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1 Transformer

Fig. 1. Transformer architecture. A Transformer block mainly consists of a multi-
head self-attention layer and an MLP layer.

As shown in Figure 1, a Transformer [7] block contains a Multi-Head Self-
Attention (MSA) layer and an MLP layer. Layernorm (LN) is applied before each
layer. Residual connections are applied to both MSA layer and MLP layer. In
our work, we add positional embedding (PE) to the input in every Transformer
block.

Multi-Head Self-Attention A Self-attention (SA) [7] function maps the in-
put sequence into queries (Q), keys (K), and values (V). Then, the output is
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computed as a weighted sum over the values, where the weights are computed
by the similarity between corresponding queries and keys. Formally, given an
input sequence x ∈ RN×C , SA is computed as,

(Q,K, V ) = xWqkv Wqkv ∈ RC×3D, (1)

A = softmax(QKT /
√
D) A ∈ RN×N , (2)

SA(x) = AV. (3)

Due to the SA function, Transformer has a quadratic complexity in terms of the
length of input sequence.

MSA computes k self-attention functions in parallel and projects their con-
catenated outputs,

MSA(x) = (SA1(x);SA2(x); . . . ;SAk(x))Wmsa Wmsa ∈ RkD×C . (4)

Here, D is typically set to C/k to keep parameter constant.

MLP The MLP consists of two linear layers with GELU activation functions.
Typically, both the input and output of the MLP have the same number of
dimensions. The hidden dimensions are multiplied input dimensions by a ratio,
which is referred as the MLP ratio.

2 Point-MAE Experiments Details

2.1 Model details

In our Point-MAE, for different resolutions of the input point cloud, we divide
them into different numbers of patches with a linear scaling. A typical input with
p = 1024 points is divided into n = 64 point patches. For the KNN algorithm,
we set k = 32 to keep the number of points in each patch constant. In the au-
toencoder’s backbone, the encoder has 12 Transformer blocks while the decoder
has 4 Transformer blocks. Each Transformer block has 384 hidden dimensions
and 6 heads. MLP ratio in Transformer blocks is set to 4. For downstream tasks,
the decoder is discarded.

Pre-training We pre-train our model on ShapeNet [1] training set. ShapeNet
consists of about 51,300 clean 3D models, covering 55 common object categories.
We split the dataset into a training set and a validation set but only conduct
pre-training on the training set. For each instance, we sample 1024 points via
FPS as input point cloud. Note that we only apply standard random scaling and
random translation for data augmentation during pre-training. For pre-training
details, we use an AdamW optimizer [3] and cosine learning rate decay [2]. The
initial learning rate is set to 0.001, with a weight decay of 0.05. We pre-train our
model for 300 epochs, with a batch size of 128.
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Fig. 2. Fine-tuning models. For classification tasks and few-shot learning, the model
is shown on the left. For the part segmentation, the model is shown on the right.

Classification As shown in Figure 2 left, for classification tasks, we add a
classification token to the input tokens. Taking the processed input tokens, we
adopt a max pooling operation and concatenate the resulted feature with the
processed classification token. Then, the concatenated feature is fed to an MLP
to complete classification. BatchNorm, RELU activation, and Dropout with a
ratio of 0.5 are adopted in each layer of MLP.

As for classification task on ModelNet40 [8], the dataset consists of 12,311
clean 3D CAD models, covering 40 object categories. We follow standard pro-
tocols to split ModelNet40 into 9843 instances for the training set and 2468 for
the testing set. Standard random scaling and random translation are applied for
data augmentation during training.

Few-shot learning In the few-shot learning experiments on ModelNet40 [8],
we adopt n-way, m-shot setting, where n is the number of classes that randomly
selected from the dataset and m is the number of objects randomly sampled
for each class. We use the above-mentioned n × m objects for training. Dur-
ing testing, we randomly sample 20 unseen objects from each of n classes for
evaluation.

Segmentation We evaluate the representation learning capability of our Point-
MAE on ShapeNetPart dataset [9], which contains 16,881 objects covering 16
categories. We follow previous works [4, 5, 10] to sample 2048 points as input for
each object, which results in 128 point patches.
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As shown in Figure 2 right, our segmentation head is simple. We take the fea-
tures from 4th, 8th and 12th Transformer block, then concatenate them together.
After doing max pooling and average pooling separately, we concatenate them
together with the class feature, resulting in a global feature. The concatenated
feature of 3 layers can be regarded as point features for the center points of point
patches. Therefore, we up-sample [5] this sparse center points’ features to the
features of every input point based on point coordinates. Finally, we concatenate
global features and per point features, and then feed them to an MLP to predict
part label for each point, completing the part segmentation task.

Experiments settings The detailed experiment setting for each task is pre-
sented in Table 1.

Table 1. Experiment setting for each task.

Task Classification Classification Few-shot Segmentation

Dataset ScanObjectNN[6] ModelNet40[8] ModelNet40[8] ShapeNetPart[9]
Optimizer AdamW AdamW AdamW AdamW
Learning rate 0.0005 0.0005 0.0005 0.0002
Weight dewcay 0.05 0.05 0.05 0.05
Scheduler Cosine Cosine Cosine Cosine
Warmup epoch 10 10 10 10
Batch size 32 32 32 16
Epoch 300 300 150 300

3 Additional Study on Model Size

Table 2. Additional study on model size. We report the pre-train loss (10−3) and
fine-tune accuracy (%) on ModelNet40 for different size of models.

Model Trans. dim Enc. depth Dec. depth Loss Acc.

A(ours) 384 12 4 2.60 93.19
B 768 12 4 2.59 92.50
C 384 24 8 2.55 92.75

We also conduct a simple study on model size. We use random masking at a
ratio of 60% during pre-training. No voting method is used during testing in fine-
tuning on ModelNet40. Other settings remain the same. As shown in Table 2,
our base model has 12 Transformer blocks for the encoder and 4 Transformer
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blocks for the decoder, with a Transformer dimension of 384, achieving the best
accuracy 93.19%. When we only increase the dimension of Transformer (Model
B), the fine-tune accuracy drops to 92.50%. When we only double the depth of
the base model (Model C), the fine-tune accuracy drops to 92.75%. Although a
larger model, in terms of depth or width, can achieve better reconstruction, it
causes overfitting during fine-tuning, which is also observed in training curves.
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