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Abstract. We present TOCH, a method for refining incorrect 3D hand-
object interaction sequences using a correspondence based prior learnt
directly from data. Existing hand trackers, especially those that rely on
very few cameras, often produce visually unrealistic results with hand-
object intersection or missing contacts. Although correcting such errors
requires reasoning about temporal aspects of interaction, most previ-
ous works focus on static grasps and contacts. The core of our method
are TOCH fields, a novel spatio-temporal representation for modeling
correspondences between hands and objects during interaction. TOCH
fields are a point-wise, object-centric representation, which encode the
hand position relative to the object. Leveraging this novel representation,
we learn a latent manifold of plausible TOCH fields with a temporal de-
noising auto-encoder. Experiments demonstrate that TOCH outperforms
state-of-the-art 3D hand-object interaction models, which are limited
to static grasps and contacts. More importantly, our method produces
smooth interactions even before and after contact. Using a single trained
TOCH model, we quantitatively and qualitatively demonstrate its useful-
ness for correcting erroneous sequences from off-the-shelf RGB/RGB-D
hand-object reconstruction methods and transferring grasps across ob-
jects. Our code and model are available at [1].

Keywords: hand-object interaction, motion refinement, hand prior

1 Introduction

Tracking hands that are in interaction with objects is an important part of
many applications in Virtual and Augmented Reality, such as modeling digital
humans capable of manipulation tasks [59, 23, 77, 6, 70]. Although there exists
a vast amount of literature about tracking hands in isolation, much less work
has focused on joint tracking of objects and hands. The high degrees of freedom
in possible hand configurations, frequent occlusions, noisy or incomplete obser-
vations (e.g lack of depth channel in RGB images) make the problem heavily
ill-posed. We argue that tracking interacting hands requires a powerful prior
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Fig. 1: We propose TOCH, a model for correcting erroneous hand-object inter-
action sequences. TOCH takes as input a tracking sequence produced by any
existing tracker. We extract TOCH fields, a novel object-centric correspondence
representation, from a noisy hand-object mesh sequence. The extracted noisy
TOCH fields are fed into an auto-encoder, which projects it onto a learned hand
motion manifold. Lastly, we obtain the corrected tracking sequence by fitting
hands to the reconstructed TOCH fields. TOCH is applicable to interaction se-
quences even before and after contact happens.

learned from a set of clean interaction sequences, which is the core principle of
our method.

Beyond the aforementioned challenges, subtle errors in hand estimation have
a huge impact on perceived realism. For example, if the 3D object is floating in
the air, is grasped in a non-physically plausible way, or hand and object intersect,
the perceived quality will be poor. Unfortunately, such artifacts are common
in pure hand-tracking methods. Researchers have used different heuristics to
improve plausibility, such as inter-penetration constraints [28] and smoothness
priors [26]. A recent line of work predicts likely static hand poses and grasps for
a given object [35, 24] but those methods can not directly be used as a prior to
fix common capturing and tracking errors. Although there exists work to refine
hand-object interactions [60, 22], it is only concerned with static grasps.

In this work, we propose TOCH, a data-driven method for refining noisy 3D
hand-object interaction sequences. In contrast to previous work in interaction
modeling, TOCH not only considers static interactions but can also be applied
to sequences without introducing snapping artifacts. The whole approach is out-
lined in Figure 1. Our key insight is that estimating point-wise, spatio-temporal
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Noisy Input ContactOpt TOCH (ours)

Fig. 2: Example refinement of an interaction sequence. Left: a noisy sequence of
a hand approaching and grasping another static hand. Middle: ContactOpt [22]
always snaps the hand into grasping posture regardless of its position relative to
the object, as it is not designed for sequences. Right: TOCH preserves the relative
hand-object arrangement during interaction while refining the final grasp.

object-hand correspondences are crucial for realism, and sufficient to constrain
the high-dimensional hand poses. Thus, the point-wise corresponcendes between
object and hand are encoded in a novel spatio-temporal representation called
TOCH field, which takes the object geometry and the configuration of the hand
with respect to the object into account. We then learn the manifold of plausible
TOCH fields from the recently released MoCap dataset of hand-object interac-
tions [60] using an auto-encoder and apply it to correcting noisy observations.
In contrast to conventional binary contacts [11, 22, 67], TOCH fields also encode
the position of hand parts that are not directly in contact with the object, mak-
ing TOCH applicable to whole interaction sequences, see Figure 2. TOCH has
further useful properties for practical application:

– TOCH can effectively project implausible hand motions to the learned object-
centric hand motion manifold and produces visually correct interaction se-
quences that outperform previous static approaches.

– TOCH does not depend on specific sensor data (RGB image, depth map
etc.) and can be used with any tracker.

– TOCH can be used to transfer grasp sequences across objects sharing similar
geometry, even though it is not designed for this task.

2 Related Work

2.1 Hand and Object Reconstruction

Hand Reconstruction and Tracking. Reconstructing 3D hand surfaces from
RGB or depth observations is a well-studied problem [31]. Existing work can
generally be classified into two paradigms: discriminative approaches [20, 14, 80,
44, 9] directly estimate hand shape and pose parameters from the observation,
while generative approaches [58, 61, 63] iteratively optimize a parametric hand
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model so that its projection matches the observation. Recently, more challeng-
ing settings such as reconstructing two interacting hands [72, 47, 56] are also
explored. These works ignore the presence of objects and are hence less reliable
in interaction-intensive scenarios.

Joint Hand and Object Reconstruction. Jointly reconstructing hand and
object in interaction [49, 4, 66, 57, 73, 74, 51] has received much attention. Ow-
ing to the increasing amount of hand-object interaction datasets with annota-
tions [29, 25, 11, 19, 82, 39], deep neural networks are often used to estimate an
initial hypothesis for hand and object poses, which are then jointly optimized to
meet certain interaction constraints [29, 26, 15, 27, 13]. Most works in this direc-
tion improve contact realism by encouraging a small hand-to-object distance and
penalizing inter-penetrating vertices [33, 4]. However, these simple approaches of-
ten yield implausible interaction and do not take the whole motion sequence into
account. In contrast, our method alleviates both shortcomings through a object-
centric, temporal representation that also considers frames in which hand and
object are not in direct contact.

2.2 Hand Contact and Grasp

Grasp Synthesis. Synthesizing novel hand grasp given an object has been
widely studied in robotics [55]. Traditional approaches either optimize for force-
closure condition [17] or sample and rank grasp candidates based on learned fea-
tures [8]. There are also hybrid approaches that combine the merits of both [45,
40]. Recently, a number of neural network-based models have been proposed
for this task [28, 60, 16, 81, 32]. In particular, [35, 34] represent the hand-object
proximity as an implicit function. We took a similar approach and represent the
hand relative to the object by signed distance values distributed on the object.

Object Manipulation Synthesis. In comparison with static grasp synthesis,
generating dexterous manipulation of objects is a more difficult problem since it
additionally requires dynamic hand and object interaction to be modeled. This
task is usually approached by optimizing hand poses to satisfy a range of con-
tact force constraints [42, 69, 46, 79]. Hand motions generated by these works are
physically plausible but lack natural variations. Zhang et al . [75] utilized various
hand-object spatial representations to learn object manipulation from data. An
IK solver is used to avoid inter-penetration. We took a different approach and
solely use an object-centric spatio-temporal representation, which is shown to
be less prone to interaction artifacts.

Contact Refinement. Recently, some works focus on refining hand and object
contact [60, 68, 22]. Both [68] and [22] propose to first estimate the potential
contact region on the object and then fit the hand to match the predicted contact.
However, limited by the proposed contact representation, they can only model
hand and object in stable grasp. While we share a similar goal, our work can also
deal with the case where the hand is close to but not in contact with the object,
as a result of our novel hand-object correspondence representation. Hence our
method can be used to refine a tracking sequence.
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2.3 Pose and Motion Prior

It has been observed that most human activities lie on low-dimensional man-
ifolds [18, 65]. Therefore natural motion patterns can be found by applying
learned data priors. A pose or motion prior can facilitate a range of tasks in-
cluding pose estimation from images or videos [7, 3, 43, 71], motion interpola-
tion [41], motion capture [76, 64], and motion synthesis [30, 2, 12]. Early attempts
in capturing pose and motion priors mostly use simple statistical models such as
PCA [50], Gaussian Mixture Models [7] or Gaussian Process Dynamical Mod-
els [65]. With the advent of deep generative models [36, 21], recent works rely on
auto-encoders [52, 37] and adversarial discriminators [78, 38] to more faithfully
capture the motion distribution.

Compared to body motion prior, there is less work devoted to hand motion
priors. Ng et al . [48] learned a prior of conversational hand gestures conditioned
on body motion. Our work bears the most similarity to [24], where an object-
dependent hand pose prior was learned to foster tracking. Hamer et al . [24]
proposed to map hand parts into local object coordinates and learn the object-
dependent distribution with a Parzen density estimator. The prior is learned
on a few objects and subsequently transferred to objects from the same class
by geometric warping. Hence it cannot truly capture the complex correlation
between hand gesture and object geometry.

3 Method

In this section, we describe our method for refining hand pose sequences during
interaction with an object. We begin by introducing the problem setting and
outlining our approach. LetH = (Hi)1≤i≤T withHi ∈ RK×3 denote a sequence
of vertices that describe hand meshes over the course of an interaction over T
frames. We only deal with sequences containing a single hand and a single rigid
object mesh, whose vertices we denote as O ∈ RL×3. We assume the object
shape to be known. Since we care about hand motion relative to the object, we
express the hands in local object space, and the object coordinates remain fixed
over the sequence. The per-frame hand vertices Hi in object space are produced
by a parametric hand model MANO [54] using linear blend skinning:

Hi = LBS
(
Y ;β,θi

)
+ tiH . (1)

where the parameters {βi,θi, ti} denote shape, pose and translation w.r.t. tem-
plate hand mesh Y respectively.

Observing the hand-object motion through RGB or depth sensors, a hand

tracker yields an estimated hand motion sequence H̃ = (H̃
i
)1≤i≤T . The goal

of our method is to improve the perceptual realism of this potentially noisy
estimate using prior information learned from training data.

Concept. We observe that during hand-object interactions, the hand motion is
heavily constrained by the object shape. Therefore, noisy hand-object interaction
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is a deviation from a low-dimensional manifold of realistic hand motions, condi-
tioned on the object. We formulate our goal as learning a mapping to maximize
the posterior p(H|H̃,O) of the real motionH given the noisy observation H̃ and
the object with which the hand interacts. This amounts to finding an appropri-
ate sequence of MANO parameters, which is done in three steps (see Figure 1):
1) The initial estimate of a hand motion sequence is encoded with a TOCH
field, our object-centric, point-wise correspondence representation (Section 3.1).
2) The TOCH fields are projected to a learned low-dimensional manifold using a
temporal denoising auto-encoder (Section 3.2). 3) A sequence of corrected hand
meshes is obtained from the processed TOCH fields (Section 3.3).

3.1 TOCH Fields

Naively training an auto-encoder on hand meshes is problematic, because the
model could ignore the conditioning object and learn a plain hand motion prior
(Sec. 4.5). Moreover, if we include the object into the formulation, the model
would need to learn manifolds for all joint rigid transformation of hand and
object, which leads to high problem complexity [35]. Thus, we represent the hand
as a TOCH field F , which is a spatio-temporal object-centric representation that
makes our approach invariant to joint hand and object rotation and translation.

TOCH Field Representation. For an initial estimation H̃ of the hand mesh
and the given object mesh O, we define the TOCH field as a collection of point-
wise vectors on a set {oi}Ni=1 of N points, sampled from the object surface:

F (H̃,O) = {(ci, di,yi)}Ni=1, (2)

where ci ∈ {0, 1} is a binary flag indicating whether the i-th sampled object point
has a corresponding point on the hand surface, di ∈ R is the signed distance
between the object point and its corresponding hand point, and yi ∈ R3 are the
coordinates of the corresponding hand point on the un-posed canonical MANO
template mesh. Note that yi is a 3D location on the hand surface embedded in
R3, encoding the correspondence similar to [5, 62].

Finding correspondences. As we model whole interaction sequences, includ-
ing frames in which the hand and the object are not in contact, we cannot simply
define the correspondences as points that lie within a certain distance to each
other. Instead, we generalize the notion of contact by diffusing the object mesh
into R3. We cast rays from the object surface along its normal directions, as out-
lined in Figure 1. The object normal vectors are obtained from the given object
mesh. The correspondence of an object point is obtained as the first intersection
with the hand mesh. If there is no intersection, or the first intersection is not
the hand, this object point has no correspondence. If the object point is inside
the hand, which might happen in case of noisy observations, we search for cor-
respondences along the negative normal direction. The detailed procedure for
determining correspondences is listed in Algorithm 1.
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Algorithm 1: Finding object-hand correspondences

Input: Hand mesh H, object mesh O, uniformly sampled object points and
normals {oi,ni}Ni=1

Output: Binary correspondence indicators {ci}Ni=1

for i = 1 to N do
ci ← 0;
if oi inside H s← −1 else s← 1 ;
r1 ← ray(oi, sni);
p1 ← ray mesh intersection(r1,H);
if p1 ̸= ∅

r2 ← ray(oi + ϵsni, sni);
p2 ← ray mesh intersection(r2,O);
if p2 = ∅ or ∥oi − p1∥ < ∥oi − p2∥

ci ← 1;

Representation properties. The described TOCH field representation has the
following advantages. 1) It is naturally invariant to joint rotation and translation
of object and hand, which reduces required model complexity. 2) By specifying
the distance between corresponding points, TOCH fields enable a subsequent
auto-encoder to reason about point-wise proximity of hand and object. This
helps to correct various artifacts, e.g . inter-penetration can be simply detected
by finding object vertices with a negative correspondence distance. 3) From
surface normal directions of object points and the corresponding distances, a
TOCH field can be seen as an encoding of the partial hand point cloud from
the perspective of the object surface. We can explicitly derive that point cloud
from the TOCH field and use it to infer hand pose and shape by fitting the hand
model to the point cloud (c.f. Section 3.3).

3.2 Temporal Denoising Auto-encoder

To project a noisy TOCH field to the correct manifold, we use a temporal de-
noising auto-encoder, consisting of an encoder genc : (F̃ i)1≤i≤T 7→ (zi)1≤i≤T ,
which maps a sequence of noisy TOCH fields (concatenated with the coordi-
nates and normals of each object point) to latent representation, and a decoder

gdec : (zi)1≤i≤T 7→ (F̂ i)1≤i≤T , which computes the corrected TOCH fields F̂
from the latent codes. As TOCH fields consist of feature vectors attached to
points, we use a PointNet-like [53] architecture. The point features in each frame
are first processed by consecutive PointNet blocks to extract frame-wise features.
These features are then fed into a bidirectional GRU layer to capture temporal
motion patterns. The decoder network again concatenates the encoded frame-
wise features with coordinates and normals of the object points and produces
denoised TOCH fields (F̂ i)1≤i≤T . The network is trained by minimizing

L(F̂ ,F ) =

T∑
i=1

N∑
j=1

cij

(
∥ŷi

j − yi
j∥22 + wij(d̂

i
j − dij)

2
)
− BCE(ĉij , c

i
j), (3)
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where F denotes the groundtruth TOCH fields and BCE(ĉij , c
i
j) is the binary

cross entropy between output and target correspondence indicators. Note that we
only compute the first two parts of the loss on TOCH field elements with cij = 1,
i.e. object points that have a corresponding hand point. We use a weighted loss
on the distances d̂ij . The weights are defined as

wij =
exp

(
−
∥∥dij∥∥)∑Ni

k=1 exp
(
−
∥∥dik∥∥)Ni, (4)

where Ni =
∑N

j=1 c
i
j . This weighting scheme encourages the network to focus

on regions of close interaction, where a slight error could have huge impact
on contact realism. Multiplying by the sum of correspondence ensures equal
influence of all points in the sequence instead of equal influence of all frames.

3.3 Hand Motion Reconstruction

After projecting the noisy TOCH fields of input tracking sequence to the mani-
fold learned by the auto-encoder, we need to recover the hand motion from the
processed TOCH fields. The TOCH field is not fully differentiable w.r.t. the hand
parameters, as changing correspondences would involve discontinuous function
steps. Thus, we cannot directly optimize the hand pose parameters to produce
the target TOCH field. Instead, we decompose the optimization into two steps.
We first use the denoised TOCH fields to locate hand points corresponding to
the object points. We then optimize the MANO model to find hands that best
fit these points, which is a differentiable formulation.

Formally, given denoised TOCH fields F i(H,O) = {(cij , dij ,yi
j)}Nj=1 for frames

i ∈ {1, ..., T} on object points {oj}Nj=1, we first produce the partial point clouds

Ŷ
i
of the hand as seen from the object’s perspective:

ŷi
j = oj + dijn

i
j . (5)

Then, we fit MANO to those partial point clouds by minimizing:

L(β,θ, tH) =

T∑
i=1

Lcorr(β,θ
i, tH) + Lreg(β,θ). (6)

The first term of Equation 6 is the hand-object correspondence loss

Lcorr(β,θ
i, tH) =

N∑
j=1

cij

∥∥∥ŷi
j −

(
LBS

(
ProjY

(
yi
j

)
;β,θi

)
+ tH

)∥∥∥2, (7)

where LBS is the linear blend skinning function in Equation 1 and ProjY (·)
projects a point to the nearest point on the template hand surface. This loss
term ensures that the deformed template hand point corresponding to oi is at a
predetermined position derived from the TOCH field.
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The last term of (6) regularizes shape and pose parameters of MANO,

Lreg(β,θ) = w1 ∥β∥2 + w2

T∑
i=1

∥∥θi
∥∥2 + w3

T−1∑
i=1

∥∥θi+1 − θi
∥∥2 + w4

T−1∑
i=2

J∑
k=1

∥∥p̈i
k

∥∥
(8)

where p̈i
k is the acceleration of hand joint k in frame i. Besides regularizing

the norm of MANO parameters, we additionally enforce temporal smoothness
of hand poses. This is necessary because (7) only constrains those parts of a
hand with object correspondences. Per-frame fitting of TOCH fields leads to
multiple plausible solutions, which can only be disambiguated by considering
neighbouring frames. Since (6) is highly nonconvex, we optimize it in two stages.
In the first stage, we freeze shape and pose, and only optimize hand orientation
and translation. We then jointly optimize all the variables in the second stage.

4 Experiments

In this section, we evaluate the presented method on synthetic and real datasets
of hand/object interaction. Our goal is to verify that TOCH produces realistic
interaction sequences (Section 4.3), outperforms previous static approaches in
several metrics (Section 4.4), and derives a meaningful representation for hand
object interaction (Section 4.5). Before presenting the results, we introduce the
used datasets in Section 4.1 and the evaluated metrics in Section 4.2.

4.1 Datasets

GRAB. We train TOCH on GRAB [60], a MoCap dataset for whole-body grasp-
ing of objects. GRAB contains interaction sequences with 51 objects from [10].
We pre-select 10 objects for validation and testing, and train with the rest se-
quences. Since we are only interested in frames where interaction is about to
take place, we filter out frames where the hand wrist is more than 15 cm away
from the object. Due to symmetry of the two hands, we anchor correspondences
to the right hand and flip left hands to increase the amount of training data.

HO-3D. HO-3D is a dataset of hand-object video sequences captured by RGB-
D cameras. It provides frame-wise annotations for 3D hand poses and 6D object
poses, which are obtained from a novel joint optimization procedure. To ensure
fair comparison with baselines which are not designed for sequences without con-
tact, we compare on a selected subset of static frames with hand-object contact.

4.2 Metrics

Mean Per-Joint Position Error (MPJPE). We report the average Euclidean
distance between refined and groundtruth 3D hand joints. Since pose annotation
quality varies across datasets, this metric should be jointly assessed with other
perceptual metrics.
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Fig. 3: Qualitative results on two synthetic hand-object interaction sequences
that suffer from inter-penetration and non-smooth hand motion. The results after
TOCH refinement show correct contact and are much more visually plausible.
Note that TOCH only applies minor changes in hand poses but the perceived
realism is largely enhanced. Check the supplemental video for animated results.

Mean Per-Vertex Position Error (MPVPE). This metric represents the
average Euclidean distance between refined and groundtruth 3D meshes. It as-
sesses the reconstruction accuracy of both hand shape and pose.

Solid Intersection Volume (IV). We measure hand-object inter-penetration
by voxelizing hand and object meshes and reporting the volume of voxels occu-
pied by both. Solely considering this metric can be misleading since it does not
account for the case where the object is not in effective contact with the hand.

Contact IoU (C-IoU). This metric assesses the Intersection-over-Union be-
tween the groundtruth contact map and the predicted contact map. The contact
map is obtained from the binary hand-object correspondence by thresholding the
correspondence distance within ±2 mm. We only report this metric on GRAB
since the groundtruth annotations in HO-3D are not accurate enough [22].

4.3 Refining Synthetic Tracking Error

In order to use TOCH in real settings, it would be ideal to train the model on
the predictions of existing hand trackers. However, this requires large amount
of images/depth sequences paired with accurate hand and object annotations,
which is currently not available. Moreover, targeting a specific tracker might lead
to overfitting to tracker-specific errors, which is undesirable for generalization.
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GRAB-Type →
Noise →

GRAB-T
(0.01)

GRAB-T
(0.02)

GRAB-R
(0.3)

GRAB-R
(0.5)

GRAB-B
(0.01 & 0.3)

MPJPE (mm) ↓ 16.0 → 9.93 31.9 → 12.3 4.58 → 9.58 7.53 → 9.12 17.3 → 10.3

MPVPE (mm) ↓ 16.0 → 11.8 31.9 → 13.9 6.30 → 11.5 10.3 → 11.0 18.3 → 12.1

IV (cm3) ↓ 2.48 → 1.79 2.40 → 2.50 1.88 → 1.52 1.78 → 1.35 2.20 → 1.78

C-IoU (%) ↑ 3.56 → 29.2 2.15 → 16.7 11.4 → 26.6 5.06 → 24.4 1.76 → 26.6

Table 1: We quantitatively evaluate TOCH on multiple perturbed GRAB test
sets with different types and magnitude of noise. The numbers inside the paren-
theses indicate standard deviation of the sampled Gaussian noise. Although pose
accuracy is not always improved, TOCH significantly boosts interaction realism
for all noise levels, which is demonstrated by the increase in contact IoU and
reduction in hand-object inter-penetration.

Method
HO-3D

MPJPE (mm) ↓ MPVPE (mm) ↓ IV (cm3) ↓

Hasson et al . 11.4 11.4 9.26
RefineNet 11.6 11.5 8.11
ContactOpt 9.47 9.45 5.71
TOCH (ours) 9.32 9.28 4.66

Table 2: Quantitative evaluation on HO-3D compared to Hasson et al . [26],
RefineNet [60] and ContactOpt [22]. We follow the evaluation protocol of HO-
3D and report hand joint and mesh errors after Procrustes alignment. TOCH
outperforms all the baselines in terms of pose error and interaction quality.

We observe that hand errors can be decomposed into inaccurate global trans-
lation and inaccurate joint rotations, and the inaccuracies produced by most
state-of-the-art trackers are small. Therefore, we propose to synthesize track-
ing errors by manually perturbing the groundtruth hand poses of the GRAB
dataset. To this end, we apply three different types of perturbation to GRAB:
translation-dominant perturbation (abbreviated GRAB-T in the table) applies
an additive noise to hand translation tH only, pose-dominant perturbation (ab-
breviated GRAB-R) applies an additive noise to hand pose θ only, and balanced
perturbation (abbreviated GRAB-B) uses a combination of both. We only train
on the last type while evaluate on all three. The quantitative results are shown
in Table 1 and qualitative results are presented in Figure 3.

We can make the following observations. First, TOCH is most effective for
correcting translation-dominant perturbations of the hand. For pose-dominant
perturbations where the vertex and joint errors are already very small, the result-
ing hands after TOCH refinement exhibit larger errors. This is because TOCH
aims to improve interaction quality of a tracking sequence, which can hardly
be reflected by distance based metrics such as MPJPE and MPVPE. We argue
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Input Image HOnnotate ContactOpt TOCH (ours)

Fig. 4: Qualitative comparison with HOnnotate and ContactOpt. Each sample
reconstruction is visualized in two views, the image-aligned view and a side view.
We can clearly see hand-object inter-penetrations for HOnnotate and Contac-
tOpt, while our reconstructions are more visually realistic.

that more important metrics for interaction are intersection volume and con-
tact IoU. As an example, the perturbation of GRAB-R (0.3) only induces a tiny
joint position error of 4.6 mm, while it results in a significant 88.6% drop in
contact IoU. This validates our observation that any slight change in pose has a
notable impact on physical plausibility of interaction. TOCH effectively reduces
hand-object intersection as well as boosts the contact IoU even when the noise
of testing data is higher than that of training data.

4.4 Refining RGB(D)-based Hand Estimators

To evaluate how well TOCH generalizes to real tracking errors, we test TOCH
on state-of-the-art models for joint hand-object estimation from image or depth
sequences. We first report comparisons with the RGB-based hand pose estima-
tor [26], and two grasp refinement methods RefineNet [60] and ContactOpt [22]
in Table 2. Hasson et al . [26] predict hand meshes from images, while RefineNet
and ContactOpt have no knowledge about visual observations and directly re-
fine hands based on 3D inputs. Groundtruth object meshes are assumed to be
given for all the methods. TOCH achieves the best score for all three metrics on
HO-3D. In particular, it reduces the mesh intersection volume, indicating an im-
proved interaction quality. We additionally evaluate TOCH on HOnnotate [25],
a state-of-the-art RGB-D tracker which annotates the groundtruth for HO-3D.
Figure 4 shows some of its failure cases and how they are corrected by TOCH.

4.5 Analysis and Ablation Studies

Grasp transfer. In order to demonstrate the wide-applicability of our learned
features, we utilize the pre-trained TOCH auto-encoder for grasp transfer al-
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Fig. 5: Transferring grasping poses across objects of different geometry. The top
row shows three different source grasps which are subsequently transferred to
two target objects in the bottom row. The hand poses are adjusted according to
shape of target objects while preserving overall contact.

Method MPJPE (mm) ↓ IV (cm3) ↓ C-IoU (%) ↑

Hand-centric baseline 11.2 2.03 18.9
TOCH (w/o corr.) 12.2 2.10 18.6
TOCH (w/o GRU) 10.8 1.87 20.4
TOCH (same obj.) 11.7 1.95 23.1
TOCH (full model) 10.3 1.78 26.6

Table 3: Comparison with various baselines on GRAB-B (0.01 & 0.3). We show
that TOCH achieves the lowest hand joint error and intersection volume while
recovers the highest percentage of contact regions among all the baselines.

though it was not trained for this task. The goal is to transfer grasping sequences
from one object to another object while maintaining plausible contacts. Specifi-
cally, given a source hand motion sequence and a source object, we extract the
TOCH fields and encode them with our learned encoder network. We then sim-
ply decode using the target object – we perform a point-wise concatenation of
the latent vectors with point clouds of the target object, and reconstruct TOCH
fields with the decoder. This way we can transfer the TOCH fields from the
source object to the target object. Qualitative examples are shown in Figure 5.

Object-centric representation. To show the importance of the object-centric
representation, we train a baseline model which directly takes noisy hand joint

sequences {j̃
i
}Ti=1 as input and naively condition it on the object motion se-

quence {Oi}Ti=1. See Table 3 for a quantitative comparison with TOCH. We can
observe that although the hand-centric baseline makes small errors in joint posi-
tions, the resulting motion is less physically plausible, as reflected by its higher
interpenetration and lower contact IoU.

Semantic correspondence. We argue that explicitly reasoning about dense
correspondence plays a key role in modeling hand-object interaction. To show
this, we train another baseline model in the same manner as in Section 3, except
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that we adopt a simpler representation F (H,O) = {(ci, di)}Ni=1, where we keep
the binary indicator and signed distance without specifying which hand point
is in correspondence. The loss term (7) accordingly changes from mean squared
error to Chamfer distance. We can see from Table 3 that this baseline model
gives the worst results in all three metrics.

Train and test on the same objects. We test the scenario where objects
in test sequences are also seen at training time. We split the dataset based on
the action intent label instead of by objects. Specifically, we train on sequences
labelled as ’use’, ’pass’ and ’lift‘, and evaluate on the remaining. Results from
Table. 3 show that generalization to different objects works slightly better than
generalizing to different actions. Note that the worse results are also partly
attributed to the smaller training set under this new split.

Temporal modeling. We verify the effect of temporal modeling by replacing
the GRU layer with global feature aggregation. We concatenate the global aver-
age latent code with per-frame latent codes and feed the concatenated feature
of each frame to a fully connected layer. As seen in Table. 3, temporal modeling
with GRU largely improves interaction quality in terms of recovered contact.

Complexity and running time. The main overhead incurred by TOCH field is
in computing ray-triangle intersections, the complexity of which depends on the
object geometry and the specific hand-object configuration. As an illustration, it
takes around 2s per frame to compute the TOCH field on 2000 sampled object
points for an object mesh with 48k vertices and 96k triangles on Intel Xeon
CPU. In hand-fitting stage, TOCH is significantly faster than ContactOpt since
the hand-object distance can be minimized with mean squared error loss once
correspondences are known. Fitting TOCH to a sequence runs at approximately
1 fps on average while it takes ContactOpt over a minute to fit a single frame.

5 Conclusion

In this paper, we introduced TOCH, a spatio-temporal model of hand-object
interactions. Our method encodes the hand with TOCH fields, an effective novel
object-centric correspondence representation which captures the spatio-temporal
configurations of hand and object even before and after contact occurs. TOCH
reasons about hand-object configurations beyond plain contacts, and is naturally
invariant to rotation and translation. Experiments demonstrate that TOCH out-
performs previous methods on the task of 3D hand-object refinement. In future
work, we plan to extend TOCH to model more general human-scene interactions.
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