Supplementary Material of
Autoregressive 3D Shape Generation via
Canonical Mapping

1 Overview

This supplementary material provides more details about the implementation,
model efficiency, and additional results of our work. We start by introducing
implementation details in Section 2, followed by model size and computational
time discussion in Section 3. We then show ablation studies on different shape
composition serialization methods in Section 4. In Section 5, Section 6 and Sec-
tion 7, we demonstrate more qualitative results on auto-encoding, unconditional
generation and conditional generation. We further show the visualization of
latent space in Section 8 and provide additional experiments on the full ShapeNet
collection in Section 9. Finally, we discuss limitations of our method in Section 10.

2 Implementation Details

2.1 Model Architecture

We use the same model architecture for all encoders and decoders used in our
method. Specifically, we adopt the encoder structure from DGCNN [11], which
contains 3 EdgeConv layers using neighborhood size 20. Our decoder follows the
two branch structure as in SP-GAN [7]. Given a matrix that consists of sphere
points and features, the decoder first feeds sphere points to a graph attention
module to extract point-wise spatial features. On the other branch, we use a
nonlinear feature embedding to extract style features from the latent. Then, we
use adaptive instance normalization [4] to fuse the local styles with the spatial
features. We repeat the process with another round of style embedding and
fusion, then predict the final output from the fused feature. For our grouping
network, we follow [2], using a two-layer 128-neuron MLP with ReLU activations
and BatchNorm layers. Our transformer model is modified from [5], where we
reduce their number of layers and heads to 24 and 16, respectively.

2.2 Training Details

We use the airplane category in ShapeNet as an example to illustrate the training
pipeline. We perform all the experiments on a workstation with Intel Xeon Gold
6154 CPU (3.00GHz) and 4 NVIDIA Tesla V100 (32GB) GPUs. We implement
our framework with Pytorch 1.10. Please see Algorithm 1 for more details.
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Algorithm 1 : The training phase of our approach consists of learning four
components: (1) Canonical Auto-encoder (2) Canonical Grouping Network (3)
VQVAE (4) Transformer

(A) Canonical Auto-encoder > 8 hours on Airplane category

Sub-sample M points from the input point cloud « and canonical sphere 7;
Initialize weight of the encoder E.(-) and decoder D.(-);
while not converged do
foreach iteration do
zZe < Ec(x);
& < Dc([ms,z4]), where m; € m;
Obtain reconstruction loss Lep(#,2) and Levmp(Z, x);
Update weight;

(B) Canonical Grouping Network > 2 hours on Airplane category
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Generate randomly M points from the canonical sphere 7;
Initialize weight of the canonical grouping network M LP(-);
while not converged do
foreach iteration do

Obtain the corresponding point of m; € m on x as Pz (7;);

P; «+ MLP([z;,7;), where x; € z,m; € T;

Kj« Y7 @nu(mi)P] | where j =1,2,..,G;

Obtain loss Lep (K, x);

Update weight;

(C) VQVAE > 24 hours on Airplane category

[

Sub-sample M points from the input point cloud x and canonical sphere 7;
Sequentialize x;
Initialize weight of E(-), D(-), and VQ(-);
while not converged do
foreach iteration do
Obtain group feature z < F(x)
zq < VQ(2)
& < D([ms, 2q]), where m; € ;
Obtain loss LQuantization;
Update weight;

(D) Transformer > 16 hours on Airplane category

Sub-sample M points from the input point cloud x;
Initialize weight of the transformer;
Vector Quantize x to a sequence s;
while not converged do
foreach iteration do
Obtain the probability distribution for each s; € s autoregressively.
Obtain loss Lrransformer;
Update weight;
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2.3 Inference Details

Esser et al. [5] introduce several test-time hyper-parameters (e.g., top-k and top-p
heuristics, temperature scaling factor t) for transformer to obtain best results.
Following [5], we use the top-p sampling heuristic for the transformer model
which we empirically set p = 0.92 throughout all experiments. We do not use the
top-k sampling heuristic and the temperature scaling factor ¢ is set to 1 unless
otherwise specified. We provide unconditional generation results on ShapeNet
Chair using different p in Table 1.

Table 1: Shape generation results on ShapeNet Chair. T means the higher the better, |

means the lower the better. MMD-CD is multiplied by 10° and MMD-EMD is multiplied
by 102.

MMD (}) COV (%, 1) 1-NNA (%, })
Model CD EMD CD EMD CD EMD
p=0.85 7.70 11.87 41.84 44.25 61.40 64.72
p=0.92 7.37 11.75 45.77 46.07 60.12 61.93
p=0.99 7.22 11.73 44.86 45.46 60.19 62.38

2.4 Evaluation Metrics

— Minimum matching distance (MMD) [13] measures the visual quality
of the generated set. For each sample in the reference set, we compute the
distance to its nearest neighbor in the generated set. The final MMD is the
average of the computed distances. Note that the nearest neighbor can be
searched with different distance measurements such as Chamfer distance or
Earth Mover distance.

— Coverage (COV) [13] is able to detect mode-collapse in the generated set.
Specifically, COV measures the fraction of samples in the reference set that
are matched to at least one sample in the generated set. Specifically, for each
sample in the generated set, we mark its nearest neighbor in the reference set
as a matched sample. Similar to the MMD metric, the nearest neighbor can
be searched with different distance measurements such as Chamfer distance
or Earth Mover distance.

— l-nearest neighbor accuracy (1-NNA) [13] is a metric that performs
two-sample tests [8] on the generated set and the reference set. Therefore, if
the generated set is drawn from the reference set, the classifier will result in
a random model (i.e., close to 50% accuracy).

— Total Mutual Difference (TMD) [12] is a metric that measures the
diversity given a conditional input (e.g., depth-map, partial point cloud).
Specifically, for each shape i in the k generated set, we calculate its average
Chamfer distance diCD to the other k — 1 shapes. The total TMD is calculated

k JcD
as )iy di .
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3 Computational Time and Model Size

Table 2: The parameter size and inference time for different models.

Model # Parameters Inference Time
PointGrow [10] 0.31M 5303.70
ShapeGF [1] 0.13M 0.2659
SP-GAN (7] 0.58M 0.2407
PointFlow [13] 1.61M 0.3506
SetVAE [6] 0.55M 0.0158
DPM [9] 3.8TM 0.0943
PVD [14] 27.6M 38.35
Ours (Transformer) 20.6M 1.5391
Ours (VQ) 0.91M 0.0981
Ours (Total) 21.5M 1.6372

We report the inference time and model size for different models in Table 2. To
be precise, each model’s inference time and model size is measured as the time
and number of parameters needed for generating a shape instance. All results are
measured with their official implementation on a workstation with Intel Xeon
Gold 6154 CPU (3.00GHz) and a single NVIDIA Tesla V100 (32GB). Note that
PointGrow requires forwarding the model with the same times as the desired
number of points (e.g., 2048). Therefore, PointGrow is slow to compute. PVD
is a diffusion-based approach that involves multi-step refinement from random
noise, therefore, is computationally intensive, too.

4 Ablation on Shape Composition Serialization

To analyze the effect of different shape composition serialization, we train our
transformer model with (1) random order (2) Fibonacci spiral order (3) inverse
Fibonacci spiral order (Spiralx). As shown in Table 3, using Fibonacci spiral
order in either direction is generally better than using a random order.

Table 3: Shape generation results on ShapeNet Chair. T means the higher the better, |
means the lower the better. MMD-CD is multiplied by 10® and MMD-EMD is multiplied
by 102.

MMD (}) COV (%, 1) 1-NNA (%, })
Model CD EMD CD EMD CD EMD
Random 7.44 11.85 43.20 42.14 61.02 65.18
Spiral 7.37 11.75 45.77 46.07 60.12 61.93

Spiralx 7.17 11.61 44.56 44.71 59.36 62.23




Autoregressive 3D Shape Generation via Canonical Mapping 5

5 Qualitative Results of Auto-encoding

In Figure 1, we show more auto-encoding results. Thanks to the context-rich
codebook, our model is able to reconstruct shapes with better local details.
Moreover, the points are more uniformly distributed on the surface.

urs
Fig. 1: Auto-encoding (reconstruction) results. We also shown results from PF (Point-
Flow) [13], ShapeGF [1], and DPM [9] on the left for comparison.
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6 Qualitative Results of Unconditional Generation

In Figure 2, Figure 3, and Figure 4, we show more unconditional generation
results. The results suggest that our model can generate diverse shape in high
fidelity.
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Fig.2: Shape generation results on ShapeNet Airplane. We shown results from
PF (PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].
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Fig. 3: Shape generation results on ShapeNet Chair. We shown results from PF
(PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].
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Fig. 4: Shape generation results on ShapeNet Car. We shown results from PF
(PointFlow) [13], ShapeGF [1], SetVAE [6], DPM [9], and PVD [14].
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7 Qualitative Results of Conditional Generation

In Figure 5, we show 4 more samples of the conditional generation results. Our
shape completion results tend to show more variation and have better visual
quality comparing to MSC [12] and PVD [14].
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Input/GT MSC PVD Ours Input/GT MSC PVD Ours
Fig. 5: Multi-modal shape completion results. The input depth-map, partial point
cloud, and reference ground-truth shape for each sample is shown in the first column,
respectively (from top to bottom).

8 Visualization of Latent Space

To further show that the proposed model can learn codebooks as a library of
local shapes, we visualize the learned VQ codes in different groups in Figure 6,
where each codebook clearly captures one meaningful part of the chair category.
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Fig. 6: Vlsuhzatlon of codebooks. Each of the 7 x 7 grid corresponds to a learned group
codebook and each shape in the inner square represents a decoded code.
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9 Generalizing to Different Object Categories.

To show that our model is capable of generalizing to different object categories,
we report the auto-encoding performance of our model on the full ShapeNet
collections, which consist of shapes from 55 categories. We use the same model
configuration and training hyper-parameters as mentioned in the paper. As shown
in Table 4, our method achieves lower EMD and comparable CD scores. We
demonstrate reconstructions of other categories (e.g., guitar, table, bathtub, lamp,
mug, skateboard) by our model in the figure below.

Table 4: Shape auto-encoding on the full ShapeNet dataset. CD is multiplied by 10*
and EMD is multiplied by 10%.

AtlasNet
Metric Sphere Patches

CD 5301 5.121 7.551 5.154 5.164 3.031
EMD 5553 5.493 5176 4.603 3.799 3.103

PF  ShapeGF Ours Oracle

e

10 Limitations

Our model relies on the learned correspondence from the canonical mapping
function, therefore, inherits similar limitations from Cheng et al. [3]. Our model
fails to reconstruct certain samples with holes or with complex topology. We
show some failure cases of our model in Figure 7.

Input Ours
Fig. 7: Failure cases.
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