
Unsupervised Deep Multi-Shape Matching
– SUPPLEMENTARY DOCUMENT –

Dongliang Cao1,2 and Florian Bernard1

1 Technical University of Munich, 80333 Munich, Germany
2 University of Bonn, 53115 Bonn, Germany

In this supplementary document we first introduce the implementation de-
tails of our method. Subsequently, we provide details on the unsupervised loss for
partial shape matching. Afterwards, we discuss our network fine-tuning. Even-
tually, we also show additional qualitative results of our method.

S1 Implementation details

We implemented our method in PyTorch. Our feature extractor takes 352-
dimensional pre-computed SHOT descriptors [40] as inputs. We use Diffusion-
Net [42] composed of 4 diffusion blocks with width 128 as the network architec-
ture for both our feature extractor and universe classifier. In the context of the
FM solver, we set λ = 100 in Eq. (9) and γ = 0.5 in Eq. (10) for our partial shape
matching (for complete shape matching we use λ = 0). For the basis functions
for functional maps computation, we choose the number to be 80 for the FAUST
and SCAPE datasets for full shape matching. For partial shape matching, we
choose the number to be 50 and 30 for the CUTS and HOLES subsets of the
SHREC’16, respectively, to be consistent with DPFM [2]. We apply Sinkhorn
normalisation with the number of iterations equal to 10 and the temperature
parameter τ equal to 0.2.

If a dataset provides ground truth correspondences based on a reference
shape, we set the number of universe vertices to the number of vertices of the
reference shape. Otherwise, we set the number of universe vertices to the largest
number of vertices among the given shapes. For network training, we use wbij =
1.0, worth = 1.0, wlap = 10−3 for Lft in Eq. (12) (for partial shape matching
we use wlap = 0, since in this case we already enforce Laplacian commutativity
regularisation in our regularised FM solver). The final loss is a linear combination
of Lft and Lcls, where we set λcls = 0.01 for complete shape matching. The loss
for the universe classifier Lcls is slightly different from Eq. (14) for partial shape
matching, for which we provide the details in Sec. S2. We train our network with
a batch size of 1 for all datasets. We use the ADAM optimiser with a learning
rate of 10−3 for all experiments. The total number of training iterations for each
dataset is 20000. During the first 4000 training iterations, when computing Lcls

defined in Eq. (14), we detach the gradient for Cyx and only regularise it based
on its structural properties defined in Lft. Afterwards, we will use the gradients
for both Cyx and Πxy to optimise our network. In this way, it can lead to faster
convergence and better network performance.



2 D. Cao et al.

S2 Unsupervised loss for partial shape matching

In the context of partial-to-complete shape matching, we can assume that the
complete shape plays the role of the universe shape, since it is guaranteed that
each point in the partial shapes is in correspondence with exactly one point in
the complete shape. We modify the unsupervised loss for universe classifier based
on it. For X being the complete shape and Y being the partial shape, the loss
term can be expressed in the form

Lcls = Lsmooth
ce (Πx, Id) + Lsmooth

ce (Πy, Π̂y), (S1)

where Id is the identity matrix of size d, Π̂y is the partial-to-complete corre-
spondences obtained by nearest neighbour search between ΦyCxy and Φx, and
Lsmooth
ce is the cross entropy loss with label smoothing, where we set the smooth-

ing factor equal to 0.1. The first term of the equation encourages the corre-
spondences between the complete shape and the (virtual) universe shape to be
identical, while the second term regularises the predicted partial-to-universe cor-
respondence based on functional map regularisation. Similar to complete shape
matching, the total unsupervised loss is a linear combination of Lft and Lcls,
where we set λcls = 1.0.

S3 Network fine-tuning

We observe that the generalisation ability of our method across different datasets
can be improved by network fine-tuning, as shown in Fig. 3 (main paper). In
order to achieve this, we first train our network on the training dataset in the
ordinary way, and afterwards we use an unsupervised fine-tuning of the pre-
trained network for the test dataset. Specifically, during fine-tuning, we update
the network weights for each shape pair independently. To this end, we use the
same loss defined in Eq. (15) to optimise the network with a fixed number of
five forward/backward passes (for each shape pair individually). The advantage
of network fine-tuning compared to post-processing techniques is that it directly
optimises the network itself, thus leading to better performance.

S4 Additional qualitative results

We show additional qualitative results on the FAUST dataset in Fig S1, on
the SCAPE dataset in Fig S2, as well as on the SHREC’16 datset in Fig S3.
Our method predicts shape-to-universe correspondences for each shape to obtain
cycle-consistent multi-shape matchings among a collection of shapes.



Abbreviated paper title 3

Colour code

Fig. S1: Qualitative multi-matching results using our method on the FAUST
dataset.

Colour Code

Fig. S2: Qualitative multi-matching results using our method on the SCAPE
dataset.



4 D. Cao et al.

Colour code

Fig. S3: Qualitative partial-to-partial multi-matching results using our method
on the SHREC’16 dataset. The full shape is shown merely for visualisation pur-
poses (colour code).



Abbreviated paper title 5

S5 Inter-class shape matching

We evaluate our method for the challenging inter-class multi-shape matching on
the TOSCA dataset.

Colour code

Fig. S4: Qualitative inter-class multi-matching results using our method on the
TOSCA dataset.

S6 Shape matching on SHREC’19 dataset

We evaluate our method on the more challenging SHREC’19 dataset. Further-
more, we randomly remesh each shape to different resolution to evaluate the
robustness of our method with respect to different meshings.

3326   5089 4088 4438 3283 2693

Fig. S5: Qualitative shape matching results using our method on the SHREC’19
dataset with different resolution (numbers refer to #vertices).


