric.
∗ denotes symmetric objects. Ours(B) and Ours(F) use 8 bounding box corners
and 128 FPS model points as shape priors respectively.
Method Ref. Ape Bvise Cam Can Cat Drill Duck Ebox∗ Glue∗ Holep Iron Lamp Phone Mean

SSD-6D [26]+ICP ✓ 65 80 78 86 70 73 66 100 100 49 78 73 79 79

DenseFusion [52] ✓ 92.3 93.2 94.4 93.1 96.5 87.0 92.3 99.8 100 92.1 97 95.3 92.8 94.3

CloudAAE [15]+ICP ✓ - - - - - - - - - - - - - 95.5

PoseCNN [62] 27.9 69.4 47.7 71.1 56.4 65.4 43.2 98.2 95.0 50.7 65.9 70.4 54.4 62.7

w/ Ours(B) ✓ 63.7 98.6 89.7 96.1 84.3 98.6 63.9 99.8 99.4 93.2 98.4 98.7 97.5 90.9

w/ Ours(F) ✓ 94.1 99.5 97.9 99.4 98.0 99.8 92.9 99.8 99.7 98.3 99.0 99.8 99.5 98.3

solves t and s using the indirect Umeyama algorithm without RANSAC, mak-
ing their method sensitive to outliers. In contrast, our network predicts t and
s in an end-to-end manner. Additionally, our method deals with all the objects
by a single network, while [60] needs to train separately for R and t/s of each
category. To sum up, although CAPTRA performs slightly better than ours
w.r.t. 5° 5 cm and Rerr, we still have an edge over them in tracking speed and
translation accuracy, which are vital in many robotic tasks such as grasping.

4.4 Instance-level Pose Refinement

Different from category-level refinement, instance-level pose refinement assumes
the CAD model is available. Considering this, we propose two types of shape
priors, i.e., the tight bounding box of CAD model or Np model points selected by
farthest point sampling (FPS) algorithm, where we choose Np = 128 empirically.

Table 5 shows the experimental results on LM dataset. Our methods achieve
significant improvement against the initial prediction provided by PoseCNN [62].
Noteworthy, Ours(B) utilizing the sparse bounding box corners information can
still be comparable with methods refined by ICP procedure leveraging exact
CAD models. Furthermore, by explicitly exploiting the shape information with
128 FPS model points, Ours(F) achieves state of the art distinctly surpassing
previous RGB-D based methods [26,52,15] with refinement.
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Table 6: Results of unseen category pose refinement on YCB-Video. (a) Quali-
tative results, where white, red and green contours illustrate the ground-truth,
initial (modified from PoseCNN [62]) and refined (Ours) poses, respectively. (b)
Quantitative results (Metric: AUC of ADD(-S)).

Trained on

master chef can

Trained on

cracker box

(a)

Train

Test Master Chef Can Cracker Box

Init. Ref. Init. Ref.

Master Chef Can 52.7 71.3 57.8 65.3↑7.5

Cracker Box 52.7 57.4↑4.7 57.8 89.6

(b)

4.5 Pose Refinement on Unseen Category

As discussed before, utilizing bounding box corners as shape prior offers a pos-
sibility for pose refinement on unseen category, as long as the objects have a
unified definition of the canonical view. We verify this assumption in two in-
stances on the challenging YCB-V dataset, i.e., master chef can and cracker
box, and present qualitative and quantitative results in Table 6. Training with
master chef can, the network is able to refine the pose of the unseen category
cracker box and vice versa. It demonstrates that the network learns some general
features for pose refinement exceeding the limitation of the trained category. We
hope this experiment will inspire future work for unseen object refinement or
tracking leveraging self-supervision or domain adaptation techniques.

5 Conclusion

We have presented CATRE, a versatile approach for pose refinement and track-
ing, which enables tackling instance-level, category-level and unseen category
problems with a unified framework. The key idea is to iteratively align the
focalized shape prior and observed point cloud by predicting a relative pose
transformation using disentangled pose heads. Our algorithm is generalizable
to various kinds of baselines and achieves significant boosts in performance over
other state-of-the-art category-level pose estimation works as well as competitive
results with tracking-based methods. Future work will focus on more challeng-
ing scenarios, such as tracking unseen objects, leveraging RGB information, and
training with only synthetic data utilizing large-scale 3D model sets [5,11,41].

Acknowledgments We thank Yansong Tang at Tsinghua-Berkeley Shenzhen
Institute, Ruida Zhang and Haotian Xu at Tsinghua University for their helpful
suggestions. This work was supported by the National Key R&D Program of
China under Grant 2018AAA0102801 and National Natural Science Foundation
of China under Grant 61620106005.



CATRE: Category-level Object Pose Refinement 15

References

1. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: PointNetLK: Robust & efficient
point cloud registration using PointNet. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 7163–7172 (2019)

2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI) 14(2), 239–256
(1992)

3. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. In: Com-
puter graphics forum. vol. 32, pp. 113–123. Wiley Online Library (2013)

4. Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S., Rother, C.:
Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB
image. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3364–3372 (2016)

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: ShapeNet: An information-rich
3D model repository. arXiv preprint arXiv:1512.03012 (2015)

6. Chen, D., Li, J., Wang, Z., Xu, K.: Learning canonical shape space for
category-level 6D object pose and size estimation. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 11970–11979 (2020).
https://doi.org/10.1109/CVPR42600.2020.01199

7. Chen, K., Dou, Q.: SGPA: Structure-guided prior adaptation for category-level
6D object pose estimation. In: IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 2773–2782 (2021)

8. Chen, W., Jia, X., Chang, H.J., Duan, J., Leonardis, A.: G2L-Net: Global to lo-
cal network for real-time 6D pose estimation with embedding vector features. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 4233–4242 (2020)

9. Chen, W., Jia, X., Chang, H.J., Duan, J., Linlin, S., Leonardis, A.: FS-Net: Fast
shape-based network for category-level 6D object pose estimation with decoupled
rotation mechanism. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1581–1590 (June 2021)

10. Choy, C., Dong, W., Koltun, V.: Deep global registration. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 2514–2523 (2020)

11. Collins, J., Goel, S., Luthra, A., Xu, L., Deng, K., Zhang, X., Yago Vicente, T.F.,
Arora, H., Dideriksen, T., Guillaumin, M., Malik, J.: ABO: Dataset and bench-
marks for real-world 3d object understanding. arXiv preprint arXiv:2110.06199
(2021)

12. Deng, X., Geng, J., Bretl, T., Xiang, Y., Fox, D.: iCaps: Iterative category-level
object pose and shape estimation. IEEE Robotics and Automation Letters (RAL)
(2022)

13. Du, G., Wang, K., Lian, S., Zhao, K.: Vision-based robotic grasping from object
localization, object pose estimation to grasp estimation for parallel grippers: a
review. Artificial Intelligence Review 54(3), 1677–1734 (2021)

14. Fan, Z., Song, Z., Xu, J., Wang, Z., Wu, K., Liu, H., He, J.: ACR-Pose: Adversarial
canonical representation reconstruction network for category level 6d object pose
estimation. arXiv preprint arXiv:2111.10524 (2021)

15. Gao, G., Lauri, M., Hu, X., Zhang, J., Frintrop, S.: CloudAAE: Learning 6D object
pose regression with on-line data synthesis on point clouds. In: IEEE International
Conference on Robotics and Automation (ICRA). pp. 11081–11087 (2021)

https://doi.org/10.1109/CVPR42600.2020.01199


16 X. Liu et al.

16. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-CODED: 3D cor-
respondences by deep deformation. In: European Conference on Computer Vision
(ECCV) (September 2018)

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). pp. 2961–2969 (2017)

18. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

19. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., , Navab,
N.: Model based training, detection and pose estimation of texture-less 3d objects
in heavily cluttered scenes. In: Asian Conference on Computer Vision (ACCV)
(2012)
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