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1 Outline

We organize the Supplemental according to the section numbers used in the main
manuscript. In Section 5.2, the proofs for Result 3 and Result 4 are outlined.
In Section 6.1, implementation details are added along with additional results
in Figure 1 and Figure 2. In Section 6.2, implementation details for our inverse
rendering experiments are discussed and qualitative comparisons with previous
works are shown in Figure 5. An inverse rendering experiment using LSIG [6] with
different geometry initializations is shown in Figure 4. Section 6.3 describes the
user-defined shape editing method in more detail. A comparison with NFGP [12]
is in Figure 6.

5.2 Differentiable Surface Rendering

We first draw comparisons between Differentiable Volumetric Rendering1 [7],
Implicit Differentiable Renderer (IDR) [13] and Differentiable Iso-Surface Extrac-
tion in Result 3. Next, in Result 4, we show that methods in [7,13] deviate from
the level-set theory for tangential flow fields.

Result 3 Surface evolution using differentiable ray-marching of parametric im-
plicit surfaces [5,13] is the same as using differentiable iso-surface extraction [8]
when the viewing direction vu is parallel to the normal n at the intersection point
xu. The parameters j for the level-set function Φ are updated as:

j← j− λ
∑
xu

V · ∇Φ∂Φ

∂j
.

Proof. Inverse rendering methods in [7,13] find a surface-intersection point by
marching a along ray that is spawned from the camera centre c, in the direction
vu, for each pixel u. The intersection point xu is analytically defined as:

xu = c+ duvu, (1)

where du is the depth for xu. The distance du in [7] is estimated from the camera
centre. For IDR [13], the distance is computed from a point y close to the surface

1 Here, volumetric rendering is a misnomer. It’s really surface rendering for geometry
defined with volume/occupancy.
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which modifies (1) to xu = yu + duvu (yu is denoted as x0 in [13]). In both the
methods, a rendering loss function L (photometric error) is computed for pixels
u ∈ U . To update the geometry parameters j, the gradient ∂L

∂j is computed:

∂L
∂j

=
∑
u∈U

∂L
∂xu

∂xu

∂j
=

∑
u∈U

∂L
∂xu

∂xu

∂du

∂du
∂j

=
∑
u∈U

∂L
∂xu

· vu
∂du
∂j

(2)

To compute ∂du

∂j , we slightly deviate from the derivations in [7,13] for clarity.
For points xu on the implicit surface, we know Φ(xu) = 0. Using implicit
differentiation:

∂Φ

∂j
+

∂Φ

∂xu

∂xu

∂j
= 0

⇐⇒ ∂Φ

∂j
+

∂Φ

∂xu

∂xu

∂du

∂du
∂j

= 0

⇐⇒ ∂Φ

∂j
+

∂Φ

∂xu
· vu

∂du
∂j

= 0 ◁ From (1)

⇐⇒ ∂du
∂j

= − 1
∂Φ
∂xu
· vu

∂Φ

∂j
(3)

From (2) and (3) we have:

∂L
∂j

= −
∑
u∈U

∂L
∂xu

· vu

∂Φ
∂xu
· vu

∂Φ

∂j
≈ −

∑
u∈U

∂L
∂xu

· ∇Φ
|∇Φ|2

∂Φ

∂j
(when vu → ∇Φ) (4)

Taking − ∂L
∂xu

= V, we can update the parameters j using (4) and gradient
descent as:

j← j− λ
∑
xu

V · ∇Φ∂Φ

∂j
. (5)

Equation (5) shows that DVR/IDR and MeshSDFj are closely related, while
Result 1 shows that these methods do not agree with the level-set theory. □

Result 4 Differentiable ray-marching of parametric implicit surfaces [5,13] dis-
agrees with the level-set equation for tangential components V⊥ of the flow field
V. The change in parameters ∆j is:

∆j = λ
∑
xu

±|V⊥| tan(arccos(∇Φ · vu))
∂Φ

∂j
. (6)

Proof. From (4), we know the change in parameters j for methods in [7,13] is:

∆j = λ
∑
xu

V · vu

∇Φ · vu

∂Φ

∂j
. (7)
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OursNFGP [12]

Fig. 1: Surface smoothing evolution on a half-noisy sphere. (Right) Our
method can evolve a noisy surface using an explicit diffusion flow-field. This allows
smoothing on implicitly defined surfaces with increasing levels of smoothness.
(Left) Yang et al.’s [12] method uses an optimization objective for a single level
of smoothness.

When the flow-field is tangential to the surface, V = V⊥, and V⊥ ⊥ ∇Φ. The
change in parameters for this flow-field is:

∆j = λ
∑
xu

V⊥ · vu

∇Φ · vu

∂Φ

∂j
. (8)

When Φ : R2 7→ R is a level-set function defined in 2D, we can modify (8) as:

∆j = λ
∑
xu

±|V⊥| sinα
cosα

∂Φ

∂j
where, α = arccos(∇ϕ · vu) and Φ is an SDF

= λ
∑
xu

±|V⊥| tanα ∂Φ

∂j

= λ
∑
xu

±|V⊥| tan(arccos(∇Φ · vu))
∂Φ

∂j
. (9)

The parameters here could change depending on the angle subtended between
the normal ∇Φ and the viewing direction vu. This dependence on the viewing
direction is a result of using differentiable ray-marching. When the function is
deformed using the level-set method described in the main paper, the change
in parameters ∆j does not depend on the viewing direction and is 0. For 3D
level-set functions, the parameters could still change as the term V⊥ · vu in (8)
could be non-zero.

6.1 Curvature-based Deformation

For each shape, we optimize a SIREN [9] MLP with 5 layers, each of which has a
512-sized vector output. We use the publicly-released code2 by Yang et al. [12] for
SDF queries and optimization of the network. The flow-field defined in Equation

2 https://github.com/stevenygd/NFGP
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(14) is used for smoothing. The learning rate is 10−6, the time-delta ∆t is 0.95
and an eikonal regularization term (enforcing ∇Φ = 1) [2] is used with the error
function defined in Equation (5). The regularization term is weighed 10−3 times
against the main objective. We use Adam optimizer [3] and use 200 gradient steps
for each time step. The Lagrangian surface is extracted using Marching Cubes at
(120± 3)3 resolution. Figure 1 shows the surface evolution with respect to time
on a half-noisy sphere (similar to [10]). In addition to the results in the main
manuscript, we show qualitative comparisons with other methods in Figure 2.

Init MeshSDF [8] NFGP [12] Ours

Fig. 2: Qualitative comparisons for surface smoothing. We apply surface
smoothing on four computer graphics models encoded as parametric level-sets.
Best viewed when zoomed-in.
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Fig. 4: LSIG [6] converges to a poor estimate with correct topology at
initialization. Optimizing a triangle mesh for inverse rendering problems is non-
trivial even when the initialization is close to the ground truth and has correct
topology. For VBunny we rotate the target geometry and use it as initialization.
The shape optimized using LSIG [6] has correct topology but with poor mesh
quality and reconstruction accuracy.

6.2 Inverse Rendering

Smoothness Term

without with

Fig. 3: Ablation on smoothness
regularization term in the flow-
field for inverse rendering.

Our method uses the same spherical initial-
ization for all the shapes. The network is
composed of 4 layers, with 512 neurons in
each layer. The learning-rate is 2× 10−6, the
weight-decay factor is 0.1 and the time-delta
∆t is 10−4. Each object is confined in a 23

volume and is rendered with Nvdiffrast [4].
The weight for the smoothness regularization
term linearly decreases from 10−3 to 0. An
ablation is shown in Figure 3. We do not
observe reliable improvements quantitatively
with the regularizer, but do observer better
convergence. The Phong shading model is used with 0.55 as the albedo value.
We show an experiment with different topological initializations for LSIG [6] in
Figure 4. All the qualitative comparisons for results in Table 1 (main) are in
Figure 5.

6.3 User-defined Deformation

As discussed in the main paper, we use the thin-shell energy [11] loss to densify
a sparsely defined flow-field from user inputs. It induces a flow field which is
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IDR IDR IDR LSIG Ours GT
No Yes Yes No No Mask

Neural Phong Neural Phong Phong Shading

Fig. 5: Qualitative comparisons for Inverse Rendering of Geometry.
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characterized using an Euler-Lagrange equation:

−ks∆V+ kb∆
2V = 0. (10)

We know V for the regions on the surface where the user specifies the deformation
and would like to estimate it for the entire surface such that there is minimum
bending and stretching. Equation 10, however is a result of a linearized version
of the thin-shell energy loss. In this case, the resultant deformations can be
unpleasant. This is required for explicit surface deformation methods as they
are expected to be conducive to real-time editing. On the contrary, our goal is
to have plausible deformations which can be slightly more time consuming. For
each editing operation (x → x′), we break the deformation in T time steps as
x→ x1 → x2 → x3 . . .xT . For each time-step t, we solve for (10) (using a sparse
linear solver) with the following user constraints:

V(xt−1
h ) = xt

h − xt−1
h , (11)

where xh ∈ H belongs to a set of handle vertices for which the user defines
deformation. Having obtained the flow-field for all the points on the surface, we
evolve the surface using an Euler step as xt = xt−1 +V(xt−1). Note the absence
of a delta term (∆t) in the Euler step. This is because of how we define the
flow-field; we know exactly where the surface is expected to be at a given time
step (From (11)). This is different from gradient-based Euler integration where
we take small steps in the direction of the flow-field. Since we know exactly where
the surface is at time t (can assume Φ(x) = 0 for surface points), we can tweak
the objective defined in Equation 5 (main):

min
j

J =
1

|∂Ωt
L|

∑
x∈Ωt

L

||Φ(x)||2 + β
∑
x∈Ω

(|∇Φ(x)| − 1)2, (12)

where we also add Eikonal regularization. An example deformation is shown in
Figure 6 including a comparison with NFGP [12]. Note that our goal with these

NFGP [12]Ours
10 hours10 minutes

Fig. 6: User-defined rotation on an implicitly defined cylinder. (Left)
User editing using our method is faster (takes 10 min) than (Right) NFGP which
takes 10 hr for the same editing operation.
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experiments is to showcase the versatility of the level-set method and not propose
a method which performs accurate and real-time deformations; we would still
pose this application of user-editing as a proof of concept. Several explicit-surface
based methods [1] exist which can probably generate better deformations.

Implementation Details We use pre-trained neural implicit representations pro-
vided in the publicly-released code by Yang et al. [12]. The number of time steps
T is 20. The learning rate is 2×10−6 and 750 gradient steps are taken to minimize
Equation 12 using Adam [3]. The regularization weighting term β = 10−4.
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