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Abstract. Recently, studies considering domain gaps in shape comple-
tion attracted more attention, due to the undesirable performance of su-
pervised methods on real scans. They only noticed the gap in input scans,
but ignored the gap in output prediction, which is specific for completion.
In this paper, we disentangle partial scans into three (domain, shape, and
occlusion) factors to handle the output gap in cross-domain completion.
For factor learning, we design view-point prediction and domain classifi-
cation tasks in a self-supervised manner and bring a factor permutation
consistency regularization to ensure factor independence. Thus, scans
can be completed by simply manipulating occlusion factors while pre-
serving domain and shape information. To further adapt to instances in
the target domain, we introduce an optimization stage to maximize the
consistency between completed shapes and input scans. Extensive exper-
iments on real scans and synthetic datasets show that ours outperforms
previous methods by a large margin and is encouraging for the following
works. Code is available at https://github.com/azuki-miho/OptDE.

Keywords: Point cloud completion · Cross-domain · Disentanglement

1 Introduction

Shape completion in which we infer complete shapes given partial ones, attracted
lots of attention recently, for its wide application in robotics, path planning and
VR/AR [6,14,42]. However, real scan completion is quite challenging due to the
irregularity of point cloud and absence of complete real shapes for training.

Previous methods [30,15,35] had widely exploited completion on virtual 3D
models like ShapeNet [5] and achieved desirable performance. That is attributed
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Fig. 1. (a) presents the domain gap between objects from the same category but dif-
ferent datasets where topology and geometry patterns vary a lot, as well as the feature
distribution. (b) illustrates the output domain gap which is specific for completion task
in contrast to cross-domain classification. In (c), we disentangle any partial scan into
three independent factors, and completion can be simply implemented by setting occlu-
sion factors to zero vector (red arrow) while well preserve shape and domain features.

to the availability of complete shapes, and corresponding partial point clouds can
be obtained through virtual scanning [41]. However, it is hard to use supervised
methods for real point cloud completion, because complete shapes of real objects
are usually unavailable for supervision. Meanwhile, completion networks trained
on virtual 3D model are commonly not able to generalize well to infer complete
real objects, especially when there are large domain gaps between the synthesized
shapes and real objects [6]. So, the key for recovering real scans is to handle the
cross-domain completion, where geometry and topology of objects from the same
category are different between various datasets as shown in Figure 1 (a).

To alleviating the influence of domain gaps, pcl2pcl [6] trained two auto-
encoders and an adaptation network to transform the latent code of a real scan
to that of complete virtual one for each category. Then, the decoder for complete
virtual shapes can map the transformed codes into complete shapes. However,
they ignored a serious problem which is specific for completion task. In contrast
to cross-domain shape classification whose output space (i.e., categories) is in-
variant to different input domains, the predicted complete point cloud should
correspond to the domain of input partial shapes (see Figure 1 (b)). That means
an output domain gap in completion task, as illustrated by the domain factor dis-
tribution of complete shapes from CRN [32] and ModelNet [38] after t-SNE in
Figure 1 (a). Therefore, decoder trained to infer complete virtual shape cannot
complete real scans. Recently, based on TreeGAN[27] and GAN Inversion [22],
ShapeInversion [42] fine-tuned the decoder trained on virtual shapes during op-
timization stage for better performance. The underlying principle is that, fine-
tuning according to real scans could adapt the decoder to real instances, allevi-
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ating output domain gap to some extent. However, adaptation in optimization
alone is not enough, especially when the output domain gaps are quite large.

To handle the output domain gap, we assume the category of input par-
tial shapes is known in advance as previous works [6,33,42], and introduce an
intensively disentangled representation for partial shapes of each category via
comprehensive consideration of both shape completion and output domain gap.
Specifically, in our assumption, there are three generative factors, i.e., occlusion,
domain and domain-invariant shape factor, underlying a given partial cloud as
shown in Figure 1 (c). For complete point clouds from the same category but
different domains, they usually share the same semantic parts but quite different
topology and geometry patterns. Thus, we attempt to disentangle any complete
shape into a domain factor and a domain-invariant shape factor. While for a
given complete shape, the partial point clouds generated from scanning vary a
lot due to the occlusion caused by different scanning view-point [41]. So, we also
introduce an occlusion factor which indicates the view-point for partial scans.

Based on this assumption, any partial scan can be disentangled into these
factors no matter it is virtual or real, and we also assume the occlusion factor
will be all-zero if the input shape is complete. Thus, point cloud completion can
be simply implemented by manipulating the occlusion factor (setting to zero
vector, see the occlusion factor manipulation in Figure 1 (c)), while shape and
domain information can be well-preserved in the output prediction.

To thoroughly explore these three factors, we design several components to fa-
cilitate the disentanglement. (a) It is noteworthy that occlusion in partial shapes
is usually caused by scanning at fixed view-point. Therefore, we introduce a self-
supervised view-point prediction task for better occlusion factor/feature learn-
ing. (b) We take a domain discriminator judging whether a shape is virtual or real
to extract domain factor, and employ another domain discriminator to decouple
the domain information from the shape feature in an adversarial way. Addition-
ally, we utilize the completion task to ensure the domain and domain-invariant
shape factors are enough to infer complete shapes. (c) Inspired by PMP [10], for
more intensive disentanglement, we derive a new factor permutation consistency
regularization by randomly swapping the factors between samples, and intro-
duce an inverse structure of auto-encoder, decoder-encoder for swapped factor
reconstruction to ensure these factors independent to each other.

To further adapt our prediction to each partial instance in the target domain,
we embrace a collaboration of regression and optimization. We use the trained
encoder to obtain the disentangled factors of input cloud and set the occlusion
factor to zero. Then, the combined factors can give a good initial prediction
given the decoder. Later, Chamfer Distance between partial input and masked
prediction [42] is used to fine-tune these factors and decoder within several iter-
ations. Thanks to the collaboration, our method can give prediction 100× faster
than pure optimization method like [42] and achieve much better performance.

To evaluate the performance on cross-domain completion, we test on real
datasets ScanNet [8], MatterPort3D [4] and KITTI [12] like previous works [6,42].
We also utilize two additional point cloud completion datasets 3D-FUTURE [9]
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and ModelNet [38] with complete shapes for more comprehensive evaluation. The
experimental results demonstrate our method can well cover the gap in output
prediction and significantly improve cross-domain completion performance.

2 Related Works

Point Cloud Completion. Inspired by PointNet [25], PCN [41] designed an
auto-encoder with folding operation [40] for shape completion. Later, a great
performance boost has been brought in virtual shape completion, where paired
shapes are available for training [30,34,20,39,43,23,35]. To generalize to real
scans, pcl2pcl [6] trained two auto-encoders for virtual complete shapes and
real partial scans, and an adaptation network to map the latent codes of real
scans to that of virtual complete shapes. Cycle4Completion [33] added a reverse
mapping function to maintain shape consistency. Meanwhile, ShapeInversion [42]
searched for the latent code that best reconstruct the shapes during the opti-
mization stage, given a generator for complete virtual shapes. Even though they
fine-tuned the generator for better adaptation of partial scans, it is far from
enough when the domain gaps are large.

Compared with these methods, we attempt to handle the domain gaps in
the output prediction, which is specific for generation or completion task. In our
method, we disentangle occlusion factor and domain factor for better completion
of real scans while preserving domain-specific patterns.

Disentangled Representation Learning. Disentangled factor learning was
explored under the concept of “discovering factorial codes” [2] by minimizing
the predictability of one factor given remaining units [26]. Based on VAE [17],
FactorVAE proposed to disentangle the latent code to be factorial and indepen-
dent [16]. Factors can be more easily used for image manipulation and translation
after disentanglement [19,21]. To reduce the domain discrepancy, domain-specific
and domain-invariant features were disentangled for better recognition perfor-
mance [37,24]. To ensure the disentanglement, additional constraints on factor
through recombination were used in motion and 3D shape modeling [1,7].

Inspired by their works, we design a disentangled space consisting of occlu-
sion, domain and domain-invariant shape factors for cross-domain shape com-
pletion where complete shapes in target domain are unavailable for training.

Collaboration of Regression and Optimization. Methods based on op-
timization and regression correspond to generative and discriminative models
respectively, and recently their cooperation became prevailing for its speed and
performance. In pose estimation, optimization was used on a good initial pose
estimated by a regression approach [28]. Later, results obtained by optimization
further supervised the regression network [18]. To speed up the process of finding
latent code z of the generator that best reconstruct an image in image manipu-
lation, an encoder is used for good initialization before further optimization [3].
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Inspired by these methods, we further optimize the prediction given by disen-
tangled encoding within several iterations to adapt to each input partial instance
in the target domain, making it 100× faster than optimization-based completion
method and achieve much better performance.

3 Method

Overview. The framework of our two-stage method is shown in Figure 2. In
the first stage, we attempt to disentangle the input partial point cloud (unpaired
source domain partial shapes generated from complete ones through real-time
rendering and target domain partial scans) into three factors, naming view-based
occlusion factor, domain factor, and domain-invariant shape factor as shown in
Figure 2 (a). Here, we design a view-point prediction task in a self-supervised
manner to disentangle the occlusion information caused by scanning. Concur-
rently, domain discriminators are taken to disentangle the domain-specific in-
formation from domain-invariant shape features. Later, three factors will be
combined to output reconstructed partial point clouds. Meanwhile, we can sim-
ply predict the complete shapes by setting the occlusion factor to zero vector.
Additionally, the independence of these three factors are ensured by randomly
permuting the factors within a batch and keeping combined factors consistent
after a decoder-encoder structure as presented by Figure 2 (b). In the second
stage, for completion of specific partial point clouds, we optimize the disentan-
gled factors and decoder obtained from stage 1 within several iterations to better
adapt to each input partial point cloud instance (Figure 2 (c)).

Fig. 2. Overall framework of Optimization over Disentangled Encoding. (a) shows the
supervision given by view-point prediction, domain discrimination, reconstruction and
completion. (b) shows the procedure of factor permutation consistency where factors
are more intensively disentangled. Here, the Encoder, Decoder and Disentanglers are
shared with (a). (c) shows the optimization procedure over disentangled factors of
completed partial shapes and the Decoder is initialized by pre-trained model from (a).
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3.1 Disentangled Representation for Completion

According to the disentanglement assumption [13,10], there are intrinsic factors
{fi}li=1 in much lower dimension that generate the observed samples in high
dimension point cloud space P(f1, · · · , fl). In our method, we attempt to disen-
tangle the common partial point cloud into three independent factors, including
the occlusion factor fo, domain factor fd, and domain-invariant shape factor fs.

View-based Occlusion Factor. Partial shapes are mainly caused by occlusion,
since a complete shape will generate various partial clouds when scanned from
different view-points. So, scanning view-point plays a key role in point cloud com-
pletion and we aim to disentangle the view-based occlusion factor specially [31].

1) View-point Prediction: To disentangle the view-based occlusion factor,
we design a view-point prediction task in a self-supervised manner. Here, we
assume the view-point is located in a unit sphere. As shown in Figure 2 (a),
we first randomly generate azimuth and elevation angles (ρ, θ) as the view-point
direction, and rotate the complete point cloud accordingly. Then, based on z-
buffer [29], we design a real-time implementation to render the complete shapes
in a fast non-differentiable way and obtain the partial clouds in source domain.

Then, the generated partial shapes will be fed into the shared encoder to
extract common features, and a specific disentangler is utilized to obtain occlu-
sion factor fo. For better factor learning, we introduce a view-point predictor
module V P , consisting of several MLPs, to predict the view-point of point cloud
(ρ̂, θ̂) = V P (fo). The loss for view-point prediction can be formulated as follows:

Lvp = (ρ− ρ̂)2 + (θ − θ̂)2. (1)

Here, we choose to predict the azimuth and elevation angle directly rather than
the rotation matrix due to their independence and simplicity.

2) Occlusion Factor Manipulation: Additionally, we assume it is the
occlusion factor that makes the point cloud incomplete, and the decoder will
predict the complete shape when the occlusion factor is zeroed out. So, for the
same input partial point cloud, it can generate reconstructed partial shapes and
complete objects by simply manipulating the occlusion factor. The corresponding
latent factors for reconstructed partial shapes (zp) and complete ones (zc) are:

zp = fo ⊗ fd ⊗ fs, zc = 0⊗ fd ⊗ fs, (2)

where ⊗ indicates vector concatenation. Therefore, the reconstructed partial
shape and completed shape are P̂p = Dec(zp) and P̂c = Dec(zc), respectively,
where Dec(·) is the decoder. Chamfer Distance (CD) or Unidirectional Chamfer
Distance (UCD) between the output prediction and target shapes are used to
supervise the whole network. We take the form of CD as previous works [42,23]:

CD(P1,P2) =
1

|P1|
∑

p1∈P1

min
p2∈P2

∥p1 − p2∥22 + 1
|P2|

∑
p2∈P2

min
p1∈P1

∥p1 − p2∥22 , (3)
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and UCD is formulated as follows:

UCD(P1,P2) =
1

|P1|
∑

p1∈P1

min
p2∈P2

∥p1 − p2∥22. (4)

Here, we use CD(·) to supervise the reconstructed partial shape from source P̂s
p

and target domains P̂t
p, and predicted complete shape from source domains P̂s

c .

For inferred complete shape in target domain P̂t
c where GT are not available,

we take UCD for guidance. Therefore, the loss function for reconstruction and
completion can be expressed by

Ls
rec = CD(Ps

p , P̂s
p), Lt

rec = CD(Pt
p, P̂t

p), (5)

and
Ls
com = CD(Ps

c , P̂s
c ), Lt

com = UCD(Pt
p, P̂t

c), (6)

where Ps
p and Ps

c are input partial cloud and corresponding complete shape
Ground Truth (GT) from source domain respectively, and Pt

p indicates the input
partial shape from the target domain.

Domain Factor. To keep the domain-specific features of input partial shapes
well preserved in the output prediction, we extract the domain factor to provide
domain clues for the decoder. As shown in Figure 2 (a), we utilize a specific dis-
entangler to extract domain factors from common hidden features and introduce
a domain discriminator to guide the learning of domain information. Here, our
network will predict whether an input partial shape comes from the source do-
main or target domain according to the domain factor. Then, the domain labels,
which are generated automatically, will supervise the domain prediction through
cross-entropy loss, guiding the learning of domain factor.

Domain-invariant Shape Factor. To make the shape factor domain-invariant, we
also utilize the domain discriminator to distinguish the shape factor. However,
a gradient reverse layer [11] is utilized between the domain discriminator and
shape factor, where gradient will be reversed during back-propagation. Thus, the
shape factor can learn to be domain-invariant in an adversarial way. To learn the
shape information, this factor will be combined with domain factor to predict the
complete point cloud, and the output prediction will be supervised in Eq. (6).

3.2 Factor Permutation Consistency

The independence of each disentangled factor is pursued for an intensive disen-
tanglement [26,10]. To satisfy this property, we introduce a factor permutation
consistency loss for the disentanglement of partial point cloud. Specifically, we
first feed a batch of B samples into encoder to extract common features, then
three separate disentanglers are used to extract occlusion factors {f i

o}Bi=1, do-
main factors {f i

d}Bi=1 and domain-invariant shape features {f i
s}Bi=1 respectively.
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In order to make the shape factors invariant to different domain and occlusion
situations, we choose to generate random permutations of occlusion featuresf i

o

or domain features f i
d to form new combinations of factors:

z̃i = f j
o ⊗ f i

d ⊗ f i
s or z̃i = f i

o ⊗ f j
d ⊗ f i

s, (7)

where j is a permutation of i. In our implementation, we attempt to permute
occlusion factors or domain factors alternately. As we need to make sure the
extracted factors are independent to the remaining factors, an inverse structure
of auto-encoder, saying decoder-encoder as shown in Figure 2 (b), is designed to
keep factor permutation consistency with the following loss:

Lcons =

B∑
i

∥Enc(Dec(z̃i))− z̃i∥22, (8)

where Enc consists of the shared encoder and disentanglers, and Dec indicates
the decoder. It is noteworthy that we only add factor permutation consistency
loss halfway, when the three factors have been learned preliminarily in encoder.

3.3 Optimization over Disentangled Encoding

Based on the well-trained disentangled representation, we can obtain a complete
version of partial point cloud by simply manipulating the occlusion features. To
make the overlapping parts between prediction and input partial shape instance
look more similar, we introduce a collaboration of regression and optimization
method to fine-tune latent factors and decoders within only a few iterations.

Given the pre-trained auto-encoder from Figure 2 (a)-(b) (Enc†,Dec†) and
partial point cloud P, we first obtain the disentangled factors:

fo ⊗ fd ⊗ fs = Enc†(P), (9)

and obtain the initial latent factors of complete shape through:

zinit = 0⊗ fd ⊗ fs, (10)

as shown in Figure 2 (c). Meanwhile, the pre-trained decoder is utilized to ini-
tialize the output predictor Decinit = Dec†. Then, we attempt to optimize the
disentangled factors and decoder together to better adapt to input partial point
clouds by optimizing the following function Lop:

z∗, Dec∗ = arg min
z,Dec

Lop(Dec(z),P, z), (11)

and the final prediction can be expressed by Dec∗(z∗).
To construct the loss function, for all points of P, we first find their k nearest

neighbors in Dec(z) and the union of all neighboring points form the masked
point cloud M(Dec(z)) like ShapeInversion [42]. Then, Chamfer Distance be-
tween the partial point cloud and masked complete shape MCD(P1,P2) =
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CD(M(P1),P2) is used to maximize the similarity. Meanwhile, we also take a
regularization of latent factors. All in all, the optimization target is:

Lop(Dec(z),P, z) = CD(M(Dec(z)),P) + ∥z∥22. (12)

Compared with pure optimization method [42], our optimization stage can
converge much faster and give much better predictions, since the disentangled
factors and well pre-trained decoder have already covered the domain gaps in
prediction and give much better initialization for further instance-level adapta-
tion which can be evidenced obviously in Sec 4.4.

4 Experiments

To show the effectiveness of our method and demonstrate our statement, we
treat CRN [32] as our source domain and evaluate the proposed method on the
target domain including real-world scans from ScanNet [8], MatterPort3D [4] and
KITTI [12] as well as synthesized shape completion dataset 3D-FUTURE [9] and
ModelNet [38]. Following previous works [6,42], we assume the category of partial
clouds are known in advance and train a separate model for each category.

4.1 Datasets

CRN. We take CRN derived from ShapeNet [5] as our source domain. It pro-
vides 30, 174 partial-complete pairs from eight categories where both partial and
complete shapes contain 2, 048 points. Here, we take 26, 863 samples from six
shared categories between CRN and other datasets for training and evaluation.

Real-World Scans. Similar to previous works [6,42], we evaluate the performance
of our method on partial point cloud from real scans. There are three sources for
real scans, saying ScanNet, MatterPort3D, and KITTI. The tables and chairs
in ScanNet and MatterPort3D, and cars in KITTI are used for performance
evaluation. We re-sample the input scans to 2, 048 points for unpaired training
and inference to match the virtual dataset.

3D-FUTURE. To evaluate the performance on more realistic shapes, we generate
another point cloud completion dataset from 3D-FUTURE [9]. The models in
3D-FUTURE are much more close to real objects. Similarly, we obtain partial
shapes and complete ones with 2, 048 points from 5 different view-points. Because
3D-FUTURE only contains indoor furniture models, we only take five shared
categories of furniture for point cloud completion.

ModelNet. We generate a shape completion dataset ModelNet using models from
ModelNet40 [38]. We synthesize the partial shape through virtually scanning and
generate complete ones by randomly sampling points in the surface like previous
works [41,31]. 2, 048 points are taken for both partial and complete shapes to
match the CRN dataset. In order to test the adaptation ability, we take the
shared categories of ModelNet40 and CRN for evaluation.
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4.2 Implementation

All experiments can be conducted on a machine with GTX 1080Ti and 64GB
RAM. Here, we take PointNet [25] as our encoder to extract common features
with dimension 1, 024. Then, we take three separate disentanglers consisting of
two MLPs to extract fo ∈ R96, fd ∈ R96, and fs ∈ R96, and a TreeGCN [27] as
our decoder. More details is available at https://github.com/azuki-miho/OptDE.

4.3 Metrics and Results

Metrics. For real scans without ground truth, we use Unidirectional Cham-
fer Distance (UCD) and Unidirectional Hausdorff Distance (UHD) from the
partial input to the predicted complete shapes as our metric following previ-
ous works [6,36,42]. For more comprehensive evaluation of our completion per-
formance on cross-domain datasets, we take mean Chamfer Distance as our
metric for the brand new datasets 3D-FUTURE and ModelNet like previous
works [41,30] where complete shapes are available for testing.

Here, we first compare our method with the prevailing unsupervised cross-
domain completion methods on real-world datasets of ScanNet, MatterPort3D
and KITTI. The results are reported in Table 1 where UCD and UHD are used as
metrics for evaluation. In this table, DE indicates regression method only using
disentangled encoding shown in Figure 2 (a)-(b), and OptDE shows the results of
optimization over disentangled encoding (Figure 2 (c)). As shown, disentangled
encoding significantly improves the completion performance on real-world scans,
and optimization over the disentangled encoding can further refine the results
according to the input partial shapes. That is because our method can cover
the domain gaps in output prediction between different datasets and adapt to
various instances even within the target domain. We also show the qualitative
results in Figure 3 where our predictions correspond well to input partial scans.

Methods
ScanNet MatterPort3D KITTI

Chair Table Chair Table Car

pcl2pcl [6] 17.3/10.1 9.1/11.8 15.9/10.5 6.0/11.8 9.2/14.1

ShapeInversion[42] 3.2/10.1 3.3/11.9 3.6/10.0 3.1/11.8 2.9/13.8

+UHD [42] 4.0/9.3 6.6/11.0 4.5/9.5 5.7/10.7 5.3/12.5

Cycle4Compl. [33] 5.1/6.4 3.6/5.9 8.0/8.4 4.2/6.8 3.3/5.8

DE(Ours) 2.8/5.4 2.5/5.2 3.8/6.1 2.5/5.4 1.8/3.5

OptDE(Ours) 2.6/5.5 1.9/4.6 3.0/5.5 1.9/5.3 1.6/3.5

Table 1. Cross-domain completion results on real scans. We take [UCD ↓ / UHD ↓]
as our metrics to evaluate the performance, and the scale factors are 104 for UCD and
102 for UHD. +UHD indicates UHD loss is used during training.

Additionally, we report the completion results of our method and previous
works on target domain 3D-FUTURE in Table 2, and only complete shapes of
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Fig. 3. Visualization results on the data of ScanNet, MatterPort3D and KITTI. Par-
tial point clouds, predictions of pcl2pcl, ShapeInversion, Cycle4Completion and our
methods are presented separately from the left to the right.

CRN and partial point clouds of 3D-FUTURE are used for training for fair com-
parison. In this dataset, our method significantly outperforms other competitors.
Again, collaboration of regression and optimization can improve the performance
by adapting to each instance. Figure 4 (a) gives the visualization results of our
method and shows the qualitative improvement over previous works.

Methods Cabinet Chair Lamp Sofa Table Avg.

Pcl2pcl [6] 57.23 43.91 157.86 63.23 141.92 92.83
ShapeInversion [42] 38.54 26.30 48.57 44.02 108.60 53.21
Cycle4Compl. [33] 32.62 34.08 77.19 43.05 40.00 45.39
DE(Ours) 28.62 22.18 30.85 38.01 27.43 29.42
OptDE(Ours) 28.37 21.87 29.92 37.98 26.81 28.99

Table 2. Results of cross-domain completion on 3D-FUTURE. We evaluate the per-
formance of each method using [CD↓] and scale-up factor is 104.

We further compare the cross-domain completion performance on target do-
main dataset ModelNet. The results of cross-domain completion on this dataset
are reported in Table 3 where disentangled encoding alone can outperform previ-
ous methods by a large margin. In addition, optimization over the disentangled
encoding can further boost the performance especially for hard categories.

Moreover, we provide the qualitative results of different methods in Figure 4
(b). As can be seen, our method can well adapt to input partial shapes from
different domains.

4.4 Ablation Study

In this section, we will conduct more experiments to evaluate the effectiveness
of our proposed method from different aspects and prove our claims. Without
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Methods Plane Car Chair Lamp Sofa Table Avg.

Pcl2pcl [6] 18.53 17.54 43.58 126.80 38.78 163.62 68.14
ShapeInversion [42] 3.78 15.66 22.25 60.42 22.25 125.31 41.61
Cycle4Compl. [33] 5.77 11.85 26.67 83.34 22.82 21.47 28.65
DE(Ours) 2.19 9.80 15.11 42.94 21.45 10.26 16.96
OptDE(Ours) 2.18 9.80 14.71 39.74 19.43 9.75 15.94

Table 3. Results of cross-domain completion on ModelNet. We take [CD↓] as our
metric to evaluate the performance of each method which has been scaled by 104.

Fig. 4. Visualization results on the test set of 3D-FUTURE and ModelNet. The images
from the top to bottom are input partial clouds, results given by pcl2pcl, ShapeInver-
sion, Cycle4Completion and ours, and Ground Truth respectively.

loss of generality, we mainly utilize CRN as the source domain and evaluate on
the target domain ModelNet.

Optimization over Disentangled Encoding. In order to evaluate the effectiveness
of different parts in our method and test how far away from a perfect cross-
domain completion method, we conduct ablation studies as follows. We first train
the network with the same structure using only paired point clouds from CRN
and evaluate the performance on ModelNet which is taken as our baseline. Then,
we add Disentangled Representation Learning (Figure 2 (a)), Factor Permutation
Consistency, and Optimization stage gradually. Additionally, we evaluate the
best performance that can be brought by our backbones through training using
paired data from both source domain CRN and target domain ModelNet, which
is usually named as the oracle. We report all the results in Table 4.

It shows that our method can greatly handle the domain gaps in the output
space and well preserve domain-specific patterns in predictions thanks to the
disentanglement of occlusion factor and domain factor. Permutation consistency
loss and optimization over the disentangled representation can both boost the



OptDE: UCD Point Cloud Completion via Occlusion Factor Manipulation 13

Methods Plane Car Chair Lamp Sofa Table Avg.

Baseline 5.41 10.05 22.82 67.25 22.44 53.14 30.19
DE w/o Consistency 2.27 10.05 15.36 46.18 22.08 11.09 17.84
+ Consistency 2.19 9.80 15.11 42.94 21.45 10.26 16.96
+ Optimization 2.18 9.80 14.71 39.74 19.43 9.75 15.94

Oracle 1.51 6.58 10.52 41.98 9.94 7.87 13.07

Table 4. Ablation study of occlusion factor supervision on ModelNet. [CD↓](×104) is
taken as our metric to evaluate the performance improvement and distance to oracle.

performance. Even though, the improvement on car and sofa category is minor
and that is because the samples in source domain have covered most samples in
the target domains but the distribution is quite different. Compared with the
oracle, there are still gaps to be bridged. Thus, this paper may inspire more work
to focus on how to transfer the knowledge of virtual shapes to real objects given
only virtual complete shapes and real partial scans.

Occlusion Factor Manipulation. In order to show the learning of disentangled
occlusion factor and prove our claims, we take four original partial point clouds
{Pi}4i=1 that are scanned from different view-points, and then utilize the shared
encoder and disentanglers to obtain the occlusion factors, domain factors and
domain-invariant shape factors. After that, we replace the occlusion factors of P1

and P3 by those of P2 and P4, and obtain new generated point clouds through
the decoder as shown in Figure 5.

Fig. 5. Visualization of occlusion factor manipulation. The disentangled occlusion fac-
tors of P1 and P3 are replaced by the occlusion factors of P2 and P4. The new latent
factors can generate brand-new partial point clouds through the pre-trained decoder.

We can see the back and seat of P1 is occluded (blue circle), and the right
front leg (red circle) of P2 is occluded. After replacing the occlusion factor, the
right front leg of Pg

1 is occluded due to the occlusion factor while shape and
domain information is well preserved. We can also see the occlusion factor ma-
nipulation effect in Pg

2 . This indicates a disentangled representation can provide
a much easier way to control the occlusion through simple factor manipulation.
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Initialization in Optimization. Our method pursue a collaboration of regression
and optimization where disentangled encoding provides a good initialization for
optimization. Here, we provide two representative examples of optimization pro-
gression in Figure 6 where our method can provide a desirable prediction, and
the optimization can converge within about 4 iterations thanks to this good
initialization of latent code and decoder. Compared with ours, ShapeInversion
converges much slower and may even converge to a sub-optimal solution.

Fig. 6.Optimization progression on ModelNet test set. Compared with ShapeInversion,
our method can converge 100× faster (0.12s for 4 iterations v.s. 23.56s for 800 iterations
on a single GTX 1080Ti) and easily circumvent sub-optimal solution.

5 Conclusion

In this paper, we propose the very first method OptDE to deal with the output
domain gap in shape completion. We introduce a disentangled representation
consisting of three essential factors for any partial shape, and shape completion
can be implemented by simply manipulating the occlusion factor while preserving
shape and domain features. To further adapt to each partial instance in the target
domain, we introduce a collaboration of regression and optimization to ensure
the consistency between completed shapes and input scans. For comprehensive
evaluation on cross-domain completion, we treat CRN as the source domain and
evaluate on real-world scans in ScanNet, MatterPort3D and KITTI as well as
synthesized datasets 3D-FUTURE and ModelNet. Results show that our method
outperforms previous methods by a large margin which may inspire more works
to focus on cross-domain point cloud completion.
Limitation&Discussion. Since all previous methods assume the category of
partial shapes to be known and trained in category-specific way, we believe it will
be better to train a unified model for cross-domain completion of all categories.
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