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A Supplementary Material

Here we further provide the following supplementary information and results:

– Samples from training datasets
– Experiment on the Shapenet dataset
– Additional qualitative results on RenderPeople, and details of annotation for

the dataset
– Training details of our approach and baselines
– Data licenses, and discussion on societal impact and human dataset.

A.1 Samples from training datasets

Input

GT
labels

Input

GT
labels

Fig. 1. Examples from datasets used in our experiments. Left : RenderPeople [3]
dataset. Right : PartNet [9] dataset

Figure 1 visualizes different samples from our training dataset used in our
experiments.

⋆ The work was mainly done during Gopal’s internship at NVIDIA
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Methods instance avg. mIOU class avg. mIOU

SO-Net [8] 64.0 -
PointCapsNet [14] 67.0 -
MortonNet [10] - -
JointSSL [4] 71.9 -
Multi-task [7] 68.2 -
Deformation [12] 68.9 66.2
PointContrast [13] 74.0 -
ACD [6] 75.7 74.1

2D Scratch 72.7 74.7
(2D+3D) Ours 74.3 75.8

Table 1. Comparison with state-of-the-art few-shot part segmentation meth-
ods on ShapeNet. Performance is evaluated using instance-averaged and class-
averaged mIOU while using 1% of the training data.

A.2 Experiment on Shapenet dataset

The main focus of our work is fine-grained semantic segmentation. We also ex-
periment with the Shapenet Semantic Segmentation dataset [5] for the task of
few-shot semantic segmentation, which consists of 16, 881 labeled point clouds
across 16 shape categories, with a total of 50 part categories. We transfer the
point labels to triangles of a mesh using nearest neighbor queries to train our
models. The evaluation is done by transferring the predicted triangle labels back
to original point cloud. We use the same architecture and training strategy for
this dataset as used for other datasets. We report our results in Table 1. Note
that instance mIOU is highly influenced by the shape categories with large num-
ber of testing shapes Chair, Table. Class mIOU, on the other hand gives equal
importance to all categories, hence it is a more robust evaluation metric. We
evaluate the performance of work by Wang et al.[12] all all shape categories
from this dataset and average the performance over 5 random runs.

A.3 Additional results on RenderPeople and annotation details

In Figure 2, we provide additional qualitative results on the RenderPeople dataset.
In the data annotation stage, we label Renderpeople shapes using the labeling

tool from [11]. We start by rendering multiple RGB images of the textured mesh
such that maximum surface area can be covered. Then we label each rendered
image and back-project the pixel labels to the surface. We label 13 different parts
as shown in Figure 3.

A.4 Training details

Training details for PartNet dataset. For pre-training and fine-tuning stages of
our method we use the Adam optimizer with 0.001 learning rate. For pre-training
we decay the learning rate by half when validation loss saturates. During pre-
training, we use 4k matched pairs of points for a pair of views to compute our self



MvDeCor 3

supervision loss. During pre-training on the PartNet dataset, we train our model
with batch size of 16 for 200k iterations. For fine-tuning, we use the batch size
of 8 and exponential learning rate decay (factor=0.99) after every 40 iterations.
For k = 10, v = all setting, we train our model for 4k iterations, and for k = 10
and v = 5 setting, we train our model for 2k iterations.

Training details for RenderPeople dataset. For pre-training and fine-tuning stages
of our method, we use the Adam optimizer with 0.001 learning rate. For pre-
training, we decay the learning rate by half when validation loss saturates. Dur-
ing pre-training, we use 4k matched pairs of points for a pair of views to compute
our self supervision loss. During pre-training for the RenderPeople dataset, we
train our model with batch size of 16 for 100k iterations. For fine-tuning, we use
the batch size of 8 and exponential learning rate decay (factor=0.99) after every
40 iterations. For the RenderPeople dataset for k = 5, v = all setting we train
our model for 2K iterations, and for k = 5 and v = 3 setting, we train our model
for 400 iterations.

DeepLabv3+. We use the DeepLabV3+ as our 2D CNN backbone for learning
pixel level features. We modify the last layer of DeepLabV3+. In the original
version, the (64×64) feature map is directly 4× upsampled to a (256×256) fea-
ture map using bilinear interpolation, since the input image has a size of (256×
256×3). We instead gradually upsample the (64×64) feature map to (256×256)
resolution in two upsampling stages to preserve fine-grained details in the follow-
ing way: Up(2) → BN(256) → Relu → Conv2D(256, 128, 3) → Up(2) → BN(256) →
Relu → Conv2D(128, 64, 3). We also use bilinear up-sampling. Conv2D(i, o, k) is
a 2D convolution layer with i input channels, o output channels and k kernel
size, Relu is rectified linear unit, Up(x) is bilinear up-sampling by a factor of x
and BN is a batch normalization layer.

DenseCL. We keep all the hyper parameters same as proposed in the original
work. When depth map and normal maps are also input to the network, the
spatial augmentations applied to the RGB image are also applied to the normal
and depth maps. We do not augment normal and depth maps in any other
way. The models are trained until convergence. Once the DenseCL baseline is
pre-trained using their proposed approach on our dataset, we use the backbone
ResNet weights to initialize our DeepLabv3+ architecture as described above
and add a 2D convolution layer as a segmentation head.

PointContrast. To implement our 3D baseline, we use a 3D ResNet with U-Net
based architecture with 42 layers as proposed in the original paper [13]. We use
a voxel size of 0.01. We use a batch size of 16 and 10k pairs of matched points
to compute their self supervision loss. The implementation of the loss is done
using the source code provided by the authors. We use the SGD optimizer with
learning rate 0.1 with 0.9 momentum and 0.0001 weight decay. We train this
model for 100k iterations. The validation loss saturates after 100k iterations.
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A.5 Dataset, code, and ethics discussions

Dataset and code licenses The PartNet dataset [9] is a collection of labeled
shapes from ShapeNet [5]. The license can be found on the website of ShapeNet.
We obtained the license for using the Renderpeople dataset [3] through an agree-
ment with Renderpeople. To run the comparison with baseline methods, we use
the source code provided by the authors of DenseCL [1], PointContrast [2]. The
licenses of the codebases are provided in their original GitHub repositories.

Potential negative societal impacts We present a method for labeling de-
tailed parts of 3D models given a provided training set of shapes. Like many
other learning-based methods, our results can be biased by training datasets.
For purpose of deploying the method for human shapes, one would need to care-
fully de-bias the dataset to cover the distribution of a wide range of body shapes,
clothing, skin tones, race, and gender.

Personal data and human subjects Our paper uses human 3D models from
Renderpeople for training and evaluation. The data collection and ethics ap-
provals were taken care of by the dataset provider. We carefully inspected the
dataset and did not find identifiable information or offensive content. More in-
formation about the dataset can be found on the websites of the data provider.
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Fig. 2. Visualization of predicted semantic labels on Renderpeople dataset in
the few-shot setting when k = 5 fully labeled shapes are used for fine-tuning.
We visualize the predictions of all baselines. To visualize the details of predicted seg-
mentations in the facial region, we provide an inset figure.
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Fig. 3. Semantic labels of a shape from the RenderPeople dataset.



MvDeCor 7

10. Thabet, A., Alwassel, H., Ghanem, B.: MortonNet: Self-Supervised Learning of
Local Features in 3D Point Clouds. arXiv (Mar 2019), https://arxiv.org/abs/
1904.00230 2

11. Wada, K.: labelme: Image Polygonal Annotation with Python. https://github.
com/wkentaro/labelme (2016) 2

12. Wang, L., Li, X., Fang, Y.: Few-Shot Learning of Part-Specific Probability Space
for 3D Shape Segmentation. In: Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 4504–4513 (2020) 2

13. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast: Unsuper-
vised pre-training for 3d point cloud understanding. In: European Conference on
Computer Vision. pp. 574–591. Springer (2020) 2, 3

14. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point capsule networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1009–1018 (2019) 2

https://arxiv.org/abs/1904.00230
https://arxiv.org/abs/1904.00230
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme

