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1 Overview

Paper Summary. We highlight drawbacks in widely used body part models.
Existing head/hand models do not model the head/hand full range of motion.
We address this with a new holistic learning scheme in which we train body
parts models jointly with the body. To this end, we train SUPR an expressive
human body model, where the each joint strictly influences a sparse set of the
model vertices. This sparse factorization enables us to separate SUPR into a
full suite of high fidelity body part models. We show that body part hand/head
models learned jointly with the body are influenced by significantly more joints
than existing part models. Additionally, we note that, despite the importance of
the foot for locomotion, there is no existing foot part model and the feet of full
body models are significantly under actuated. To address this, we learn a foot
model from novel 4D scans and propose a novel function that relates the foot
deformation to the foot shape, pose and ground contact.

1.1 Paper Content

In this Supplementary Material, we perform extensive ablation studies and eval-
uations to further explore the main paper’s key contributions. The rest of the
document is arranged as follows: in Section 2 we describe the federated training
dataset of scans, including the foot scanner that enables us to model the foot
deformations due to contact. The foot deformation architecture is described in
detail in Section 3. We describe the SUPR training in Section 4. In Section 5 we
further evaluate SUPR. Ablations for the SUPR-Foot network are introduced in
Section 6. As introduced in the main paper, SUPR is based on spherical joints,
which produce redundant degrees of freedom (DoF) for joints like those of the
fingers. In Section 7 we describe a constrained version of the kinematic tree with
fewer DoF. We provide a comparison between SUPR and existing expressive
human body models in Section 8. We conclude by discussing limitations of our
method in Section 9
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2 Data

SUPR is trained on a federated dataset of 3D scans. In total 4 types of scanners
are used: a full body scanner, a hand scanner, a head scanner and a foot scanner.
All the scanners are 4D scanners, capturing high resolution dynamic sequences
for each body part. We additionally leverage datasets that are either publicly
available for research purposes or commercial datasets from private vendors. In
this section we describe the scanning setup for each scanner and describe the
external datasets. We discuss the foot scanner in Section 2.5 which was key to
enable us to capture the foot including the toes and the foot soles. In the main
paper we highlight that SUPR and the separated body part models were trained
on 1.2 millions scans, a break down of the number of scans for each body part
is discussed in Section 2.6.

2.1 Body Scanner

Human bodies deform in complex ways as a result of changes in body pose and
body shape. To study and model minimally-clothed human body deformations,
we use a 4D scanner that captures the full 3D human body shape at 60 frames per
second (fps). The full-body scanner is custom built by 3dMD (Atlanta, GA). The
system uses 22 pairs of stereo cameras, 22 color cameras, and speckle-light pro-
jectors. The speckle patterns allow accurate stereo reconstruction of 3D shape.
This speckle pattern alternates at 120 fps with large white-light LED panels that
provide a smooth nearly uniform illumination. The scanner outputs high reso-
lution meshes with approximately 150,000 vertices. The high resolution meshes
in addition to the high frame rate (60 fps) enable us to model the subtle defor-
mations of the human body. The full body scanner scanning volume is sufficient
to capture poses such as a full leg split by a ballerina, or a sitting or lying down
poses.

The captured data contains a wide diversity of body shapes. The training
scans include extreme body shapes such as body builders and anorexia ner-
vosa patients. Furthermore, the data capture protocol include athletes such as a
ballerina and a yoga expert. Additionally, since SUPR has a full expressive kine-
matic tree, including a fully articulated hand, jaw and an expressive head, we
capture expressive sequences where subjects performed motions communicating
emotions and intent. An overview of the full body training scans is shown in
Figure 1

External datasets In addition to the scans from the 4D body scanner, we
leverage a number of datasets of 3D human body scans. To capture the diversity
of human body shape we use the CAESAR [9] and SizeUSA [1] datasets. The
CAESAR database contains 1700 male and 2107 female subjects distributed
according to the US population in 1990. A limitation of CAESAR’s capture
protocol is that all women subject were in sports-bra-type top. As a result of
the bra type, the CAESAR female chest shape does not reflect the diversity
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Fig. 1: Overview of the scans captured in the full body scanner. The scans are
detailed and high resolution. Note however, the hands and the feet are poorly
reconstructed, and the head resolution is not sufficient to capture subtle facial
expressions.
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of shapes found in real applications. We additionally use the SizeUSA dataset,
which contains a richer diversity of body shapes and the female subjects wore a
traditional bra. The SizeUSA dataset contains 10, 000 subjects (2845 male and
6436 female).

Despite the 4D scanner high resolution output meshes, the output scans have
have poorly reconstructed hands and foot. The foot sole is poorly reconstructed
because it is always occluded by the glass platform. The full body scans are not
suitable for learning head, hand and foot deformations.

2.2 Head Scans

The human head exhibits a range of highly dynamic deformations. When we
refer to the head we mean the face, the back of the head including the scalp
and the neck. The human head 3D deformations are due to facial expressions,
jaw movement, head movement relative to the neck and body movement relative
to the neck (for example when shrugging). We use a dedicated head scanner
to complement the full body 4D scanner. The head scanner has a significantly
higher number of cameras focused on the head region compared to the body
scanner in Section 2.1. The scanning setup enables us to capture the subtle facial
expressions. We note, however, that the head scanner has a limited scanning
volume making it infeasible to capture the full range of motion of the human
head relative to the body.

Similar to the full body scanner, the head scanner is a 4D scanner captur-
ing high-resolution dynamic sequences. The scanner employs 6 pairs of stereo
cameras to compute shape and geometry with the assistance of custom speckle
projectors. It also includes 6 color cameras and white-light panels to capture
texture. The data capturing protocol was designed by experts to capture subtle
and extreme facial expressions, full movement of the jaw, in addition to neck
movement poses such as looking up, down to the left or right.

2.3 Hand Scans

The reconstructed fingers in full-body scans are typically noisy and poorly re-
constructed, as shown in Figure 1. To better capture the hands, we use the data
from the MANO hand model [10]. These hand scans are used to learn the pose
corrective blend shapes due to finger articulation. A sample of the captured hand
scans is shown in Figure 3.

2.4 Foot Scanner

The human foot is a complex structure containing muscles, other soft tissue,
and a quarter of the bones in the human skeleton. All existing human body
models [2,7,6,8,11,4] use a highly simplified kinematic tree to model the feet
with a limited number of joints. Such modes can not model the full range of



SUPR 5

Fig. 2: Head Scans A sample of the head scans using in training SUPR.
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Fig. 3: Hand Scans: A sample of the hand scans used to train SUPR.

motion of the bones in the human foot, as highlighted in Figure 3 in the main
paper. The kinematic tree of models like SMPL-X is not sufficient to capture
the toe articulation. The commonly used pose deformation functions only define
body deformations due to pose. As we discuss in the introduction section in the
main paper, this is insufficient to capture the foot deformations due to ground
contact.

Existing Foot Models. The key reason existing models fail to accurately
model foot deformations is because the foot dynamic deformations are hard to
capture. The only interesting exception is the work of Boppana et al. [3] discussed
in Section 2 in the main paper, which is, to best of our knowledge, the first and
only work that attempts to build a model of dynamic foot deformations. Bopanna
et al. recognize the limitation of existing scanning solutions to model the human
foot deformations and propose the DynaMo system. The Dynamo scanning setup
is comprised of a treadmill surrounded by 7 Intel RealSense cameras. A total of
30 subjects were captured walking on a treadmill. A sample reconstructed mesh
by the DynaMo system is shown in Figure 6b. We note here that the output
scan is noisy and does not capture the foot sole. Bopanna et al. register the
DynaMo scans to a high resolution template mesh and learns a PCA space on
the registered meshes. The model they propose does not contain toes or a foot
sole as shown in Figure 6. This is not surprising given the fidelity of the foot
scans captured by the DynaMo system. In contrast to the Bopanna et al. model,
SUPR-Foot contains an extensive kinematic tree with 13 joints per foot as shown
in Figure 3c in the main paper. SUPR is the first articulated model of the human
foot with a pose space that can be driven by bio-mechanics simulations of the



SUPR 7

human foot for example, in addition to a shape space to capture the diversity of
human foot shape.

2.5 Foot Scanner

SUPR goes beyond existing expressive human body models to model the human
foot. To enable capturing the full range of the human foot deformations, we
use a custom built scanner dedicated for the foot. The scanner is designed to
be mechanically stable to capture dynamic poses such as walking, running or
jumping. The output scans are high resolution and can capture the movement
of the toes. The scanner floor is a transparent glass platform (which can support
subjects up to 150 kg), which enables us to capture the foot sole deformation
due to ground contact.

An overview of the foot scanner is shown in Figure 5. The scanner setup
features a runway for the subjects to run or walk. In Figure 5b, we show raw
scanner images, where the foot is visible from all views, including the foot sole.
The scanner uses 10 pairs of stereo cameras, including dedicated cameras captur-
ing the bottom of the foot. The frame rate of the scanner is 10 fps. The output
scans contain on average 30, 000 points.

Data Capture Protocol. We capture a total of 30 subjects, 15 female and 15
male subjects with a total of 70, 000 scans. The data capture protocol is designed
by experts to explore the space of human foot deformations. The capture protocol
is divided into two main parts: 1) Non-Contact sequences 2) Contact Sequences.
In the non-contact sequences, the subject foot is not in contact with the glass
platform. The data capture protocol for such sequences is designed to explore
the full degree of freedom of the toes and the ankle. In contact sequences the
subject’s foot is partially or in full contact with the glass platform. The contact
sequences include motions such as walking/running and jumping. In total We
capture 356 dynamic sequences which is the largest training dataset for human
scans report in the literature. An overview of the captured scans is shown in
Figure 4

Foot Shape Scans. The 30 subjects captured in the dynamic foot scanner
do not represent the diversity of human foot shape. Accurate modeling of the
human foot shape is crucial for the footwear industry. The feet in the CAESAR
and SizeUSA scans, shown in Figure 7a, are noisy, missing, and are not good
enough to learn a statistical model. To accurately model the diversity of the
human foot scans, we acquired an additional 7, 000 high resolution foot scans
from a private vendor. Figure 7 compares the curated high resolution foot scans
in comparison to CAESAR and SizeUSA foot scans. In contrast to CAESAR
and SizeUSA, the curated dataset of foot scans is significantly less noisy, with
on average 10x the resolution of a foot scans from CAESAR/SizeUSA. The high
resolution foot scans preserve the 3D geometry of the individual toes. We use
this data in learning the the local shape space of SUPR-Foot.
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Fig. 4: Foot Scans: An Overview of the foot scans. The foot is full reconstructed
including the toes and the foot sole.
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(a) Scanner setup (b) Raw Scanner Images

Fig. 5: A 3dmD foot scanner using 10 pairs of stereo, including dedicated cameras
capturing the bottom of the foot through a transparent glass platform. The
scanner features a run way to capture dynamic sequences such as walking.

(a) Foot model. (b) A Scan from the DynaMo system.

Fig. 6: Bopanna et al. [3] foot model based on Principal Component Analysis of
dynamic foot scans. The model does not contains toes or a foot sole.

2.6 Training Scans Summary

SUPR and the separated body parts are trained on a total of 1.2 million scans.
In Figure 8 we compare the scale of training datasets used to train body models
in the literature. As Figure 8 highlights, the scale of the training data is an order
of magnitude larger than the largest training dataset reported in the literature
(60K, for the GHUM model). A breakdown of the number of scans captured by
each body part is summarized in Table 1.

3 SUPR-Foot Network

In the main paper Section 3.3 we introduce the foot deformation function. A key
contribution of our paper is the deformation function relating the foot deforma-
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(a) Cropped Feet from full body scans (b) High resolution Foot Scans

Fig. 7: Comparing reconstructed feet from a full body scanner compared to the
curated high resolution foot scans. We curate a total of 7, 000 high resolution
foot scans. The curate scans have 10x the resolution of foot scans captured in a
body scanner and preserve the individual toes geometry.
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Fig. 8: A comparison between the scale of training datasets for recent human
body models. SUPR is trained on a order of magnitude more data compared to
the highest number of training scans report in the literature (GHUM 60k).
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Body Part Number of Scans

Body Scans 775,481
Head Scans 421,898
Foot Scans 69,257
Hand Scans 3,531

Total 1,270,167

Table 1: A breakdown of the number of scans for each body part.

tion to the foot pose, shape and contact parameters. In this section we describe
the foot deformation network in detail.

Foot Contact The raw foot scans generated by the the foot scanner described
in Section 2.5 does not provide per vertex contact labeling, describing whether a
vertex in the scan is in contact with the glass platform. To estimate the per-vertex
ground contact information we register all the scans to the foot template mesh
T foot. We additionally estimate the ground plane for each dynamic sequence by
fitting a plane to the glass platform scan points. A vertex v⃗ ∈ T foot is labelled
in contact with the ground, if it the point-to-plane distance between the vertex
and the ground plan is less than a threshold. We allow for a soft threshold when
estimating contact since the scans have noise. The threshold used in the main
paper is 0.1 mm.

3.1 Foot Deformation Network

The foot deformation network is an encoder-decoder architecture as described
in Section 3.3 in the main paper. We train a deformation network for each foot
separately. Below we describe the network for the right foot. We first introduce
the notation we use:

– BP : is the linear pose corrective blend shape described Equation 1 in the
main paper.

– BC : is the predicted deformations for the foot related to pose, contact and
foot shape.

– c⃗: is a binary vector of which vertices are in contact with the glass platform.

– z⃗: is a latent code vector.

– θ⃗: is a foot pose parameters.

– β⃗: is a foot shape parameters.

– f⃗ : is a concatenated feature of the pose, shape and contact vector.

– LReLU: leaky rectified linear units with a slope of 0.1 for negative values.

– FCm: fully connected layer with output dimension m.
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Feature Representation The input to the network f⃗ is a concatentation fea-
ture representation of the foot pose, foot shape and contact. The foot pose rep-
resentation is based on normalized unit quaternion representation defined by:

F (θ⃗) = Q(θ⃗)−Q(θ⃗∗) (1)

where Q(.) : R3 → R4 is a function computing the quaterion representation
of the input axis angle rotation, θ∗ is the foot in the rest pose. The feature
representation in Equation 1 will evaluate to 0 when the foot is in the rest pose.
The foot template mesh T foot ∈ R266×3 is a high dimensional representation
to represent the foot shape. We represent the foot shape using the first two
principal components which correspond to the foot length and foot volume.
We experimented with different number of coefficients, and the first two PC
component result in the lowest generalization error on the validation set. The
state of the foot contact with the scene is represented using the c⃗. More formally
the input feature to our network:

{F (θ⃗), β⃗1, β⃗2, c⃗}
concat−−−−→ f⃗ ∈ R320, (2)

where β⃗1, β⃗2 are the first two PCA components and the concat operator is a
standard vector concatenation operator.

3.2 Architecture

The architecture is an encoder-decoder fully-connected network, with non-linear
activations based on LReLUs. Encoder:

f⃗ ∈ R320 → FC256 →
→ FC128 → FC64 →
→ FC32 → z⃗ ∈ R16

The dimensionality of the latent code z⃗ was chosen by grid search. We exper-
imented with dimensionality 64, 32 and 16. A latent code with dimensionality
16 result in the lowest generalization error of the validation set. The decoder is
described by:

z⃗ ∈ R16 → FC32 →
→ FC64 → FC128 → FC266 → BC

where BC is added to the linear blend shape BP as shown in Equation 6 in
the main paper.
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4 Training

4.1 SUPR Training

SUPR pose corrective formulation is training is similar to STAR. The key differ-
ence is the pose corrective formulation of SUPR is not conditioned on body shape
similar to STAR. The additional shape dependant blend shape is not sparse. The
key reason we are able to separate SUPR is the fully sparse factorization of the
pose blend shapes and the skinning weights as discussed in Section 3 in the main
paper.

The SUPR pose corrective blend shapes are trained by minimizing the recon-
struction loss between between the model prediction and the federated dataset
of groundtruth registration. The SUPR pose blend shape parameter, namely the
joint activation A and the pose corrective blend shapes P are trained by stochas-
tic gradient descent. Since our data is based on 4D dynamic sequences, we first
shuffle the data such that there is no similarity between subsequent frames. We
use batches of size 32 to minimize the vertex-to-vertex loss given by:

LD =
1

B

32∑
i=1

||M(θi)−Ri||2. (3)

where Ri is the ith groundtruth registration in the batch. Similar to STAR, we
use an L1 penalty on the output of the joint activation A,

LA = λc||
K−1∑
i=1

ϕj(Aj)||, (4)

where λc is a scalar constant. The full objective for the pose space is defined by
Equation:

L = LA + LD, (5)

where Equation 5 is minimized with respect to the pose corrective regression
weights K1:80, activation weights A1:80. We use a batch size B = 32 and the
ADAM.

4.2 Body Part Training

Given the trained blend shapes, the body part pose space is separated as dis-
cussed in Section 3 in the main paper. We further train a local shape space
for each of the separated body part models. The CAESAR head, hand of the
CAESAR registrations are used to train a local shape space for SUPR-Head and
SUPR-Head. The local shape space for the foot is trained on the curate high res-
olution foot scans, as the foot in the CAESAR scans were noisy. The percentage
of explained variance as the number of shape components for each body part is
shown in Figure 9.
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4.3 Deformation Network Training

Given the learned linear blend shapes trained in Section 4.1, and the local shape
space for the foot, we train the deformation network for the foot deformation
described in Section 3 in the main paper. For training the deformation network
we use both contact and non-contact foot registrations. The network is trained
by minimizing the L1 loss between the model and the foot registrations:

L = ||M(θi, c⃗i, β⃗i)−Ri||. (6)

The training loss is minized using stochastic gradient descent, where we used
ADAM with batch size 32.

5 SUPR Ablation

5.1 STAR Evaluation

SUPR pose corrective blend shape formulation is based on the STAR pose cor-
rective blend shape formulation as discussed in Section 3 in the main paper.
For completeness we further evaluate SUPR against STAR. We note however
that SUPR is expressive, with 1.5x more vertices and 3x more joints compared
to STAR. We use the 3DBodyTex dataset and register the scans to the STAR
template. A human expert validated all registrations. Similar to the evaluation
Section 4.1, we fit each model by minimizing the vertex-to-vertex loss (v2v)
between the model surface and the corresponding registration. The free opti-
mization parameters for both models are the pose parameters θ⃗ and the shape
parameters β⃗. We report the model generalization error in Figure 10.

5.2 GHUM Body Parts Evaluation

Head Evaluation In Section 4.2 in the main paper we evaluate SUPR-Head
against GHUM-Head. A sample qualitative comparison fits are shown in Fig. 12.
Similar to FLAME, GHUM-Head has significant error around the neck region.

Hand Evaluation In Section 4.3 in the main paper we evaluate SUPR-Hand,
against GHUM-Hand. A sample of the GHUM-Hand fits are shown in Figure 11.
GHUM-Hand consistently has a high error in the wrist region compared to the
the fingers.

6 SUPR-Foot Ablation

In the main paper Section 4.4 we evaluate SUPR-Foot against SMPL-X-Foot
on a held out test set of contact and non-contact foot scans. We further break
down the evaluation in Figure 13. We report the model mean absolute error as
a function of the number of shape components used on non-contact frames in
Figure 13a and contact frames in Figure 13b.
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(a) Male Shape Space

(b) Female Shape Space

Fig. 9: Percentage of explained variance as a function of the number of shape
components for SUPR and the separated body part models.
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Fig. 10: Evaluation of SUPR against STAR on the 3DBodyTex dataset.
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Fig. 11: GHUM-Hand Evaluation : Evaluating GHUM-Hand on the MANO
test set. The top row are raw scans from the MANO test set, the second row is
GHUM-Hand model fits with 10 shape components, while the bottom row is the
corresponding error heatmap.
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1 cm

0

Fig. 12: Head Evaluation: Evaluating GHUM-Head and SUPR on a test con-
taining head movement relative to the neck, jaw movement and extreme facial
expressions. Both GHUM-Head and SUPR are fit with 16 shape and epxression
components. The top raw correspond to head raw scans, second row correspond
to GHUM-Head fits, third row correspond to the heatmap, fourth row corre-
spond to SUPR-Head fits and the fifth row are the corresponding error heat
maps.

Table 2: Foot Deformation Ablation Study. SUPR-Foot lbs corresponding to
model with linear blend skinning, no additive correctives used. SUPR-Foot lbs+l

correspond to lbs in addition to the linear correctives, SUPR-Foot lbs+l+f(θ) is
adding the non-linear deformation where the network is condition on pose only,
SUPR-Foot lbs+l+f(θ,β⃗) where the network is conditioned on pose and shape

information, while SUPR-Foot is the full model.

Model Non-Contact v2v (mm) ↓ With-Contact v2v (mm) ↓
SUPR-Foot lbs 5.235 ±0.126 6.691 ±1.369
SUPR-Foot lbs+l 4.587 ±0.589 5.364 ±1.279
SUPR-Foot lbs+l+f(θ) 2.982 ±0.859 4.129 ±1.883
SUPR-Foot lbs+l+f(θ,β) 2.910 ±0.728 3.934 ±1.819

SUPR-Foot (ours) 2.753 ±0.821 3.122 ±1.462
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Fig. 13: Evaluating SUPR-Foot on frames where the foot was not in contact with
the glass platform shown in Figure 13a, and frames where the foot was partially
or fully in contact with the glass platform in Figure 13b.

Deformation function: A key contribution of our work is introducing a novel
deformation function which relates the foot deformations to the foot pose, shape
and ground contact. We illustrate the influence of each term on the model gener-
alization by ablating the foot deformation network described in Section 3 in the
main paper. We retain variations of the deformation network from scratch and
refit each model to the test set. We report the model v2v error in Table. 2. The
result clearly show the vertex to vertex error decreasing on the held out test set
when adding each term in the foot deformation function across both the contact
and non-contact frames.

7 Constrained SUPR

The SUPR kinematic tree introduced in Section 3 is based on spherical joints.
Each spherical joint j is parameterized by θ⃗j ∈ R3. The spherical joints allow
redundant degrees of freedom for some body parts such as the fingers. For the
fingers, for example, the axes of rotation are not bone-aligned. In order to simply
bend a finger we have to control 3 axis-angle rotations. This is problematic to
use by animators and for architectures that regress hand pose parameters from
images. In this section we describe a constrained version of SUPR that uses
hinge/double hinge joints in contrast to spherical joints.

Constrained Kinematic Tree. The kinematic tree of the constrained version
of SUPR (shown in Figure 14) uses hinge and double hinge joints. A hinge joint
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SUPRConstrained SUPR

Fig. 14: Constrained SUPR Kinematic Tree: SUPR is based on spherical
joints which allow redundant degrees of freedom for body parts such as the fin-
gers. The constrained SUPR kinematic tree contains a mixture of joints: Spher-
ical joints (shown in red), Hinge Joints (shown in beige) and double hinge joints
(shown in blue).

is fully parameterized by an axis of rotation a⃗ ∈ R3 and a pose parameter θ⃗ ∈ R.
A double hinge joint is defined by two axes of rotation and pose parameters
θ⃗ ∈ R2. The axes of rotation for the hinge and double hinge joints are orthogonal
to the bone. Therefore, to simply bend a finger in SUPR requires only controlling
or regressing one or two scalars. This compact representation is convenient for
artists, regression tasks and is more anatomically plausible.

Specifically, this version of SUPR is defined by Eq. 7:

M(θ⃗, β⃗, ψ⃗) =W (Tp(θ⃗, β⃗, ψ⃗), J(β⃗), AX, θ⃗,W), (7)

where AX ∈ R30×3 is the axis of rotation matrix for the hinge and double hinge
joints. The key difference between Equation 1 in the main paper and Equation 7
is the bone transformation rotation matrix. The rotation matrix for a hinge joint
is a constrained rotation matrix, which only allows a single degree of freedom
with respect to the axis of rotation a⃗. A constrained rotation matrix is defined
by:  a2x + cθ(1− a2x) axay(1− cθ) + azsθ axaz(1− cθ)− aysθ

axay(1− cθ)− azsθ a2y + cθ(1− a2y) ayaz(1− cθ) + azsθ
axaz(1− cθ) + aysθ ayaz(1− cθ)− axsθ a2z + cθ(1− a2z)


where ax,ay,az are the x , y and z coordinates of the axis of rotation a⃗. cθ and
sθ are cos(θ) and sin(θ) correspondingly.

The constrained version of SUPR only limits the bones’ degrees of freedom,
by constraining the rotation matrices of the corresponding joints. Therefore,
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this is an additional functionality, which we will release with SUPR, that can be
enabled or disabled by a user of regression model.

8 Model Comparison

SUPR is trained on a federated dataset of head, body and head registrations.
As a consequence of the sparse factorization of the pose space, we are able to
separate the model into body part models. A comparison between SUPR and
existing body models is shown in Figure 15.

Fig. 15: A comparison between SUPR and existing body models.

8.1 SUPR

Model # Pose # Joints # Blendshapes

SUPR 225 75 296
SMPL-X [8] 165 55 486
GHUM [11] 124 63 -

Table 3: Body Models Comparison: Comparing existing expressive human
body models according to the number of pose parameters, number of joints and
number of pose corrective blendshapes.

SUPR is a compact model that is compatible with the existing gaming and
animation industry standards. The number of parameters of SUPR compared to
existing expressive human body models is summarised in Table 3.
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Comparison with SMPL-X: SUPR has 30% fewer pose-corrective blendshapes,
despite having significantly more joints compared to SMPL-X. This is because
of the Quaternion-based representation, which is significantly more compact
compared to the Rodrigues representation used by SMPL-X. However, despite
SUPR’s compactness, it uniformly generalizes better than SMPL-X. The shape
space of SMPL-X is trained on the CAESAR dataset [9], while SUPR is trained
on 15, 000 registrations from both CAESAR and SizeUSA [1]. The SizeUSA
dataset contains a larger diversity of body shapes and, in addition, the female
subjects wore a traditional bra, whereas, in the CAESAR dataset, the female
subjects wore a sports bra. The pose space of SMPL-X is trained on 2000 full
body registrations. In contrast, SUPR’s pose space is trained on a federated
dataset of 1.2 million registrations of head, hand, body and feet registrations.

SMPL-X’s pose blendshape formulation is based on SMPL. As a result,
SMPL-X suffers from the same drawbacks of SMPL, namely SMPL-X also learns
false long range spurious correlations; e.g. bending one elbow results in a bulge
in the other elbow.

Comparison with GHUM: The GHUM model [11] pose space deformation func-
tion (PSD) is modeled by a neural network, which is not compatible with the
gaming and animation industry standards. SUPR’s learned blendshapes are lin-
early related to the model pose parameters, and hence the formulation is full com-
patible with the gaming and animation industry standards. While both SUPR
and GHUM are trained on a federated dataset, and the GHUM authors propose
a separated suite of models (GHUM-Head and GHUM-Hand), there are key im-
portant differences. The GHUM shape space is trained only on the CAESAR
data (5K subjects),while SUPR shape space is trained on both CAESAR and
SizeUSA, for a combined total of 15K registrations. On the other hand, the pose
space of GHUM is trained on a dataset of 60K head, hand and body registra-
tions, while the SUPR pose space is trained on 1.2 million body, head, hand
and feet registrations. SUPR is the first to train on dedicated foot registrations.
This is crucial for modeling realistic foot deformations due to movement of the
ankle or curling of the toes, since the feet are consistently poorly reconstructed
in full-body scans.

The GHUM PSD formulation is a dense non-linear formulation, where all
the joints are related to all the vertices using a VAE [5]. As a result the body
pose-space formulation of GHUM can not be separated into compact body parts.
To define separate body part models, the GHUM authors segment the mesh and
re-train the PSD function of the separated parts. The proposed head and hand
models for GHUM fail to capture the full degrees of freedom of th head. SUPR
and the separated head/hand models are jointly trained once. In contrast to
GHUM, the SUPR pose-space formulation is strictly sparse, where each joint
only influences a sparse set of the model vertices. As a result, SUPR can be
separated into a suite of compact models. The learned kinematic tree of SUPR-
Head has significantly more joints (neck and shoulders).
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All prior expressive human body models ignore the human foot. The kine-
matic tree contains an additional 24 joints for modeling the full range of motion
of the ankle and the toes.

8.2 SUPR-Head

The SUPR-Head has a pose, shape and expression space. We train 3 head models:
female, male and a gender neutral model. The pose blendshape function is a
subset of the learned SUPR pose corrective blendshapes, which are also sparse
and spatially local. A comparison between and existing full head models is shown
in Table 4.

Model # Pose # Joints # Blendshapes

SUPR-Head 29 10 40
FLAME [8] 12 4 36
GHUM-Head [11] 23 10 -

Table 4: Head Models Comparison: Comparing existing head models models
according to the number of pose parameters, number of joints and number of
pose corrective blendshapes.

8.3 SUPR-Hand

We train a single gender-neutral SUPR-Hand model. SUPR-Hand has a pose
and shape space. A comparison between SUPR-Hand and existing hand models
is shown in Table 5. In comparison to MANO, SUPR-Hand has an additional
wrist joint, which is necessary to model the hand deformations as a result of the
wrist movement. A comparison between SUPR-Hand and existing hand models
is shown in Table 5.

Model # Pose # Joints # Blendshapes

SUPR-Hand 90 30 120
MANO [8] 90 30 270
GHUM-Hand [11] 18 36 -

Table 5: Hand Models Comparison: Comparing existing hand models ac-
cording to the number of pose parameters, number of joints and number of pose
corrective blendshapes.
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8.4 SUPR-Foot

We train a male, female and neutral models for SUPR-Foot. SUPR-Foot is
the first publicly-available articulated model of the human foot. We propose
a novel deformation function that relates the foot deformation to the foot pose,
foot shape and foot contact. SUPR-Foot shape space is trained on 7, 000 high-
resolution foot scans that capture the diversity of the human foot shape variation.
The pose space is trained on 57, 231 high-resolution scans that capture the foot
sole deformations due to ground contact.

9 Limitation

A limitation of our method is that model training relies on registering a template
mesh to the scans. While registration is automatic, the resulting data needs cu-
ration by an expert to detect any failures or artifacts. Registering 1.2M hand,
head, body, and foot scans is time-consuming and labor-intensive. Registration
remains a bottleneck for training body models on large datasets.

A key limitation when evaluating SMPL-X and GHUM against SUPR is
that they are both trained on propriety data that is not publicly available to
the research community. Additionally, the training code of SMPL-X and GHUM
is also not publicly available for research purposes. Therefore, direct compar-
isons between the body models on the same data is difficult. Nevertheless, we
are the first to evaluate all expressive body models on a publicly available test
benchmark.

References

1. SizeUSA dataset. https://www.tc2.com/size-usa.html (2017) 2, 21
2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE:

Shape Completion and Animation of PEople. ACM TOG 24(3), 408–416 (2005) 4
3. Boppana, A., Anderson, A.P.: Dynamic foot morphology explained through 4d

scanning and shape modeling. Journal of Biomechanics 122, 110465 (2021) 6, 9
4. Joo, H., Simon, T., Sheikh, Y.: Total capture: A 3D deformation model for tracking

faces, hands, and bodies. In: CVPR. pp. 8320–8329 (2018) 4
5. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2013) 21
6. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: A

skinned multi-person linear model. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia) 34(6), 248:1–248:16 (Oct 2015) 4

7. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: Sparse trained articulated human
body regressor. In: ECCV. pp. 598–613 (2020) 4

8. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A.A., Tzionas,
D., Black, M.J.: Expressive body capture: 3d hands, face, and body from a single
image. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2019) 4, 20, 22

https://www.tc2.com/size-usa.html


24 Osman et al.

9. Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S., Brill, T.,
Hoeferlin, D., Burnsides, D.: Civilian American and European Surface Anthropom-
etry Resource (CAESAR) final report. Tech. Rep. AFRL-HE-WP-TR-2002-0169,
US Air Force Research Laboratory (2002) 2, 21

10. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Modeling and capturing
hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia) 36(6), 245:1–245:17 (Nov 2017), http://doi.acm.org/10.1145/3130800.

3130883 4
11. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu,

C.: GHUM & GHUML: Generative 3D human shape and articulated pose models.
In: CVPR. pp. 6184–6193 (2020) 4, 20, 21, 22

http://doi.acm.org/10.1145/3130800.3130883
http://doi.acm.org/10.1145/3130800.3130883

	SUPR: A Sparse Unified Part-Based Human Representation  *** Supplementary Material ***

