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1 Network Architecture

Our method uses multiple neural implicit functions to model a shape. All the
networks share the same structure as shown in Fig. 1. The SDF networks are
initialized with geometric initialization [1], and the pose condition networks are
initialized with Kaiming initialization [2]. To relieve the conflict between the
pose condition and geometric initialization [1], we initialize the last layer of each
pose condition network with weights sampled from the distribution N (0, 1e−5).
We use weight normalization [5] on SDF networks for stable training.
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Fig. 1: The architecture of each neural implicit function. Every gray box repre-
sents a linear layer with its output dimension marked on the box. Every linear
layer except the last one is followed by an activation layer (Softplus [7] with
β = 100).
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2 The Union Operation

During shape learning, taking the minimum means that supervising a data point
only updates one network. This makes the model more sensitive to initialization
and extreme body poses because once a body part is captured by a false network,
it is hard for other networks to fight back due to the lack of chances to update.
An alternative way is by using the smooth minimum function

d =

∑N
n=1 d

(n)e−βd(n)∑N
n=1 e

−βd(n)
, (1)

where β controls the steepness of the weighting ratio. However, this function
makes steeper blending for points farther away from the surface. Since we only
care about the difference between min1≤n≤N d(n) and other outputs instead of
their concrete values, we use the following function in practice:

d = min
1≤n≤N

d(n) +

∑N
n=1 ∆d(n)e−β∆d(n)∑N

n=1 e
−β∆d(n)

, (2)

where ∆d(n) = d(n) −min1≤n≤N d(n), and β = 200.

3 Minimal Perimeter Loss

Our inspiration comes from PHASE [3], a method that bridges the signed dis-
tance field and the occupancy field with a logarithm transformation. To encour-
age learning a tight surface, PHASE [3] applies a punishment on the norm of
the gradient of the occupancy field while maintaining the unit-gradient-norm
property in the SDF field. This works because the norm of the gradient for
occupancy achieves the highest at the zero level and minimizing the norm of
gradient is equivalent to suppressing all the surfaces.

Since an SDF has a constant norm of gradient, we apply the sigmoid function
(σ(x) = 1

1+e−βx ) on it to construct a peak of norm of gradient at the zero level.
Then we can suppress surfaces by minimizing the norm of the gradient in the
constructed field while maintaining the unit-gradient-norm property in the SDF
field.

Our experiments also validate that this minimal perimeter loss is essential
to suppress periodic extra surfaces when Fourier features [6] are used. However,
since Fourier features can hurt the initialization of our method, we do not use it
unless specified.

4 Blending weights from “Competing Bones”.

4.1 Derivation

In the main text, we have defined the tendency of a point to stay static on
a part as rigidness. Now we present the derivation of the concrete definition.
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(a) Rigidness defined by the
projection of a point on
bones with a large angle.
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(b) Rigidness defined by the
projection of a point on
bones with a small angle.
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(c) Rigidness defined by the
projection of a point on the
connecting line.

Fig. 2: 2D toy examples to illustrate rigidness computation.

Based on the common sense and the visualization of LBS weights of SMPL [4],
we adopt a prior that the farther a point is away from the joint the more rigid
it is. Therefore, we define a rigidness field by the projection of a point on the
bone. For the example in Fig. 2a, the rigidness of bone b1 and b2 with respect
to joint O are defined as

r1 = exp(

−−→
OC ·

−→
OA

∥
−→
OA∥2

), r2 = exp(

−−→
OD ·

−−→
OB

∥
−−→
OB∥2

), (3)

For the point X in Fig. 2a, when it moves closer to the farther end of bone
b1 than b2, its rigidness on bone b1 increases while its rigidness on bone b2
decreases. However, when the angle between two linked bones is less than 90
degree (Fig. 2b), moving along a bone leads to increase of both bones, which
is incorrect. Therefore, we correct the rigidness definition as shown in Fig. 2c.
In the corrected version, we connect the end points of both bones and split it
with point Q by the ratio of bone lengths. Then we can compute the rigidness
of point X with respect to either bone by

r1 = exp(α1

−−→
QP ·

−→
QA

∥
−→
QA∥2

+ β1), r2 = exp(α2

−−→
QP ·

−−→
QB

∥
−−→
QB∥2

+ β2), (4)

where P is the projection point of X onto the connecting line; α1, α2, β1, and
β2 are learnable parameters to adjust the rigidness of each bone. The corrected
definition of rigidness works well regardless of the angle between the bones.
Interestingly, when the angle between bones is 180 degree, the corrected version
is equivalent to the first one.

4.2 Rigidness Coefficients Learning

Since the rigidness coefficients, the scaling factor α and the bias factor β, are
defined for every pair of adjacent parts, we store them in matrices. Empirically,
we init the matrices for α to 2 and the matrices for β to 0. After the models
have converged, we plot the rigidness coefficient matrices in Fig. 3. We observe
that the matrices for the scaling factor α are symmetric, while the matrices for
the bias factor β are skew-symmetric. Note that only partial elements deviate
from the initialization values because the connections between parts are sparse.
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Fig. 3: The learned rigidness coefficient matrices. The first row corresponds to
the scaling factor α, and the second row contains the bias factor β.

5 Illustration of Adjacent Part Seaming

To illustrate the effect of adjacent part seaming (APS), we present a zoom-in
example in Fig. 4. When bone b1 and bone b2 undergo a relative rotation, the
part on bone b1 deforms so that its section across the joint can still align with
the section of bone b2. Furthermore, we compare the results under novel poses
with and without APS in Fig. 5. Disabling APS leaves the model almost rigid,
resulting in artifacts like cracks at elbows and knees.

𝑏𝑏1

𝑏𝑏2

Fig. 4: Non-rigid deformation produced by adjacent part seaming. When the
bones b1 and b2 undergo a relative rotation, our adjacent part seaming algorithm
guarantees the alignment of their sections. We disconnect adjacent parts to better
visualize the sections and to confirm that parts are not overlapped.
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Fig. 5: Results of our method under novel poses with (green boxes) and without
(red boxes) adjacent part seaming.
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