18 A. Mirzaei et al.

e
=
&

256 |Location
256

Density
S —>
2 © © © © © © © © © ©
T —> 0 > > L-—>W0 >0 > ->W0->W0-—> W0 bre]
S I3V I3V 39 I3V 39 N I3V 39 IS — 1
4 8 RGB
N ©
—> N
S \n ¢
2
S PE()

Fig. 7: The architecture used for LaTeRF is a multi layer perceptron which in-
spired by [54], extends the original NeRF model [23] to contain an additional
output s to reason about the probability of different points in the space being
part of the OOIL. As evident in the figure, s is independent of the view d and
only depends on the location z. Following the literature, both location x and
view direction d are passed through a positional encoding function (PE).

A Additional Implementation Details

Our proposed method is implemented in PyTorch [29], and the network is op-
timized using the Adam optimizer [16] to learn the view-dependent radiance
(color) and view-independent densities and objectness probabilities for points in
the space. The network is randomly initialized and trained from scratch for each
scene individually. Hyperparameters related to the NeRF model and the opti-
mizer are set based on the PyTorch implementation [18] in the original NeRF
paper [23]. Training is done on one NVIDIA GeForce RTX 3090 GPU. Due to
the high GPU memory usage for the CLIP loss calculations, the object renders
used for computing Lcorp are % of the size of the original input images, e.g., for
400 x 400 pixel synthetic views, the object is rendered at 133 x 133 pixels and the
CLIP loss is defined over the downsized rendering. Moreover, in order to speed
up training, the CLIP loss is only calculated every 10 steps. For test-time object
renderings, instead of using the soft-partitioning approach, a hard-thresholding
method is used to denoise the background. In the next section, we introduce the
details of this denoising mechanism. An overview of the architecture of the MLP
with the additional objectness score s as output is shown in Figure 7.

For real-world scenes, a minimal user interface is designed to capture the
pixel annotations from an end-user. In this procedure, instead of limiting the
user to give visual cues pixel-by-pixel, we allow brush size changes to enable the
selection of areas corresponding to either the OOI or non-objects. This allows for
quick annotation of points far from the object boundaries, resulting in a better
non-object removal and object discovery in the scene. Using dynamic brush sizes,
we were able to collect millions of pixel-level annotations in just a few minutes.
By being able to change the brush size, the end-user can coarsely label the points
that are not close to the boundaries, and then reduce the annotation area as they
get closer to the boundaries to finely label the more important pixel-level data

LaTeRF: Label and Text Driven Object Radiance Fields 19

(i.e., the boundary of the object and the foreground/background, as shown in
the experiments).

B Denoising the Views

As mentioned in section 5.1, we use a post-processing approach to denoise the
rendered images of the objects. Noise is mostly caused by small particles that
emerge in the training of the NeRF model and that blend in with the background
in the training views, but become visible as the non-objects (including the back-
ground) are removed from the scene. In addition, for the points in the space that
are inside of a dense object or behind the background, the objectness score is not
trained well since the densities of the surface points block the training signals.
All these reasons contribute to noisy renderings of the OOI when using LaTeRF
without additional denoising (see soft threshold results in Fig 8). Our first step
to mitigate this issue is to smooth the densities. Because the noisy particles are
mostly steep ‘jumps’ in density compared to the neighbouring points, substitut-
ing the value of every density with the average of its neighbours, including itself,
will smooth these bumps. We repeat this averaging for 5 steps. Afterward, we
filter the points with densities lower than a small threshold (which was set to
0.2 in the example in Fig 8). We call this approach hard thresholding and it is
evident in Fig 8 that it has helped to reduce the noise, but that there are still
some unpleasant gray artifacts in the renderings. However, we do not directly
use hard thresholding to render the RGB images of the object; we only use it to
render the silhouette of the object to mask it out from the soft threshold results.
After applying the hard threshold, we render the object mask by substituting
the color with the objectness scores in Eq. 10 and applying the sigmoid function:

N
Pop;(r) = Sigmoid (> T exp(—Uz‘pi5i))8i> : (16)
i=1
Note that we assume a background with 0 objectness probability when rendering
the object so that only object points with high densities will dominate this
background and, as such, we obtain the object mask as an output. The rendered
mask is then applied to the soft-threshold results to yield the rendered images
of the object without background artifacts (final results are shown in Figure 8).

C Additional Real-world Results

Novel-view renderings of additional objects (partly borrowed from [23,4]) are
shown in Figure 9. These examples include objects with detailed textures and
geometries and objects with challenging shiny surfaces.

D Relighting the Object

It is possible to leverage the dependence of color of a point on the view direction
to ‘trick’ the learned object radiance field to render the OOI under novel lighting

20 A. Mirzaei et al.

Soft Threshold Hard Threshold ~ Rendered Mask Final Result Soft Threshold Hard Threshold ~ Rendered Mask Final Result

@el)

0.0

Fig. 8: More examples of the effectiveness of our denoising approach for removing
the background artifacts using rendered objectness probabilities which act as
object masks on the goldcape scene [30].

conditions [23]. The view direction fed to the network to find the radiance (color)
of points in the space can be manually rotated while keeping the camera fixed.
The effect caused by this alteration is similar to changing the lighting of the
scene, and it is possible to fit the novel lighting to be consistent with certain
lighting conditions. Figure 10 shows some of the real-world objects with three
different illumination choices for a given, fixed view.

D.1 Blending the Object in Novel Scenes

The lighting setting can later be optimized with respect to the desired lighting in
a novel scene, making an inserted object look consistent in a new scene. Figure 11
shows an example of placing a 3D asset extracted by LaTeRF into a scene under
two different illumination conditions.

LaTeRF: Label and Text Driven Object Radiance Fields 21

Original Scene Novel Scene #1 Novel Scene #2
Fig. 10: Relighting objects under three Fig.11: An example of placing an ex-

different illumination conditions. tracted object in a scene with two dif-
ferent lighting conditions.

