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Abstract. Some previous state-of-the-art research on analyzing point
cloud rely on the voxelization quantization because it keeps the better
spatial locality and geometry. However, these 3D voxelization methods
and subsequent 3D convolution networks often bring the large compu-
tational overhead and GPU occupation. A straightforward alternative is
to flatten 3D voxelization into 2D structure or utilize the pillar repre-
sentation to perform the dimension reduction, while all of them would
inevitably alter the spatial locality and 3D geometric information. In
this way, we propose the HilbertNet to maintain the locality advantage
of voxel-based methods while significantly reducing the computational
cost. Here the key component is a new flattening mechanism based on
Hilbert curve, which is a famous locality and geometry preserving func-
tion. Namely, if flattening 3D voxels using Hilbert curve encoding, the
resulting structure will have similar spatial topology compared with orig-
inal voxels. Through the Hilbert flattening, we can not only use 2D con-
volution (more lightweight than 3D convolution) to process voxels, but
also incorporate technologies suitable in 2D space, such as transformer,
to boost the performance. Our proposed HilbertNet achieves state-of-
the-art performance on ShapeNet, ModelNet40 and S3DIS datasets with
smaller cost and GPU occupation.

1 Introduction

Point clouds are the principal data form for 3D world; they also constitute the
output of the 3D sensing device including LiDAR. Pioneering works often process
point clouds directly, including PointNet [31], PointNet++ [34], SO-Net [19], etc.
Point-wise methods bypass the mesh or voxelization reconstruction and possess
the permutation invariance. However, in these methods the spatial locality of
point clouds is not sufficiently attended. Recently, the success of deep convolu-
tional networks for image processing has motivated the learning-based approach
for point clouds and convolution is a natural function focusing on the spatial
locality. One common methodology to manipulate the point cloud using convo-
lutional neural networks is to first convert the raw point cloud into a volumetric
representation, and then utilize 3D convolutional neural networks to extract the
intermediate features. This approach can keep the spatial topology and generate
well-generalized features; however, it usually introduces the huge computational
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Fig. 1: Left: The mapping scheme of Reshape function. Right: The mapping
scheme of Hilbert curve. Hilbert curve has better locality because it has no
“jump connections” like reshape function.

cost and excessive memory usage (mainly from 3D convolutional neural net-
works).

A natural idea to tackle this issue is to map the 3D space to the 2D rep-
resentation, including flattening, range image, pillar-based bird-eye view and
multi-view image, etc, and then process the resulting 2D representation with 2D
convolutional neural networks. Unfortunately, this approach would inevitably
alter the spatial topology and locality. Hence, a locality preserving mapping
function from three to two dimension is desired.

Here, space filling curves [27], widely existing in the database [2], GIS [36]
and image compression [22], provide a possible solution, where they act as a
fractal function going through each point in a multi-dimensional space without
repetition (Note that fractal function is also applicable to efficient parallel im-
plementation). This mechanism for linking all elements in the high-dimensional
space reveals a way to reduce the dimension, namely, mapping elements in the
high-dimensional space into low-dimensional space (i.e. 2D and 1D) according to
the mapping rule of space filling curve. There are various space filling curves, in-
cluding Z-order curve [28], Gray-Code [9] and Hilbert curve [14]. In this paper,
because of the good locality preserving capability as shown in Fig. 1, Hilbert
curve is incorporated to perform the dimension reduction and keep local topol-
ogy.

Specifically, we first voxelize the point cloud to keep its 3D spatial locality.
Then these voxels are flattened into 2D space via Hilbert curve in slice-level.
We show an example in Equation (5), where for 2D compression, Hilbert curve
stretches voxels slice by slice to get the 2D representation.

Then, in this work, we propose a local feature collection module Hilbert pool-
ing, and a light-weighted global feature harvesting module called Hilbert atten-
tion. Besides it, we combine 2D features (obtained using 3D Hilbert compression)
with 1D point features using Hilbert interpolation, which is designed for better
2D feature gathering. The cooperation of Hilbert curve based flattening and
Hilbert curve based operations leads to the final framework, termed as Hilbert-
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Net. We conduct extensive experiments on various tasks, including point cloud
classification and segmentation, where it reaches state-of-the-art performance on
ShapeNet [4], S3DIS [1] ModelNet40 [49] dataset while the GPU occupation and
computational overhead are relatively small.

The contributions of this paper can be summarized as follows:

– We propose a new perspective of efficient usage of 3D volumetric data,
namely, using the Hilbert curve to collapse 3D structure into 2D with spatial
locality preserving and employing the 2D convolutions for lower overhead.

– We propose Hilbert interpolation and Hilbert pooling for better feature ex-
traction. They are designed according to the characteristics of the Hilbert
curve.

– We propose Hilbert attention, a light-weighted transformer based module for
exploring the cross-slice attention, providing a solution for 2D global feature
extraction.

– We design a powerful framework HilbertNet, which reaches SOTA perfor-
mance on segmentation and classification benchmarks.

2 Related Work

Image-based Point Cloud Analysis. Recently, more and more 2D image-
based methods are proposed for point cloud analysis. The advantages of using
2D images are 1) less computation than 3D convolution. 2) In 2D convolution,
there are many excellent previous works [8, 10, 38, 48] that have been proved to
have high generalization ability, which can be applied directly to point cloud
tasks. However, it is not an easy task to use 2D convolution in the point cloud.
An important step is to map the point cloud to 2D images. MVCNN [38] uses
the snapshot of a point cloud in a different point of view to implement point-
image mapping. This method cannot get accurate spatial information of a point
cloud. Therefore, its performance on the segmentation task is not as good as
the classification task. Another mapping method is using range image such as
RangeNet++ [25] and SqueezeSeg [47]. Such methods make up for the short-
comings of image-based methods in segmentation, but in the process of 2D pro-
jection, the spatial locality of the original 3D structure is not well preserved.
Different from previous works, PolarNet [56] adopts bird view and polar coor-
dination to convert the point cloud into the 2D image and they achieve good
results in the LiDAR point cloud segmentation task. In our proposed work, we
use a new point-image mapping technique. The input image we use are voxels
compressed by the 2D Hilbert curve. Such input images can ensure good spa-
tial locality in each slice, so as to avoid information loss caused by point-image
mapping.

Point Cloud with Space Filling Curve. Space filling curve [27] is a series of
fractal curves that can fill the entire 2D/3D space. Classical space filling curve
includes sweep curve, Z-order curve [28] and Hilbert curve [14], etc. The space-
filling properties make them be extensively used in databases and GIS, and its
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Fig. 2: Example of Hilbert curve generation.

fractal feature also makes it applicable to parallel implementation. Similarly,
such properties can be used to reduce the dimension of signals. In point cloud
analysis, space filling curve usually appears with tree structure. For example,
an early point cloud indexing work [41] used OCTree + 3D Hilbert curve to
compress 3D point cloud information. Similarly, C-Flow [30] also describes point
cloud using Hilbert curve. While O-CNN [42] uses OCTree + z-order curve to
complete point cloud analysis with relatively low cost. Different space filling
curves have different characteristics, and in this paper, we adopt the Hilbert
curve because of its good locality preserving property.

Multi-View Fusion based Point Cloud Analysis. Point cloud can be nat-
urally represented via point based, 2D image based and 3D voxel based meth-
ods [7,15,58,62]. The cooperation of different view representation might absorb
the complementary advantages from each other and lead to a success to the
high-performance point cloud analysis. For example, PVCNN [24] and Cylin-
der3D [60,63] adopt the voxel + point method (i.e. 1D and 3D combination) to
balance the cost and accuracy. Image2Point [51], Volumetric MCVNN [32] adopt
image-based method and voxel based method to perform the 2D and 3D view fu-
sion. Different from previous work, in our proposed method, we use 1D sequence
and 2D image as input, so as to incorporate the merit of multi-view fusion and
obtain more friendly computational overhead and faster inference speed.

3 Methodologies

3.1 Hilbert Curve Preliminaries

Hilbert curve is a space filling curve that can link all elements in a space (as
shown in Fig. 1), which often acts as a fractal function [35]. The formation of a
2D Hilbert curve is shown as follow. Firstly, we define I and Q as the interval of
1D space [0,1] and the starting point of Hilbert curve in 2D space [0, 1] × [0, 1]
respectively. As shown in Fig. 2(a), for z ∈ C, we first shrink z by 1

2 along the
origin, obtaining z′ = 1

2z. Then, we multiply a complex number i to rotate z′

by 90◦, obtaining z′′ = 1
2zi. Finally, we get the imaginary part of it: z′′′ = −z̄′′.

We combine the three transformations and name them as N0. The lower-left
part of Fig. 2(b) is obtained by N0z = 1

2 z̄i. Similarly, we shrink z by 1
2 along

starting point Q and move it upward, obtaining upper-left part of Fig. 2(b), the
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Fig. 3: Locality analysis of Hilbert curve and reshape function. Here we increase
N from 22 to 26 and choose D = 3.

operation is N1z = 1
2z + i

2 . Next, we move upper-left by 1
2 to get upper-right

part of Fig. 2(a), the operation is N2z = 1
2z+

i
2 +

1
2 . Finally, N3z = − 1

2 z̄i+1+ i
2

is obtained by rotating upper-left by -90◦ and move forward by 1. Because of the
characteristics of Hilbert curve, it is more convenient to express it in quaternary
form. Assuming s ∈ I, then: s = 0.q1q2q3... and qj = 0, 1, 2, 3. The Hilbert curve
is shown as the infinite combination of these transformations:

H(s) =

(
Re
Im

)
lim
n→∞

Nq1Nq2Nq3 ...NqnQ. (1)

Here n is the order of Hilbert curve. In real application, finite n-th order ap-
proximation is often used, which has the formation:

Hn(s) = H (0.q1q2q3 . . . qn) =

(
Re
Im

) n∑
j=1

(
1

2j

)
Hq0Hq1Hq2 . . . Hqj−1hqj ;

H0z = z̄i,H1z = z,H2z = z,H3z = −z̄i;h0 = 0, h1 = i, h2 = 1 + i, h3 = 2 + i.
(2)

3.2 Advantages of Hilbert Curve

We claim Hilbert curve is more suitable for data flattening compared with Py-
Torch “reshape” function (as shown in Fig. 1) and we demonstrate this point in
the perspective of locality preserving and structural similarity between flattened
and original structure.

Advantage 1: Locality Preserving.
The locality of a space filling curve can be measured using the segments it
contains [27]. The better locality, the better feature clustering property.

Definition 1 (Segments) In space filling curve, the “line” that links two con-
secutive points is regarded as a segment. For a space filling curve, ND − 1 seg-
ments appear to link ND elements in a D-dimensional space with grid size N .

Definition 2 (Jump Segments) For two consecutive points Pi and Pi+1 in a
N-dimensional space, if the distance between them is larger than 1: abs(Pi+1 −
Pi) > 1. The segment that links Pi and Pi+1 is regarded as Jump segment. Jump
segment measures the number of jump connections.
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Definition 3 (Still Segments) For two consecutive points Pi and Pi+1 in a N-
dimensional space, if the distance between Pi and Pi+1 is equal to 0 in dimension
k: Pi+1 = Pi. The segment that links Pi and Pi+1 is regarded as Still segment
in dimension k. Still segment measures the extent that one space filling curve
should move in one dimension to move in another dimension.

The most appealing characteristic of the Hilbert curve is its good locality
preserving property, which leads to better feature clustering property. In Fig. 1,
we intuitively show its merit compared to reshape function. In the following,
a theoretical explanation is given. The locality of a space filling curve can be
measured using the percentage of Jump and Still segments. Smaller Jump seg-
ments mean smaller number of jump connections, and higher Still segments
represent higher dimensional consistency. Both of them denote a better locality.
The percentage of them are calculated using Equation (3).

JR = (
ND − 1

N − 1
−D) · 1

D(ND − 1)
,

SR = (DND −N
ND − 1

N − 1
) · 1

D(ND − 1)
,

JH = 0, SH = (D − 1)(ND − 1) · 1

D(ND − 1)
,

(3)

where JR and SR represent the Jump and Still segments of reshape function, and
JH and SH represent the Jump and Still segments of Hilbert curve, respectively.
N and D represent grid size and dimension. The comparison between reshape
and Hilbert curve can be found in Fig. 3. It demonstrates that with the increasing
of N, the percentage of Still segments of Hilbert curve is consistently larger
than Reshape and the Jump segments of Hilbert curve are always zero. In this
way, Hilbert curve is incorporated into our framework to perform the dimension
reduction with good locality preserving.

Advantage 2: Lower Space to Linear Ratio
Besides the locality, the similarity between the original stricture and the flattened
structure is also an important factor since flattening operations will inevitably
alter the original structure which makes some continuous points (in original
structure) distinct from each other after flattening. space to linear ratio (SLR)
is then proposed to describe the similarity between the original structure and its
flattened shape.

Definition 4 (Space to Linear Ratio) If mapping a pair of points p(t) and
p(τ) in the 2D coordination in [0,1]×[0,1] to two points t and τ in 1D sequence
in [0,1] using a space filling curve p, namely p:[0,1]→[0,1]×[0,1], the ratio

|p(t)− p(τ)|2

|t− τ |
(4)

is called space to linear ratio of the two points.
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The upper bound of Equation (4) is called the space to linear ratio of the curve
p. Obviously, the lower SLR, the more similarity between original structure and
flattened structure, which also leads to better spatial locality.

Theorem 1 The square-to-linear ratio of the Hilbert curve is equal to 6.

The details of proof can be found in [3]. While for some consecutive points
in PyTorch reshape function, the SLR is 4n − 2n+1 + 2 [59], where n is the
curve order as defined before. It is obvious that Hilbert curve has lower SLR and
therefore the flattened structure of Hilbert curve is closer to original one than
PyTorch reshape function.

3.3 Pre-processing

All data are pre-processed via Voxelization and Hilbert Flattening Module (VHFM)
before sending into neural network. Specifically, we first perform the uniform
voxel partition [26, 32, 60], generating 3D data with size (R,R,R) and then
these volumetric representations are flattened rapidly by applying Hilbert curve.
Specifically, given a 3D feature V∈(C,R,R,R) with channel size C, we first separate
it into R slices along Z axis, where the slices Vs1,Vs2...VsR∈ (C,R,R, 1). Then,
2D n-th order Hilbert curve Hn(s) is used to encode each slice, obtaining R
sequences with length R2 as shown in Equation (5).

V∈R×R×R →


Vs1

Vs2
...

VsR

 Hn(s)−→


s1
s2
...
sR

 = I. (5)

The sequences s1, s2...sR∈ (C,R2) and Hn(sk) = Vsk, k = 1, 2...R. After
that we concatenate these sequences in Z axis order, obtaining 2D feature
I∈(C,R2,R). Additional to the voxelization and Hilbert flattening, data augmen-
tation such as rotation, flip and random jitting are applied to increase input
diversity.

3.4 HilbertNet

Unlike previous point-voxel fusion based methods [24, 60], in our design, the
voxels are flattened into 2D features for representing multi-view data. With the
help of Hilbert curve, our method will not only lower the computational overhead
but also preserve the 3D spatial locality. As shown in Fig. 4, HilbertNet acts as
a two-branch network, to process 2D and 1D representation and perform the
multi-view fusion. In the following, we will present every part of our method
including Hilbert interpolation, Hilbert pooling, Hilbert attention in detail.

Feature Gathering. In our model, the 2D branch feature will be gathered in
the form of point feature which is similar to the “devoxelization” process (e.g.
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Fig. 4: The main framework of our model. Voxelization and Hilbert flattening
module (VHFM) is the data processing part, where Hilbert curve is employed to
perform the dimension reduction. Then a two-branch based network, HilbertNet,
is designed to fuse 1D points and 2D slices representation to get final results.
We employ global average pooling (GAP) and channel attention, which is com-
prehensively used in 2D tasks [16,46].

linear interpolation [24], attention-weighted gathering [54]) proposed in previous
works. Here we proposeHilbert interpolation for 2D feature gathering. To better
demonstrate our advantage, we first introduce linear interpolation, a classical
feature gathering method.

Linear Interpolation. Linear interpolation is a classical benchmark of voxel
grid feature gathering method. Given a 3D feature V∈(C,R,R,R), it is performed
as:

O = Reshape(V) ∗ F linear, (6)

whereO∈(M,C) is the point representation withM sampling points and F linear is
the linear interpolation kernel (could be Bilinear or Trilinear), ∗ is convolution
operation. Although it is widely used, linear interpolation has two problems.
Firstly, due to the sparsity of the grid data, if applying linear interpolation, the
addition of empty grids with non-empty grids will weaken the output non-empty
part of feature. Secondly, the Reshape(·) function is not locality preserving,
which also reduces the effectiveness of feature gathering.

Hilbert Interpolation. Given a 2D feature I∈(C,R2,R) that flattened by 3D
feature and the target point cloud feature O∈(M,C), The proposed Hilbert inter-
polation L(·) is performed as follow:

O = L(I),where

H⌈M⌉(O) =

{
(I · Wh) ∗ F linear, M ≤ R3;
I ∗ F linear, M > R3.

(7)

Specifically, if the target size M is larger than the 2D feature size, we simply
apply linear interpolation then reform the feature into O using Hilbert curve
H⌈M⌉(·). ⌈M⌉ represents the closest curve order that the corresponding Hilbert
curve has at least M points. If M ≤ R3, I will multiply an adaptive weight
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Wh, which is designed to emphasize the non-empty part in I. Intuitively, Wh

is the number of empty grids that fall in the linear interpolation kernel, the
more empty grids, the larger compensation. To calculate Wh, we first binarize
featuremap I along channel C, obtaining IB . Then we apply sum filter to IB ,
obtaining WB :

WB = IB ∗ F sum. (8)

The kernel size of F sum depends on the size of F linear (marked as KF ) while
the size of WB is determined by the interpolation scale. Obviously, each element
in WB represents the number of non-empty grid that falls in the corresponding

linear interpolation kernel. Finally, W∈(C,R2,R)
h is obtained by nearest expansion

N (·) of WB :
Wh = KF −N (WB) + 1. (9)

L(·) gathers 2D features using adaptive interpolation and Hilbert curve flat-
tening, which overcomes the two problems in traditional linear interpolation. In
the real implementation, we choose Bilinear interpolation kernel for L(·). Af-
ter Hilbert interpolation, the gathered point feature O will merge with the 1D
branch via additive fusion. The final output is formulated as:

Y = α(X) +O, (10)

where X is point feature from 1D branch, α(·) means shared MLP.

Hilbert Pooling. Different from previous 2D tasks, the 2D feature I in our
model is obtained by the Hilbert curve, which means, if applying regular max
pooling, the gathered feature follows the line of Hilbert curve instead of the
original 3D structure. Therefore, the feature-to-be-pool may come from different
parts of the original shape (See Fig. 5). Due to the specialty of I, we design a
novel pooling technique to harvest spatial information named Hilbert pooling
P(·), specifically:

MaxPool3D(H−1
n (I)) Hn−1(s)−→ = I ′ = P(I), (11)

where H−1
n (I) is the inverse operation of Equation (5), which transform 2D fea-

ture into 3D. Then a 3D max pooling is applied to extract context information.
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Fig. 6: Hilbert attention. It consists of 2D convolutions and matrix multiplica-
tions. Query and Key are generated using 4×1 convolution and 1×4 convolu-
tion respectively while Value features are extracted using 4×4 convolution. The
shapes of Query, Key, V alue are asymmetric because of padding. Sparse convo-
lution [11] is applied during experiments for lower GPU memory cost and faster
inference speed.

After that, we apply n− 1 order Hilbert curve Hn−1(s) to transform the resul-

tant feature into 2D structure I ′∈(C,R
2

4 ,R2 ) (similar to Equation (5)). It is noted
that Hn(s) ≈ Hn−1(s) because Hilbert curve is a fractal structure also, it has
small SLR and good locality. These characteristics guarantee the distribution of
features that before and after pooling are similar.

Hilbert Attention. In order to get the richer spatial feature in 2D branch, we
introduce Self-attention [5, 44, 55], a powerful tool for global feature collection.
Specifically, we propose Hilbert attention that focuses on space connection, which
contains spatial information of all voxel grids. Hilbert attention is formed with
3 feature correlations: intra-slice correlation, inter-slice correlation, and mixed
correlation. The detailed workflow is illustrated in Fig. 6.
Intra-Slice Correlation. VHFM module (see Equation (5)) transforms each
slice Vsk into sequence sk, k ∈ [1, R]. Then, similar to [57] a pointwise linear
projection σ(·) with weight wkey (marked as Key in Fig. 6):

σ(I) =
∑

ek∈sk

wkeyek (12)

is applied along sk for intra-slice level feature extraction, which collects pointwise
feature along Hilbert curve.
Inter-Slice Correlation. To collect pointwise features between sk, we intro-
duce inter-slice correlation. Specifically, the linear projection ϕ(·) (marked as
Query in Fig. 6) is used:

ϕ(I) = σ(I⊤), (13)

where ϕ(·) collects pointwise feature across Hilbert curve.
Mixed Correlation. Mixed Correlation γ(I) considers spatial feature along
and across Hilbert curve, which acts as a 4×4 convolution since the spatial neigh-
bors in the 3D voxel is 8, the kernel size of convolution can be set as 4 to cover all
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neighbors. Finally, Hilbert attention is gathered by considering the importance
between inter-slice and intra-slice feature: HA = Softmax(ϕ(I)σ(I))γ(I), where
HA represents Hilbert attention.

4 Experiments

4.1 Implementation Details

Experimental Setting. HilbertNet is implemented based on PyTorch [29]
framework and tested in the point cloud classification and part-segmentation
task. For most of the experiments, we set Hilbert curve order n = 6, which
means the chosen voxel size is 643. Adam optimizer [17] is applied during ex-
periments with learning rate lr = 0.001 and batch size=16 for both tasks. The
learning rate is reduced by half after every 50 epochs and the number of epoch
is 200 for both part-segmentation and classification tasks.

Additionally, we conduct a large scale point cloud segmentation experiment
on S3DIS [1] dataset with voxel size 1283, the batch size in this experiment is
set to 8 with 80 epochs for training, lr will be reduced by half after every 20
epochs. Other details are identical to the former tasks.

Classification Dataset. We evaluate the performance of our proposed model
using ModelNet40 [49] dataset, which contains 9843 objects from 40 categories
for training and 2468 objects for testing. Following the settings of previous
work [19], we uniformly sampled 1024 points respectively during experiments.

Part-Segmentation Dataset. We use ShapeNetPart segmentation dataset [4]
during experiments for part-segmentation tasks. It has 16 categories and 16881
objects in total. Each object in the dataset has 2 to 6 parts. Following previous
works [24], we sample 2048 point clouds during experiments.

Large Scale Segmentation Dataset. S3DIS dataset [1] is used to test the
performance of HilbertNet in large scale scene parsing task. S3DIS collects data
from 271 rooms in 3 different building. Each point in the dataset is classified
into 13 categories. Following a common procedure [54, 57], we apply Area 5
experiments.

4.2 Experimental Results

ModelNet40. For the ModelNet40 classification task, we add additional 3 FC
layers after the network. The results of ModelNet40 can be found in Table 1. Our
proposed model reaches SOTA performance with 1024 sample points similar to
previous works [20,31,50]. Since our model aggregates 3D voxel information and
1D point information, the performance of our model is better than voxel-only
methods and point-only methods such as VoxelNet [61] and PointNet [31].

ShapeNetPart. The overall performance of our model can be found in the
right part of Table 1. Our model has the highest mIoU compared with previous
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Table 1: Results on ModelNet40 &
ShapeNetPart datasets

ModelNet40 ShapeNetPart

Method Acc Method mIoU

VoxNet [61] 85.9 Kd-Net [18] 82.3
Subvolume [33] 89.2 PointNet [31] 83.7
PointNet [31] 89.2 SO-Net [19] 84.9
DGCNN [45] 92.9 3D-GCN [23] 85.1
PointASNL [53] 92.9 DGCNN [45] 85.2
Grid-GCN [52] 93.1 PointCNN [21] 86.1
PCT [12] 93.2 PVCNN [24] 86.2
SO-Net [19] 93.4 KPConv [40] 86.4
CurveNet [50] 93.8 CurveNet [50] 86.6

Ours 94.1 Ours 87.1

Table 2: Comparison of methods

Method voxel size Inference time mIoU

3D-UNet [26] 643 347ms 84.2
PVCNN [24] 323 62.5ms 86.0
HilbertNet-L 643 42.1ms 85.8
HilbertNet-M 643 59.2ms 86.4
HilbertNet 643 91.6ms 87.1

Table 3: Computational cost and
GPU Memory of different methods.
The tested voxel resolution is 323.
(FLOPs: floating point operations)

Method FLOPs GPU Memory

3D Convolution 18.86G 162M
2D Convolution 4.45G 148.7M
Sparse 2D Convolution 1.47G 49.6M
NonLocal 0.34G 4G
Hilbert Attention 0.32G 47.8M

(a) Left to right: Point Cloud, GT, HilbertNet.

PointNet KPConv HilbertNetGround Truth
(b) Left to right: Point Cloud, GT, PointNet [31], KPConv [40], HilbertNet.

Fig. 7: (a) Visualized results on S3DIS Area 5 dataset; (b) Quantitative compar-
ison.

works. With the rich location information from volumetric data, our model easily
outperforms the point-only models such as PointNet [31], SO-Net [19]. Also,
our model gets better results compared with other methods that use 2D or 3D
features such as 3D-GCN [23].

S3DIS. We conduct S3DIS [1] Area 5 experiment to show that HilbertNet is
qualified for large scale point cloud segmentation and results can be found in
Table 4. Due to the successful combination of grid and point data, HilbertNet
performs better than point-only [31], convolution-based [21] and transformer-
based [57] methods. Some visualized results are posted in Fig. 7(a) while the
visualized quantitative comparison between HilbertNet and other methods can
be found in Fig. 7(b), in which HilbertNet shows better performance.

Inference Speed. Since our model is trained using both 3D and 1D data,
we compare our model with a similar design such as PVCNN [24] for a fair
comparison. Additionally, we propose HilbertNet-M (median) and HilbertNet-
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Table 4: Results of S3DIS Area 5

PointNet PointCNN PCCN MinkowskiNet KPConv PointTransformer
HilbertNet

[31] [21] [43] [6] [40] [57]

ceiling 88.8 92.3 92.3 91.8 92.8 94 94.6
floor 97.3 98.2 96.2 98.7 97.3 98.5 97.8
wall 69.8 79.4 75.9 86.2 82.4 86.3 88.9
beam 0.1 0.3 0 0 0 0 0
column 3.9 17.6 6 34.1 23.9 38 37.6
window 46.3 22.8 69.5 48.9 58 63.4 64.1
door 10.8 62.1 63.5 62.4 69 74.3 73.8
table 59 74.4 66.9 81.6 81.5 89.1 88.4
chair 52.6 80.6 65.6 89.8 91 82.4 85.4
sofa 5.9 31.7 47.3 47.2 75.4 74.3 73.5

bookcase 40.3 66.7 68.9 74.9 75.3 80.2 82.7
board 26.4 62.1 59.1 74.4 66.7 76 74.7
clutter 33.2 56.7 46.2 58.6 58.9 59.3 60.1

mIoU 41.1 57.3 58.3 65.4 67.1 70.4 70.9

L(light) during the experiment. HilbertNet-M has 0.5×C and HilbertNet-L has
0.25×C, where C is the channel number of the features in HilbertNet. We also
adopt a pure 3D model 3D-UNet [26] as the baseline and all the models are
trained and tested on GTX TITAN X GPU. These models are trained using
the identical setting as shown in their paper and ShapeNetPart is applied as
our benchmark. The inference speed comparisons are listed in Table 2. It can
be found that our model has a higher mIoU than PVCNN with comparable
inference speed.

Next, we compare Hilbert attention with 3D convolution, 2D convolution,
sparse 2D convolution and non-local attention in the perspective of FLOPs and
GPU Memory usage. For a fair comparison, the kernel size for 2D and 3D con-
volution is set to 4 with 2 paddings. The result can be found in Table 3. It shows
that Hilbert attention is more light-weighted than 3D convolution and also faster
than 2D convolution and sparse 2D convolution. Moreover, Hilbert attention is
much memory-saving than NonLocal attention.

4.3 Ablation Study

In this part, we conduct a set of ablation studies in the perspective of the flat-
tening method, gathering method, pooling method, and convolution method to
evaluate the influence of each module in our model. The ModelNet40 dataset is
used during the ablation study.

Hilbert Curve vs. Reshape Function. Our design is based on the Hilbert
curve, due to its better locality preserving property compared with other space
filling curves such as reshape function. As shown in column 1 and column 6 in
Fig. 8, we make a comparison to evaluate different flattening methods. Here we
simply replace all the Hilbert curve Hn(s) in HilbertNet with reshape function
including Hilbert interpolation, Hilbert pooling, and Hilbert attention. It can be
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Fig. 8: Ablation study results of HilbertNet. The label refers to:
Flattening Method, Gathering Method, Pooling Method, Convolution
Method.

found that the Hilbert curve achieves the higher accuracy (94.1% vs. 91.2 %),
which further illustrates its advantage over reshape function.

Hilbert Interpolation vs. Linear Interpolation. In this experiment, we
conduct Bilinear interpolation, Trilinear interpolation (see Equation (6)) and
Hilbert interpolation to test the performance of these voxel feature gathering
methods. The results in columns 2, 3, 6 of Fig. 8 show that Hilbert interpola-
tion has an obvious advantage over the other methods. This is because Hilbert
interpolation not only applies Hilbert curve, which has a better locality but also
enhances the non-empty part in grid data.

Hilbert Pooling vs. 2D Max Pooling. Max pooling is a common technique
for 2D feature downsizing and it has been widely used in 2D convolutional net-
works [13,37,39]. However, the 2D featuremap I in our design is obtained via 3D
flattening, which makes 2D max pooling not feasible for HilbertNet. Therefore
we design Hilbert pooling and we compare the performance of it with regular
max pooling. The results in columns 4 and 6 of Fig. 8 demonstrate that our pro-
posed Hilbert pooling module is more suitable for handling data that is flattened
by Hilbert curve.

Hilbert Attention vs. 2D Convolution. In this part, We simply replace the
Hilbert attention with 4× 4 sparse 2D convolution. The result can be found in
columns 5 and 6 of Fig. 8. This result demonstrates that Hilbert attention plays
a crucial role in exploring spatial information across 2D flattened voxels.

5 Conclusion

In this paper, we propose a novel framework for efficient and effective point cloud
analysis, that is, introducing Hilbert curve to reduce the dimension of volumet-
ric data, preserving spatial locality and topology, and using 2D convolutions for
processing, bypassing the cumbersome 3D convolutions. Based on the proposed
Hilbert curve flattening methods, we design the two-branch based HilbertNet,
which copes with 1D sequences and 2D slices respectively, and fuses these two
views together. Additionally, we propose two useful local feature harvesting mod-
ules and one light-weighted attention for exploring the cross-slice context infor-
mation. Our proposed method is proved to be efficient and effective in point cloud
classification and segmentation tasks.
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