
PointTree: Transformation-Robust Point Cloud
Encoder with Relaxed K-D Trees

Supplementary Material

Jun-Kun Chen and Yu-Xiong Wang

University of Illinois at Urbana-Champaign
{junkun3, yxw}@illinois.edu

This document contains additional descriptions (e.g., formal or detailed def-
inition, theoretical proofs, implementation details, etc.) and extra experiments
(e.g., segmentation task under projective transformation, overtime accuracy, sta-
bility test, etc.). The content of this document is as below:

=Σ2=Σ
A Formal Definitions of K-D Trees . 1
B Transformation Sampling and Dataset Generation 2
C Robustness Against Similarity Transformations . 3
D Robustness Against Affine Transformation . 5
E Details About Segmentation Component . 6
F Part Segmentation on Projective Transformed Dataset 7
G Architectures of PointTree Variants . 7
H Additional Implementation Details . 7
I Iterative Pre-alignment . 9
J Overtime Accuracy of Classification Task . 10
K Stability Test of PointTree . 10
L Details About S3DIS . 10

A Formal Definitions of K-D Trees

This section extends Section 3.1 Point Cloud Encoder Based on Relaxed
K-D Trees in the main paper with formal and detailed definitions of K-D trees.

Formally, we define a K-D tree built on n = 2d 3D input points P as a
full binary tree with d + 1 layers L0, · · · , Ld in a top-down order. There are a
total of 2i nodes in Li. A leaf node o ∈ Ld is corresponding to a unique input
p(o) = pi. A non-leaf node o ∈ Li where 0 ≤ i < d has two exchangeable
children nodes ol, or ∈ Li+1, and both of them have a unique parent node
par(ol) = par(or) = o. The structure of a K-D tree can be described with a triple
T = ({Li}, {(o, {ol, or})}, p(·)).

For each node o, we define its sub-tree sub(o) as the set containing itself
and all nodes in sub(ol)∪ sub(or) if o is non-leaf. By induction, we know that if
o ∈ Li, then |sub(o)| = 2d−i.

We define the linear criterion Do(p) = 1Wo·p+bop>0 for node o, where Wo

is a 1 × 3 matrix and bo is a scalar. The criterion Do acts as the criterion
in a decision tree’s node, and holds ∀o′ ∈ Ld ∪ sub(ol), Do(p(o

′)) = 0, and

2 J.-K. Chen, Y.-X. Wang

Algorithm A Build a K-D tree

1: function Build(Point cloud P)
2: if |P | = 1 then
3: return make-leaf(P)
4: end if
5: o← new-node()
6: Wo ← choose-division-plane()
7: bo ← medium of {Wo · p | p ∈ P}
8: ol ← Build({p |Wo · p < b0, p ∈ P})
9: or ← Build({p |Wo · p ≥ b0, p ∈ P})
10: return K-D tree rooted at o
11: end function

∀o′ ∈ Ld ∪ sub(or), Do(p(o
′)) = 1. We call the plane {Wop + bo = 0 | p} the

division plane between the left and right children. In the original definition
of K-D trees, we limit the division plane to be parallel to an axis plane, or
Wo ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.

A node o is corresponding to a continuous 3D sub-space S(o) being the
intersection of the criterions of all its ancestor nodes. In the original definition
of K-D trees, all S(o)’s are 3D rectangulars. S(o) characterizes the sub-tree of
node o, so that S(o) ∩ P = {p(o′) | o′ ∈ sub(o) ∪ Ld}.

As a K-D tree of 2d points is always a full binary tree, it can be determined
by the mapping or arrangement p(o) from leaf nodes to input points. The ar-
rangement algorithm arrange-points(P ′) → o is a recursive algorithm, which
takes a subset P ′ of input points with |P ′| = 2d

′
, and returns a depth-d′ sub-tree

with root node o, so that sub(o) = P ′. Intuitively, the arrangement algorithm
recursively constructs each node of the K-D tree with given input points.

Our algorithm (Algorithm A) acts as below. For a leaf node, the algorithm im-
mediately returns with a single leaf node o with p(o) = pi s.t. P

′ = {pi}. Other-
wise, the algorithm chooses the normal vectorWo = choose-division-plane(P ′)
of the division plane. Then, it finds proper bias bo to divide P ′ into two equal-size
parts P ′

l and P ′
r, calls arrange-points recursively on each of them, and uses

the returned nodes as o’s children nodes ol and or.
The method choose-division-plane(P ′) is the key of the whole arrangement

algorithm. An implementation of the original K-D tree defines such a method to
choose the best axis as the normal vector, according to some metric. In PointTree,
we use the principle component of P ′ (obtained by a PCA algorithm) as the
normal vector.

B Transformation Sampling and Dataset Generation

This section covers more details about the transformed dataset construction
mentioned in Section 4.1 Transformations in experiments of the main paper.

We use Algorithm B to generate our transformed dataset from an existing
dataset D with transformation distribution T . In this algorithm, each single data

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 3

Algorithm B Construct transformed dataset

1: function TransData(Dataset D, Transformation distribution T , Augment time
a)

2: Dt ← ∅
3: for all P ∈ D do
4: repeat
5: Sample transformation t ∼ T
6: Dt ← Dt ∩ {t(P)}
7: until repeated a times
8: end for
9: return Dt

10: end function

i.e., point cloud in D will be applied with a (augment time) different transfor-
mations in T and included in the transformed dataset.

We define 3 transformation distributions: Taffine, Taffine agg, and Tprojective.
Taffine generates a random affine transformation with torch.nn.Linear(3, 3,

bias=False) in PyTorch, i.e., generating a random 3× 3 affine matrix A where

Ai,j ∼ U
(
− 1√

3
, 1√

3

)
. Taffine agg is the distribution of the affine transformation

with maximum EAD (a metric for measuring transformation intensity, defined
in Section 3.2 Robustness Against Transformations in the main paper)
among 5,000 different samples from Taffine, which represents more aggressive
affine transformations with larger EAD.

Tprojective is defined with a special generating algorithm to guarantee that
there is no numerical issue. The point cloud is unitilized to [−1, 1]3, and then
applied with a random affine transformation sampled from Taffine. Then, we
randomly select 4 points from [−2, 2]3, and use three of them as vanishing points
Vx, Vy, Vz for each axis and the remaining one as the point Op which the original
point O is projected to. Then, we randomly generate scalor arguments a, b, c and
decide d to construct the projective matrix as below

aVx a
bVy b
cVz c
dOp d

 . (1)

For the argument d, we randomly select it in the range that makes sure that no
points will be projected to a point with infinity coordinates.

C Robustness Against Similarity Transformations

In Section 3.2 Robustness Against Transformations in the main paper,
we analyzed the robustness against similarity transformations. We explain more
details and prove the lemma in this section.

4 J.-K. Chen, Y.-X. Wang

A similarity transformation is a transformation that preserves the shape
(degree of all angles) of a point cloud. It includes rotations, flips, scales, and
shifts.

PointTree uses relaxed K-D trees as the base tree, which holds lemma below:

Lemma. If choose-division-plane(P) is equivariant to a similarity trans-
formation σ, or

choose-division-plane(σ(P)) = σ(choose-division-plane(P)), (2)

then the whole arrangement algorithm arrange-points(P) is equivariant to such
similarity transformation. Also, each leaf’s corresponding point p(o) is invariant
to similarity transformation σ.

Proof.

The normal vectors of division planes returned by choose-division-plane(P)
is agnostic to shift and global scales, since both transformations doesn’t change
the direction of such planes indicated by normal vectors. As a result, function
choose-division-plane(P) is natively invariant to shift and scaling. Equiva-
lently, we can assume the input point cloud P is already re-centered (shift to
make the center of mass locates at O) and unitilized (scale to make all points
locate in a unit sphere and one point is on the sphere). In this way, we don’t
need to consider the shift and scaling components in σ, and σ can therefore be
regarded as a orthogonal 3× 3 affine matrix.

If the division plane Wo returned by choose-division-plane(P) is equivari-
ant to the transformation σ, the division plane in the same function call in the
K-D tree construction of σ(P) will choose the division plane σ(Wo). For each
point p ∈ P , the criterion for division into P o

l = {p | Wo · p < b0, p ∈ P} or
P o
r = {p | Wo · p ≥ b0, p ∈ P} is the value of Wo · p; and for σ(p) ∈ σ(P), the

criterion is (here we regard p and Wo as column vectors)

σ(Wo) · σ(p) = W⊤
o σ⊤σp = W⊤

o p = Wo · p, (3)

which is the same as that of the construction of the original point cloud P . So,
the divided point sets P o

l and P o
r will be equivariant to transformation σ, i.e., if

p is divided into P o
l in construction of P , then it will also be divided into P o

l in
construction of σ(P), and vice versa for P o

r . They will be passed to the recursive
call of Build(·) at line 8 and 9 in Algorithm A. By induction, each function call
of Build(·) will be exactly the same for P and σ(P), so that the division plane
chosen by each function call will be equivariant to σ, and the structure of the
K-D tree T = ({Li}, {(o, {ol, or})}, p(·)) will be the invariant.

PointTree uses PCA to implement choose-division-plane(P), which is equiv-
ariant under any similarity transformation. As a result, the structure of the
relaxed K-D tree T = ({Li}, {(o, {ol, or})}, p(·)) remains identical after apply-
ing the similarity transformation σ, and the bottom-up flow also works in an
identical way. This makes our model’s working flow invariant to similarity trans-
formations.

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 5

Table A: Our pre-alignment (‘PA’) method achieves a mean EAD that is very close
to zero in affine transformed point clouds, and highly reduces the EAD of projective
transformed point clouds by 50%. For each number in the table, we randomly sample
3, 000 transformations and take the mean of the EAD between pre-aligned original and
pre-aligned transformed point clouds. The point clouds with a label (e.g., ‘Laptop’)
are taken from ModelNet40 train data, and we also provide their index in the training
dataset like #0. For random point clouds, the point sets are uniformly sampled from
[−1, 1]2048×3

Point Cloud Affine Affine Aggressive Projective Projective w/o PA

Laptop (#0) 8× 10−7 5× 10−6 0.3073 0.9641
Wardrobe (#1) 9× 10−7 2× 10−6 0.3377 0.9191
Table (#5) 1× 10−6 3× 10−6 0.2979 0.8996
Airplane (#11) 7× 10−7 8× 10−6 0.3254 0.9806

Random 4× 10−7 2× 10−6 0.6745 1.2173

D Robustness Against Affine Transformation

Our pre-alignment method and the function choose-division-plane() in K-D
tree construction use PCA, which is invariant to similarity transformations, as
discussed in the previous section and in Section 3.2 Robustness Against
Transformations in the main paper. In this section, we discuss more about the
robustness against affine transformations.

There is some work [3,6] that uses PCA to design affine-invariant descriptors
or functions for 2D and 3D point sets. It has been theoretically proved that
some features obtained by PCA (e.g., based on eigenvalues and eigenvectors) are
affine-invariant. Such an observation shows the potential of PCA in extracting
affine-invariant/robust information – we hypothesize that this is the underlying
reason that our pre-alignment and PointTree with PCA-based relaxed K-D tree
construction are robust against affine transformations. We leave a rigid proof as
interesting future work.

We also provide empirical analysis for pre-alignment. We calculate EAD (a
metric for measuring transformation intensity, defined in Section 3.2 Robust-
ness Against Transformations in the main paper) on pre-aligned original
point clouds and pre-aligned affine-transformed point clouds, and the results
are shown in Table A. We can find that the mean EAD is smaller than 10−4

in all affine cases, which means that the shape after pre-alignment is invariant
to affine transformations with high precision. The experiments also show that
our pre-alignment can highly reduce the EAD for projective-transformed point
clouds. These results empirically shows that our pre-alignment is highly invari-
ant to affine transformations and can also work on projective transformations,
and thus it is a simple yet powerful and general approach for pre-processing of
point clouds.

6 J.-K. Chen, Y.-X. Wang

Fig.A: The segmentation model. The two symmetric K-D trees represent two stages:
a bottom-up information flow (left) and a top-down information flow (right), on the
same K-D tree

E Details About Segmentation Component

This section covers more details about the general segmentation component in
Section 3.3 Downstream Components in the main paper.

First, we introduce the top-down information flow, which is opposite to the
bottom-up flow we used in the encoder. Each node has an information self(o) of
itself, and we compute the carried information carry(o) that is downloaded from
its ancestors.

The input of such an information flow is {self(o)} and carry(R) = self(R) for
the root node R. Then, for each node o, its carry(o) is obtained by aggregating
self(o) and its parent’s carried information carry(par(o)), as the formula below:

carry(o) = merge-carry(self(o), carry(par(o))). (4)

The carried information contains all information of its ancestor node. For exam-
ple, if we want to compute the number of ancestors for each node, we can set
self(o) = 1 for all nodes, and

merge-carry(a, b) = a+ b. (5)

After running the top-down information flow, carry(o) will be the number of
ancestors (including itself) for each node o.

For the segmentation task, we maintain both a bottom-up flow and a top-
down flow on the same K-D tree (as shown in Figure A) and define self(o) =
info(o) with a skip connection from the symmetric node in the bottom-up in-
formation flow. As carry(R) = self(R) = info(R) is the vector of global features
of the point cloud, intuitively, in each merge-carry step, we are obtaining a
connection between the local information and the global information. For each
leaf node o, carry(o) can be regarded as a connection between the point p(o) and
the whole point cloud . So we can regard such carry(o) as the point feature of
point p(o). We use an MLP to classify each leaf node’s point feature, and output
the log-likelihood score for each segment class candidate.

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 7

Table B: On projectived transformed, pre-aligned ShapeNetPart [2], PointTree sig-
nificantly outperforms the baselines in class-level mIoU(%), and achieves the state-of-
the-art mean IoU in 75% of all classes
Method airplane bag cap car chair earphone guitar knife lamp laptop motorbike mug pistol rocket skateboard table mIoU

DGCNN [7] 69.8 46.5 92.4 29.3 36.8 92.0 83.7 75.6 65.9 80.6 14.5 45.7 10.4 39.1 29.8 66.8 55.0
CurveNet [9] 22.4 44.8 36.6 5.7 30.7 20.5 22.7 25.2 45.9 27.2 16.9 48.6 23.7 22.7 43.7 45.5 30.2

PointTree Def 67.4 63.0 76.4 49.0 75.2 57.1 84.2 70.7 67.7 59.9 39.9 80.8 60.3 52.5 57.8 72.2 64.6

F Part Segmentation on Projective Transformed Dataset

The segmentation results on projective transformed ShapeNetPart [2] is in Table
B. Our PointTree achieves a top mIoU over all the baselines with an increment
of nearly 10%, and achieves the state-of-the-art mean IoU in 75% of all classes. It
shows that PointTree outperforms other baselines with a larger gap under more
challenging projective transformation.

G Architectures of PointTree Variants

According to Section 4.2 Baselines and PointTree Variants in the main
paper, we have 3 variants of PointTree: Def, KA, and RNS. Their architectures
are shown in Figure B.

For PointTree KA, we design this variant by introducing a stronger align-
ment network based on PointTree Def encoder. As we mentioned in “Alignment
Network” in Section ??, the alignment network supports any encoder that out-
puts a point cloud feature. Different from the default encoder that uses T-Net
in PointNet [5] as the alignment network, we build the alignment network as
another PointTree Def encoder in this version.

For PointTree RNS, we can stack multiple ResNet blocks to get a larger
model. We only use the single ResNet block version in all our experiments.

H Additional Implementation Details

In this section, we include additional implementation details when conducting
experiments in Section 4 Experiments in the main paper.

Hyperparameters. The architectures of the model variants we use are
shown in Figure B. We use 2,048 points in each point cloud, and build a 12-
level tree. In the bottom-up flow, the dimension of node features from bottom to
top is 32, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, and 4096. In the
top-down flow, the carried information’s dimension is 512. The batch size is set
to 32 for all segmentation tasks and for PointTree RNS on classification tasks,
and 64 for all the other experiments.

Implementation. We implement the whole PointTree with PyTorch. The
PCA in pre-alignment and K-D tree construction are implemented with a li-
brary function torch.pca lowrank. For the dimension-increasing MLP at each

8 J.-K. Chen, Y.-X. Wang

(a) PointTree Def

(b) PointTree KA

(c) PointTree RNS

Fig. B: The architectures of 3 PointTree Variants: (a) Def, (b) KA, and (c) RNS.
(a) PointTree Def is the simplest model that uses the T-Net in PointNet [5] as the
alignment network. (b) PointTree KA replaces the T-Net with another PointTree Def,
and uses its output, the point cloud feature, to generate the 3 × 3 alignment affine
matrix. (c) PointTree RNS connects a PointTree Def with a segmentation component,
and uses the segmentation component’s output plus the skip connection from the initial
point feature as the input features for another K-D tree bottom-up flow

layer, we use one torch.nn.Linear. For the MLP classifier for both classifica-
tion and segmentation, we use a 3-layer MLP with ReLU activation and batch
normalization for hidden layers.

Data Augmentation. When training PointTree, we do data augmentation
by applying random axis flipping and axis permutations. And, for pre-aligned ex-
periments, we also augment the data by applying random affine transformations
on the point cloud then pre-align again. According to Figure B, these augmen-
tations are inserted after pre-alignment and only affect the coordinate inputs of
PointTree. They do not affect the construction of K-D trees. The K-D tree for
each point cloud is constructed only on the transformed coordinates (with or
without pre-alignment in different settings).

Training. We run all experiments of PointTree with a PC on NVIDIA RTX
3060 GPU. We train the model with mini-batch training and use Adam as the
optimizer. It took 20 hours for full convergence, but according to “Overtime

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 9

Algorithm C Iterative Pre-alignment

1: function IterativePreAlign(Point cloud P , Maximum Iteration m)
2: while # Iterations < m do
3: U,Σ, V ← PCA(P)
4: if Vectors in {V } are x,y,z-axes then
5: (The axes suggested by PCA converges.)
6: break
7: end if
8: (Align the point cloud with PCA.)
9: P ← U
10: (Apply a designed scaling scheme.)
11: for d ∈ x,y, z do
12: (For each axis, unitilize the coordinates to make the average abs. 1.)
13: f ←Meanp∈P |dp|
14: dp ← dp/f , ∀p ∈ P
15: end for
16: end while
17: return P
18: end function

Accuracy” in Section 4.3 Classification on ModelNet40 in the main paper,
it can achieve a comparable result within 2.5 hours. For ModelNet40 [8], it only
includes train and test splits. We further split the original training dataset into
the new training dataset and the validation dataset. We train PointTree only on
the new train dataset and tune hyperparameters only on the validation dataset.
For ShapeNetPart [2], it already have the splits of training, validation, and test,
so we train PointTree using these splits in the common way.

I Iterative Pre-alignment

There is still some issues in our PCA-based pre-alignment. The solution of PCA
is not unique (e.g., for a sphere-shaped point cloud, any vector is the principal
component). Though our experiments shows that the EAD between differently
affine transformed point cloud is very small, i.e., the they have same shapes,
there may still be a similarity transformation between them. Also, the scaling
factor Σ provided by PCA may be not optimal for our model to obtain best
results.

To obtain better results, we further propose an iterative pre-alignment scheme,
to iterative align the point cloud with PCA and apply a designed scaling factor
until convergence. The algorithm is shown in Algorithm C.

The iterative pre-alignment can stabilize and improve the performance of
PointTree.

10 J.-K. Chen, Y.-X. Wang

Fig. C: PointTree converges very fast during training time and leads the test accuracy
among all baselines. It highly adapts the transformed data so that it can achieve a
reasonable accuracy within 5 minutes, and reaches 95 percent of its best accuracy (%)
in a very limited time of 2.5 hours. (a) The overtime train and test accuracy (%) of
our most powerful model, PointTree RNS. (b) The overtime test accuracy of PointTree
and top baselines

J Overtime Accuracy of Classification Task

Figure C-a shows the train and test accuracy of our most powerful model, Point-
Tree RNS, on pre-aligned ModelNet40 with affine transformation. Even with
very limited time of 2.5 hours, our model can still achieve 95 percent of its best
accuracy (80.4% out of 84.1%), which already outperforms many baseline mod-
els. PointTree can even achieve a reasonable accuracy of 24.2% within 1 minute.
These facts show that PointTree is highly adaptive on transformed data. Figure
C-b shows overtime test accuracy of PointTree and top baselines. Among these
models, PointTree is always leading the test accuracy, and has a gap that is more
than 5% higher than all these baselines at most of the time.

K Stability Test of PointTree

Table C shows the stability test results. In this experiment, we sample multiple
transformations for each point cloud in test data, and compute the standard
variance to show the stability of our model on different transformations. Also,
we add a special test: “affine (aggressive)”, for which we sample affine trans-
formation from another distribution that is expected to have higher EAD. The
experiment results show that (1) PointTree is stable among different transfor-
mations with low standard variance and (2) PointTree’s accuracy is higher than
the baseline PointMLP [4] with statistical significance.

L Details About S3DIS

We evaluate PointTree for the point cloud semantic segmentation on S3DIS [1]. It
contains 6 areas with 271 rooms. There is a point cloud for each room, containing

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 11

Table C: PointTree has stable performance with a low standard variance over dif-
ferent random transformations on each transformed ModelNet40. Its accuracy on all
experiments is higher than the baseline PointMLP [4] with statistical significance. The
second column is the mean EAD over all point clouds in the dataset (a more difficult
task has a higher EAD). The accuracy is also instance-level accuracy (%), and the
standard variance σ(%) are computed over ModelNet40’s testing data with different
random transformations

Transformation Mean EAD PointMLP [4] PointTree RNS

Affine w/ PA 10−4 82.3 84.1σ=0.23

Affine w/o PA 0.387 63.1 73.1σ=0.22

Affine (Aggressive) w/o PA 0.785 37.5 63.7σ=0.38

Projective w/ PA 0.307 49.9 62.1σ=0.67

Projective w/o PA 0.960 4.1 31.8σ=0.76

all objects’ surfaces in the room within 13 object categories, e.g., ceiling, floor,
window, etc. In our evaluation, we use the PointNet [5] version of S3DIS, which
“sample(s) rooms into blocks with area 1m by 1m”, and “randomly sample(s)
4,096 points in each block”. We use the processed data released on PointNet’s
Github repository for training and evaluation, to make it a fair comparison over
all baselines.

References

1. Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D-3D-semantic data for indoor
scene understanding. arXiv abs/1702.01105 (2017) 10

2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An information-
rich 3D model repository. arXiv abs/1512.03012 (2015) 7, 9

3. El Oirrak, A.: Affine invariant descriptors using principal components analysis. Pat-
tern Recognition and Image Analysis 18(1) (2008) 5

4. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. arXiv abs/2202.07123
(2022) 10, 11

5. Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: Deep learning on point sets
for 3D classification and segmentation. In: CVPR (2017) 7, 8, 11

6. Tzimiropoulos, G., Mitianoudis, N., Stathaki, T.: An affine invariant function using
pca bases with an application to within-class object recognition. In: ICASSP. vol. 1
(2007) 5

7. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Transactions on Graphics 38(5)
(2019) 7

8. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D shapenets for 2.5D object
recognition and next-best-view prediction. arXiv abs/1406.5670 (2014) 9

9. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves
for point clouds shape analysis. In: ICCV (2021) 7

