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Abstract. Sampling is a key operation in point-cloud task and acts to
increase computational efficiency and tractability by discarding redun-
dant points. Universal sampling algorithms (e.g., Farthest Point Sam-
pling) work without modification across different tasks, models, and
datasets, but by their very nature are agnostic about the downstream
task/model. As such, they have no implicit knowledge about which points
would be best to keep and which to reject. Recent work has shown how
task-specific point cloud sampling (e.g., SampleNet) can be used to out-
perform traditional sampling approaches by learning which points are
more informative. However, these learnable samplers face two inherent
issues: i) overfitting to a model rather than a task, and ii) requiring train-
ing of the sampling network from scratch, in addition to the task network,
somewhat countering the original objective of down-sampling to increase
efficiency. In this work, we propose an almost-universal sampler, in our
quest for a sampler that can learn to preserve the most useful points for
a particular task, yet be inexpensive to adapt to different tasks, models
or datasets. We first demonstrate how training over multiple models for
the same task (e.g., shape reconstruction) significantly outperforms the
vanilla SampleNet in terms of accuracy by not overfitting the sample net-
work to a particular task network. Second, we show how we can train an
almost-universal meta-sampler across multiple tasks. This meta-sampler
can then be rapidly fine-tuned when applied to different datasets, net-
works, or even different tasks, thus amortizing the initial cost of training.
Code is available at https://github.com/ttchengab/MetaSampler.
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1 Introduction

Modern depth sensors such as LiDAR scanners can capture visual scenes with
highly dense and accurate points, expanding the real-world applications of point
clouds to traditionally challenging 3D vision tasks. However, while existing deep
network architectures such as PointNet [34] are capable of consuming these dense
point clouds for downstream tasks (e.g., classification, reconstruction), it is stan-
dard to downsample initial point cloud to reduce the computational and memory
cost, especially for resource-constrained or real-time applications. As such, the
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Fig. 1. Overview. Top Left: We highlight the points sampled for classification (red)
and reconstruction (blue). It is apparent that classification concentrates on more gen-
eralised features across the entire point cloud whereas reconstruction focuses on denser
aspects for optimisation. Bottom Left: We evaluate the classification performance of
two frozen PointNets on 16 sampled points from SampleNet. A large performance gap
is observed despite the two models (one adopted during SampleNet training and one
unseen) having an identical architecture, implying overfitting onto the model instead
of the task itself. Right: An overview of our meta-sampler as a pretrained model that
can rapidly adapt with a joint-training mechanism.

objective of extracting a representative subset of points from raw point clouds
while maintaining satisfactory performance over various tasks is a key problem.

Early techniques usually adopt Farthest Point Sampling (FPS) [35,27,41],
Inverse Density Importance Sampling (IDIS) [13], or Random Sampling (RS)
[19,20] to progressively reduce the resolution of the raw point clouds. Albeit
simple and universal, these sampling schemes are inherently heuristic and task-
agnostic. Recently, Dovrat et al. [8] and Lang et al. [26] explored a new domain
of learning-based, task-specific, and data-driven point cloud sampling strategies.
They empirically proved that leveraging the task loss can effectively optimise the
sampler to preserve representative and informative features. Although remark-
able progress has been achieved in several downstream tasks such as classification
and reconstruction, there remain two critical issues to be further explored: 1) The
learnt samplers are shown to overfit to a specific task model instead of being
generalisable to the task itself — this causes a signifant performance drop when
adopting another network for the same task even when the two architectures are
identical (as exemplified in Figure 1 Bottom Left); 2) Training a sampler to fit
a particular task is both time-consuming and computationally expensive, which
counters the original objective of sampling to improve efficiency.
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To this end, we propose an almost-universal sampler (Figure 1 Right) com-
prising two training alterations to address the aforementioned issues accordingly.
First, we suggest jointly training by forwarding the sampled points to multiple
models targetting the same task instead of a single model and updating the
sampler through a summation of task losses. This kind of ensemble allows us to
better simulate the distribution of different task models, encouraging the sampler
to truly learn the task rather than a particular instance. Second, we introduce
our meta-sampler to learn how to adapt to a specific task, rather than explic-
itly learning a particular task model. We incorporate a set of tasks, each with
multiple task models, for the meta-optimisation. Our meta-sampler can serve
as a pretrained module to adhere to any tasks through fine-tuning while being
almost-universal in the sense that it could be optimised with fewer iterations.

Extensive experimental results justify the performance and versatility of the
proposed meta-sampler. In particular, there is a significant improvement in per-
formance for several mainstream tasks with our joint-training technique com-
pared to the best results from the conventional single-task training on Sam-
pleNet. Moreover, we thoroughly evaluate the versatility of our meta-sampler
by adapting to particular tasks (both included and excluded from the meta-
training), model architectures, and datasets. Our meta-sampler adapts rapidly
to all challenging scenarios, making it a suitable pretrained candidate for task-
specific learning-based samplers.

In summary, the key contributions of this paper are threefold:

– A joint-training scheme for the sampler to truly learn a task rather than
simply overfitting to a particular instance (i.e., a specific task model).

– A meta-sampler that can rapidly adapt to downstream point cloud tasks
within and beyond the meta-training stage, models of varying architectures,
and datasets of different domains.

– Extensive experiments validate the performance and versatility of our meta-
sampler across various tasks, models, and datasets.

2 Related Work

2.1 Learning with 3D Point Clouds

Earlier pursuit of 3D computer vision tasks is mainly focused on grid-like repre-
sentations of voxel volumes, as the mature convolutional neural networks (CNNs)
can be directly extended to such data representation and easily introduce in-
ductive biases such as translational equivariance [7,38]. However, voxel volume
representation has the ingrained drawback of being uniform and low-resolution
with densely compacted empty cells consuming vast amount of computational
resources. Recently, point-based networks have attracted wide attention with the
emergence of PointNet/PointNet++ [34,35]. These architectures pioneered the
learning of per-point local features, circumvented the constraint of low resolution
and uniform voxel representations, and hence introduced significant flexibilities
and inspired a plethora of point-based architectures [13,27,29,40,45]. A number
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of point cloud based tasks [14] including classification [12,16,28,30,43,48], seg-
mentation [3,19,25,18,17], registration [2,11,22], reconstruction [9,31], and com-
pletion [6,46] are extensively investigated. Nevertheless, few arts targeted the
fundamental component of point cloud sampling in this deep learning era.

2.2 Point Cloud Sampling

Point cloud sampling, a basic component in most point-based neural architec-
tures, is usually used to refine the raw inputs and improve computational effi-
ciency for several downstream tasks. Widely-adopted point cloud sampling meth-
ods include RS, FPS [35,33,19], and IDIS [13]. A handful of recent works began
to explore advanced and sophisticated sampling schemes [32,5,44]. Nonetheless,
despite the remarkable progress in point cloud sampling, these methods are task-
agnostic and rather universal, lacking awareness of the important features which
a particular task may require.

Recently, Dovrat et al. [8] proposed a learnable, data-driven sampling strat-
egy by imposing a specific task loss to enforce the sampler in learning specific-
related features for a particular task. Later, Lang et al. [26] extended the learning
approach by introducing a differentiable relaxation to minimise the training and
inference accuracy gap for the sampling operation. Nevertheless, by introducing
an additional task loss, sampling ultimately becomes constrained and prone to
overfitting on a specific task model instead of the task itself. Additionally, this
also requires significant extra training to fit a particular goal.

Our meta-sampler hopes to bring the best of both worlds: being task-oriented
yet as universal as possible. Instead of directly overfitting onto a task model, we
focus on how to learn a task through incorporating a meta-learning algorithm.
By introducing a better approach of learning a particular task through joint-
training, our pretrained meta-sampler be rapidly fine-tuned to any task, making
it almost-universal while easing the computational efficiency to which sampling
is targeting in the first place.

2.3 Meta-Learning

Meta-learning, the process of learning the learning algorithm itself, has shown
to be applicable to several challenging computer vision scenarios such as few-
shot and semi-supervised classification [10,36], shape reconstruction [39], and
reinforcement learning [15,23] due to its capacity for fast adaptation.

Finn et al. [10] proposed one of the most representative meta-learning meth-
ods, termed model-agnostic meta-learning (MAML), that allows the model to
quickly adapt to new tasks in different domains such as classification, regres-
sion, and reinforcement learning. Later, Antoniou et al. [1] further improved
the MAML learning scheme, making the learning more generalisable and stable.
Recently, Huang et al. [21] proposed MetaSets, which aims to meta-learn the
different geometry of point clouds so that the model can generalize to classifi-
cation tasks performed on different datasets. In contrast and being analogous
to the standard meta-learning problem, our proposed meta-sampler focuses on
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universal point cloud sampling for different tasks, aiming to achieve fast adapta-
tion to reduce computation efficiency through a training strategy extended from
[10,1]. Our fast adaption is not just across tasks within the meta-training, but
also across models, datasets and unforeseen tasks.

3 Meta-Sampler and Rapid Task Adaptation

Ideally, it is desirable to learn a unified and universal point cloud sampling
scheme for different tasks in a data-driven manner — this is most likely un-
feasible since different tasks inherently have distinctive preferences of sampling
strategies, as shown in Figure 1 top left (for more qualitative comparisons please
refer to the Appendices). For example, 3D semantic segmentation pays more
attention to the overall geometrical structure, while 3D object detection nat-
urally puts more emphasis on the foreground instance with sparse points [47].
Motivated by this, we take the next-best objective, which is to learn a highly
adaptive sampling network that can adapt to a number of tasks with minimal
iterations and achieve optimal performances. In particular, this fast adaptation
capability allows samplers to be pretrained then quickly fine-tuned, satisfying
the ultimate goal of improving computational efficiency.

3.1 Problem Setting

The goal of this paper is to develop a learning-based sampling module fθ with
trainable parameters θ, which takes in a point cloud with m points and outputs
a smaller subset of n points (m > n). Apart from the objective of SampleNet to
learn task-specific sampling (i.e., particularly suitable for a single task such as
shape classification or reconstruction), we take a step further and aim to propose
an universal pretrained model, which can be rapidly adapted to a set of different
tasks ST = {Ti}KT

i=1. Formally, we define the ideal adaptation of sampling to a
specific task Ti as capable of achieving satisfactory performance by integrating

the sampling module into a set of KAi known networks SAi = {Ai,j}
KAi
j=1 (Each

Ai,j is one network trained with unsampled point clouds to solve task Ti). We
split SAi

into Strain
Ai

and Stest
Ai

(i.e., task networks used during training are
disjoint to the ones for testing) to make sure that our evaluation on fθ is fair
and not overfitting to task models instead of the task itself. Note that while
Strain
Ai

is available during training, the weights are frozen when learning our
sampler as suggested by [26].

To achieve the dual objectives of high accuracy and rapid convergence, we
must first carefully evaluate the best training strategy to better learn each in-
dividual task, and then design a training strategy which is adaptive to multiple
tasks. We build our sampler fθ based on the previous state-of-the-art learnable
sampling network — PointNet-based SampleNet architecture [34,26] — and then
introduce our training technique in a bottom-up manner.
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3.2 Single-Task Multi-Model Training

For an individual task Ti, we hope that the fθ learns to sample the best set of
points ∀A ∈ SAi .

The conventional way of training the SampleNet uses a single frozen network
A′ as Strain

A for training by defining a sampling task loss LSTi
targeting Ti as:

LSTi
(fθ) = LTi

(A′(fθ)), (1)

where LTi is the loss when pretraining A′. We refer to this configuration as single-
model, single-task training. As mentioned previously, this training method, hav-
ing accomplished promising results in several tasks, still exhibits a large accuracy
discrepancy between the results on A′ and Stest

A . In other words, even though A′

is frozen during the training of SampleNet, the sampling stage is overfitted onto
the task network instead of the task itself.

To alleviate the issue of model-wise overfitting, we extend (1) and create a
joint-training approach for a single task. Specifically, we take a set of weight-
frozen models {Ai,j}kj=1, 1 < k << KAi

as Strain
Ai

and compute LSTi
as:

LSTi
(fθ) =

k∑
j=1

LTi
(Ai,j(fθ)). (2)

It is critical to understand that all the frozen task models are under inference
mode (i.e., not significantly sabotaging computation power) and that only a very
small number of task models (easily obtainable online or by self-training with
different random initial weights) would bring significant improvements to the
sampler’s performance. We further show in Section 4.2 that a very small k > 1
allows the sampling network generalise better across SAi , as Strain

Ai
becomes a

vicinity distribution rather than a single specific instance to SAi .
In addition to the joint LSTi

, we also update the weights with a simplification
loss comprising the average and maximum nearest neighbour distance and a
projection loss to enforce the probability of projection over the points to be the
Kronecker delta function located at the nearest neighbour point (identical to the
SampleNet loss [26]).

3.3 Multi-Task Multi-Model Meta-Sampler Training

Instead of restricting ourselves to a single task (e.g., classification), we consider
whether training the sampler over multiple tasks could lead to our vision of an
almost-universal sampler. Broadly, we aim to extend the sampler beyond multi-
model to multi-task, such that given any task Ti ∈ ST , where ST is a set of
tasks, a good initial starting point could be achieved for the sampler. In this
way, adapting or fine-tuning to a particular task (which may even be beyond the
known set) will be rapid and cheap.

To tackle this, we draw inspiration from the MAML framework and propose
a meta-learning approach for rapidly adaptive sampling [10]. In essence, we aim
to utilise the set of Strain

Ai
to mimic the best gradients in learning a particular
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Fig. 2. The pipeline of the proposed meta-sampling. The illustration exemplifies
the pretraining with multiple tasks through our meta-training strategy, then fitting onto
a single task with our joint-training mechanism.

task Ti for meta-optimisation, such that given any task Ti ∈ ST or even beyond
the known set of tasks, the MAML network can quickly converge within a few
iterations and without additional training of the task networks.

The joint-training procedure discussed in the previous section motivates that
a particular task is better solved with a set of task networks instead of just
one — we transfer this idea to the meta-optimisation such that the sampler is
adaptive to a number of tasks instead of just one. Formally, we first optimise
the adaptation of fθ to Ti ∈ ST by updating the parameters θ to θ′i,j for every
Ai,j through the gradient update:

θ′i,j = θ − α∇LTi
(Ai,j(fθ)), (3)

where α is the step size hyperparameter. Similar to MAML, we can directly
extend the single gradient update into multi-gradient updates to optimise the
effectiveness of θ′i,j on Ti.

With the inner update (3), we then follow the meta-optimisation procedure
through a stochastic gradient descent:

θ = θ − β∇
∑KT

i=1

k∑
j=1

LTi
(Ai,j(fθ′

i,j
)), (4)

where β is the meta step size hyperparameter that could either be fixed or
accompanied with annealings. Note that we apply the single task loss in the inner
update (3) but sum all losses from all weights to resemble a task in the meta-
update (4). Section 4.3 shows that our meta-optimisation design is sufficient in
learning tasks for rapid adaptation. Simplification and projection losses are also
directly optimised at this stage. They are however directly updated rather than
included in the meta-update fashion as they are task-agnostic.
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3.4 Overall Pipeline: Pretrained Meta-Sampler to Task Adaptation

We describe the overall training pipeline of the proposed meta-sampler (Figure
2) as the following:

Pretrained Meta-Sampler: Our pipeline begins with training a meta-sampler.
First, we take a set of tasks ST (e.g., shape classification, reconstruction, re-
trieval) and their corresponding task networks SAi

for every Ti ∈ ST (pretrained
on the unsampled point clouds). Next, we freeze all their original weights and
perform our meta-sampler training as illustrated in Section 3.3 to obtain a pre-
trained meta-sampler.

Rapid Task Adaptation: The meta-training attempts to optimise θ to a po-
sition optimal to learn any task Ti. Therefore, to adapt to a particular task,
we can simply take the pretrained weights of the meta-sampler and fine-tune it
with the joint-training strategy as illustrated in 3.2 along with the previously
proposed simplification and projection loss.

Disjoint Task Networks for Pretraining and Training: Realistically, one
should be able to directly obtain a pretrained meta-sampler without the task
networks and fit to their own networks. To mimic such real-world constraints, we
ensure that the meta pretraining and joint-training use disjoint sets of networks
— both of which are unseen during testing.

4 Experiments

Our empirical studies comprise two major components. First, we evaluate the
performance of the proposed joint-training scheme against prior training method-
ologies on representative individual tasks. Afterward, we justify the versatility
and robustness of the meta-sampler by measuring its adaptiveness across differ-
ent tasks, models, and datasets.

4.1 Experimental Setup

To comprehensively evaluate the performance of our meta-sampler, we extract
a set of representative tasks on 3D point clouds, including shape classification,
reconstruction, and shape retrieval. Note that all experiments are conducted on
the ModelNet40 [42] (except for ShapeNet [4] used in transferring dataset anal-
ysis) to ensure fair evaluation (i.e., without introducing additional information
during meta-sampler training). The detailed experimental settings (i.e., task
network architecture, task loss) are described as follows:

Shape Classification. This is a fundamental task in 3D vision to determine
the shape categories of a given point cloud. The task network set {Ai,j} are
pretrained PointNets [34] with random and distinct weight initialisations, and
the validation accuracy converges to 89% to 90%. LTi

is the vanilla binary cross-
entropy (BCE) loss for classification.

Reconstruction. This task aims to reconstruct the complete 3D shape from
partial point sets. Following [26], the goal of sampling for this task is to preserve



Meta-Sampler 9

Table 1. Joint v.s. Single Task Network Training. Single and Joint denotes the
SampleNet trained through the originally proposed single task network approach [26]
and through our proposed multi-model single-task training (k = 3), respectively. Bold
texts denote best results.

Classification (Accuracy ↑)

Sampling Ratio FPS SNet[8] Single[26] Joint

8 70.4% 77.5% 83.7% 88.0%
16 46.3% 70.4% 82.2% 85.5%
32 26.3% 60.6% 80.1% 81.5%
64 13.5% 36.1% 54.1% 61.6%

Reconstruction (CD ↓)

Sampling Ratio Single[26] Joint

8 3.29 3.05
16 3.32 3.15
32 3.61 3.37
64 4.43 4.31

Shape Retrieval (Accuracy ↑)

4-way 10-way 20-way

Sampling Ratio Single[26] Joint Single[26] Joint Single[26] Joint

8 99.6% 99.7% 96.3% 98.3% 95.9% 96.7%
16 98.7% 99.1% 94.0% 96.7% 89.5% 91.9%
32 97.2% 97.5% 91.4% 91.5% 82.9% 84.6%
64 92.5% 94.6% 79.5% 84.6% 67.0% 71.0%

n key points that could be reconstructed to the original unsampled point clouds.
For this task, SAi is a set of Point Completion Networks (PCN) [46] trained in
an autoencoder fashion to minimise the Chamfer Distance (CD) between the
input and output points. We select the PCN architecture owing to its encoder
and decoder mechanism that doesn’t take in any structural assumptions (e.g.,
symmetry), making it suitable for reconstruction even when missing points are
randomly distributed upon the entire shape instead of a particular part. LTi

is the two-way CD between the inputs and predicted outputs; all networks are
pretrained with the loss to the chamfer distance of around 3 × 10−4. Unlike
other tasks where projection restricts the feature information, reconstruction is
benefitted from projections. And thus, our results adopt the pre-projected points
for both single and joint training. Using projected points boosts results for both.

Shape Retrieval. Given a sampled point cloud, the goal is to match it with
the shifted/rotated original point cloud given N options (similar to the N -way
evaluation in few-shot settings). Due to the existence of hard negative pairs
(point clouds of the same class), this task requires more advanced learning of
fine-grained features compared with the pure shape classification. In this case,
SAi

is a set of Siamese PointNets inspired by [24] pretrained on unsampled point
clouds matching. LTi is a BCE loss where the ground truth is set to 1 if the point
cloud is a shifted/rotated version of the other and vice versa. All networks are
pretrained to achieve 100% accuracy on the simple 4-way evaluation.

4.2 Performance Evaluation on Individual Tasks

To justify the effectiveness of the proposed multiple-model training scheme, we
present the quantitative comparison of incorporating multiple models training
and the traditional SampleNet single-model training strategy in all three indi-
vidual tasks on the ModelNet40 dataset [42]. We adopt the official train and
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Table 2. Classification accuracy when Increasing k. Sampling Ratio is 32.

Number of Task Models (k)

k = 1 k = 2 k = 3 k = 4 k = 5

Accuracy 80.0% 81.3% 81.7% 82.8% 83.4%

test splits in this dataset, and follow [8,26] to pretrain all task networks with
the original point clouds (1024 points by default). All the task models are un-
der inference mode during the training of the sampling network. We evaluate
our sampling on different sampling ratios calculated as 1024/n, where n is the
number of outputted points from the sampler. Note that for reconstruction and
shape retrieval tasks, we were adopting a different dataset and task to prior net-
works. Much work is required for the adaption and thus we only compare with
the previously proposed state-of-the-art SampleNet.

Shape Classification. As shown in Table 1, the classification performance
achieved with our joint-training scheme consistently outperforms the single Sam-
pleNet and previous sampling strategies such as FPS across all sampling ratios.
In particular, the classification accuracy achieved with our joint-training mech-
anism under a sampling ratio of 8 is very close to the upper bound accuracy
(88.0% vs. 89.5%) achieved without any sampling, verifying the effectiveness of
our joint-training strategy. We also notice that the performance gap between the
proposed method and others is widening with a growingly aggressive sampling
rate (e.g., at sampling ratio 64 with 16 points left for the point clouds). This
further demonstrates the superiority of the proposed training mechanism under
aggressive sampling ratios.

Reconstruction. The effect of joint-training on reconstruction follows a similar
trend to shape classification, outperforming other strategies in terms of the CD
across all sampling ratios. The improvement seems to be consistent across all
sampling ratios, further exhibiting the effectiveness of joint-training.

Shape Retrieval. Our shape retrieval results are presented under the N -way
few-shot settings (N= 4, 10, 20). It is clear that the joint-training scheme achieves
better results compared with the single SampleNet training strategy. Specifically,
the advantages of our proposed joint-training scheme is more prominent with the
increase of the sampling ratios, suggesting that our sampling schemes can pre-
serve points that have high similarity to the original point cloud.

Faster Convergence with Multiple Models. Considering the sampler is
exposed to more task networks during training, it is expected for the sampler
to converge to stabilised accuracies with a shorter time span of training. Our
empirical study generally aligns with this idea. Our joint-training taking usually
around 40 epochs to converge as opposed to around 60 for single-task training.

The Impact of the Number of Task Models k. We further dive into the
correlation between the number of networks k for joint-training and classification
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Fig. 3. The performance comparison in classification (row 1 ↑), reconstruc-
tion (row 2 ↓), and shape retrieval (row 3 ↑) with/without the meta-sampler
at the initiation of training. All graphs begin after one epoch. Red is ours.

accuracy. Table 2 shows the classification results under the randomly selected
sampling ratio of 32 when we slowly increase the number of task networks for
ensemble. A clear trend of increments continues as k increases, implying that
the wider the set of training networks the better the approximation is to the
entire task distribution. Nonetheless, such increments suffer from the trade-off
in computational resources time and memory-wise. We stick with 3 networks as
the standard for joint-training and in later experiments unless specified.

4.3 Versatility of Meta-Sampler

Versatility is a broad term with multiple dimensions requiring evaluation. To
fully realize this, we begin with the critical evaluation of our meta-sampler’s
adaptiveness on tasks included in the meta-optimisation step. We then extend
to the more challenging scenarios of changing model architecture, dataset distri-
bution, and ultimately tasks distinct from the ones used for meta-training. All
experiments are conducted with hyperparameters α and β set to 1e-3. All plots
begin after one epoch as single SampleNets are not pretrained.
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Fig. 4. Accuracy of PointNet++ for classification with joint-training. The
results with and without the pretrained meta-sampler on PointNet is presented for
sampling ratios at 8 and 16. All graphs begin after one epoch.

Converging to Meta-Tasks. To investigate the impact of the meta-sampler for
the performance of meta tasks, we conduct several groups of experiments in this
section for the three tasks used in our meta-optimisation, including shape classi-
fication, reconstruction, and shape retrieval. We compare the task performance
achieved with/without the pretrained meta-sampler under different sampling ra-
tios in Figure 3. Specifically, for our meta-sampling, we first deliberately select a
bunch of task models unseen during meta-optimisation to fine-tuned the meta-
sampler with the joint-training scheme, then evaluate the task performance with
the sampled point clouds.

As shown in Figure 3, we separately compare the task performance as the
training progresses with/without our pretrained meta-sampler for different meta-
tasks. It is clear that as the sampling ratio increases (i.e., the task is more
challenging), joint-training without meta-sampler starts at lower performance
and requires more iterations to converge to a stable result. By contrast, our
pretrained meta-sampler, while acting as a sampler trained without any task
loss at 0th epoch (similar to FPS), adapts to the task within one epoch across
all sampling ratios and achieves higher accuracies after 10 epochs in most cases.

There are also two intriguing points we would like to address within this em-
pirical study. First, we observe a relatively large fluctuation of the performance
for shape classification and shape retrieval — a phenomenon we conjecture to be
owing to the distribution shift between training and testing sets. Second, we no-
tice that our meta-sampler not only converges faster, but also pushes the upper
bound in some cases. For example, our shape retrieval results at sampling ratio
16 achieved the accuracy of 96.9% (the upper bound of training from scratch is
96.7%) on the 20th epoch (not plotted in the figure). This infers that by learn-
ing how to adapt, the sampling model could potentially also be trained to learn
better. However, such occurrences do not take place at all times.

Transferring Model Architectures. Prior experiments focus on training from
the meta-sampler with task networks of identical architecture but different weights.
To further explore the versatility of our meta-sampler, we transfer the joint-
training networks from PointNets to PointNet++ [34,35]. All the networks are
pretrained until convergence (i.e., around 92% accuracy on unsampled point
clouds). Constrained by the original implementation of PointNet++ (i.e., point
set abstraction layer) extracting features from the 32 points neighborhoods, we
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Fig. 5. Transfer to ShapeNet. We adopt the ModelNet pretrained meta-sampler to
fit onto the ShapeNet dataset for classification. All graphs begin after one epoch.

only evaluate our meta-sampler upon the sampling ratio of 8 and 16, where the
remaining point cloud size is greater than 32.

The achieved results are plotted in Figure 4. It is apparent that better perfor-
mance is achieved using our meta-sampler, with a higher starting point and fast
convergence speed under both sampling ratios. This further demonstrates the
capacity of our meta-sampler in adapting different model architectures. Inter-
estingly, we also notice that the classification accuracy of PointNet++ achieved
on sampled points drops significantly compared with that of unsampled point
clouds, especially under the sampling ratio of 16. This is likely because FPS is
progressively used in each encoding layer. In this case, by adding a SampleNet
in front of PointNet++, we are implicitly “double sampling” and leaving very
few features for the abstraction layer.

Transferring Datasets. To verify that our ModelNet40 [42] pretrained sampler
isn’t applicable to just the data distribution it was expose to, we measure the
effectiveness when using the same pretrained model for the same task but on
a different dataset. Specifically, we evaluate the classification performance of
our meta-sampler on the ShapeNetCoreV1 Dataset [4], which comprises point
cloud objects from 16 different shape categories. Specifically, we still adopt the
PointNet [34] architecture and trained three networks following the best practise,
while these models can achieve around 98% accuracy on unsampled point clouds.
We then show the training progress achieved by using our joint training scheme
with/without the meta-sampler. As shown in Figure 5, although the performance
is similar when the sampling ratio is small (easier), we can clearly notice that
the model without our meta-sampler starts at a much lower performance. By
contrast, the model with our pretrained meta-sampler converges much faster
(even within one epoch) and is more stable. As such, this empirical study can
well prove that our meta-sampler can adapt to a completely disparate dataset
distribution and serve as a better and more stabilised starting point.

Transferring Beyond Meta-Tasks. Finally, we extend to the most challenging
question of whether the proposed meta sampler can generalize to unseen tasks,
i.e. tasks that are not included in the meta-optimisation step. This is highly
challenging since different tasks inevitably have distinct preferences in sampled
points. However, this is also a critical step to validate whether the proposed
meta sampler could be the universal pretrained module for all point cloud tasks.
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Fig. 6. The performance comparison in point cloud registration
with/without the meta-sampler. Left: Rotational error comparison. Right:
Standard deviation of rational error per epoch. All graphs begin after one epoch.

We evaluate our meta-sampler on the point cloud registration — the task of
finding the spatial transformation between two point clouds. Here, we follow the
standard train-test split of PCRNet [37] to obtain pairs of source and template
point clouds with templates rotated by three random Euler angles of [−45◦, 45◦]
and translated with a value in the range [−1, 1]. LTi

is the CD between the
source point cloud and the template point cloud with our predicted transfor-
mation. We first train three PCRNets to achieve the rotation error of around
7-9 degrees on unsampled point clouds, then freeze the PCRNet weights and
perform the proposed joint-training scheme under the conditions with/without
the pretrained meta-sampler under the sampling ratio of 32. We ran each set-
ting three times and show the mean and standard deviation of rotational error
during training in Figure 6. Even though the task objective (registration), task
network (PCRNet), and even the dataset itself (pairs of point clouds from Mod-
elNet40) are unforeseen during our meta-optimisation, we can still notice two
subtle yet solid performance differences adopting our meta-sampler: 1) The pre-
trained model generally converges faster during the initiation of training and 2)
The pretrained model is much more stabilised and improves consistently com-
pared to the model trained from scratch that exhibits a large variance throughout
every epoch (other sampling ratios also perform similarly in stabilisation).

5 Conclusion

We propose a learnable meta-sampler and a joint-training strategy for task-
oriented, almost-universal point cloud sampling. The proposed multi-model joint
training scheme on SampleNet achieved promising performance for various point
cloud tasks, and the meta-sampler has empirically shown to be effective and
stabilising when transferred to any tasks incorporated during meta-optimisation,
even extending to unseen model architectures, datasets, and tasks. We hope our
pretrained meta-sampler can be used as a plug-and-play module and widely
deployed to point cloud downstream tasks to save computational resources.
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