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Abstract. We propose united implicit functions (UNIF), a part-based
method for clothed human reconstruction and animation with raw scans
and skeletons as the input. Previous part-based methods for human re-
construction rely on ground-truth part labels from SMPL and thus are
limited to minimal-clothed humans. In contrast, our method learns to
separate parts from body motions instead of part supervision, thus can be
extended to clothed humans and other articulated objects. Our Partition-
from-Motion is achieved by a bone-centered initialization, a bone limit
loss, and a section normal loss that ensure stable part division even when
the training poses are limited. We also present a minimal perimeter loss
for SDF to suppress extra surfaces and part overlapping. Another core
of our method is an adjacent part seaming algorithm that produces non-
rigid deformations to maintain the connection between parts which sig-
nificantly relieves the part-based artifacts. Under this algorithm, we fur-
ther propose “Competing Parts”, a method that defines blending weights
by the relative position of a point to bones instead of the absolute po-
sition, avoiding the generalization problem of neural implicit functions
with inverse LBS (linear blend skinning). We demonstrate the effective-
ness of our method by clothed human body reconstruction and anima-
tion on the CAPE and the ClothSeq datasets. Our code is available at
https://github.com/ShenhanQian/UNIF.git.

Keywords: clothed human reconstruction, neural implicit functions,
shape representation, non-rigid deformation.

1 Introduction

As residents of the 21st century, we are embracing a new life in the virtual world,
digitizing everything around us. Recent research interest in human body recon-
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Fig. 1: The evolution of the learned parts of our model.

struction and animation increases dramatically. A popular human body model
is SMPL [16], which models minimal-clothed human bodies across genders and
figures. Later methods extend SMPL [16] to the clothed human body by overly-
ing vertex offsets [18, 14] or attaching template clothing meshes [25]. However,
for complex clothes, the fixed topology of SMPL [16] mesh and the predefined
template clothing limit the expressiveness. Recently, the rise of neural implicit
representations [5, 19, 24] indicates a higher modeling fidelity and flexibility.
These models take in a point position and output an indicator of the geometry
such as occupancy and SDF (signed distance function), theoretically support-
ing an infinitely high resolution. The infinity of resolution is perfect for fidelity
but a disaster for skinning since we can no longer store the LBS (linear blend
skinning) weights for every point. Although recent methods use another neu-
ral implicit function to learn the weights [30, 20, 27, 31], they generalize poorly
under unseen poses because the LBS weights of a point vary along with the pose.

Besides learning a whole shape and deforming it with LBS, we can also model
an object with separate parts. NASA [6] models the human body with several
occupancy networks, each of which is bound to a joint. Therefore, when the
skeleton moves, the learned shape is articulated. However, a key limitation of
NASA [6] and later part-based methods [1, 15] is that they rely on SMPL’s
LBS weights for part division, therefore still limited to minimal-clothed human
reconstruction. Another shortage of previous part-based methods is that they
model the non-rigid deformation crudely by simply feeding the positions of posed
joints or similar pose descriptors into the networks. This results in an overfitted
model that produces artifacts under novel poses especially when the training
poses are limited.

To push the boundary of part-based methods, we propose UNIF (united neu-
ral implicit functions), a method that learns the shape of an object with multiple
neural implicit functions. Our method features two novelties: 1) UNIF learns to
decouple parts from a whole shape with no need for ground-truth partition labels;
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2) UNIF models non-rigid deformations by considering the interaction between
parts.

To illustrate the basic idea of automatic part division, let us consider an arm
moving relative to the body. For a part-based method, we expect the arm and
the body to be modeled by two separate networks. In case they are captured
by one network, they will always move as a rigid one, then the model will not
be able to reconstruct the same shape when the arm moves. Therefore, when
minimizing the surface reconstruction loss with changing poses, we are pushing
the networks to converge into separate rigid parts. We call this process Partition-
from-Motion. However, when the training poses are limited, e.g., the subject in
the raw scans never moves the arms, then there will be no driving force to
decouple the arm from the body. This is not a big issue for reconstruction but
unacceptable for novel-pose animation since the arms can never move. To ensure
a good body partition when the training poses are limited, we propose a bone
limit loss and a section normal loss that constrain the boundary and the normal
of each part by its neighboring joints. These terms significantly enhance the
stability of our Partition-from-Motion. Furthermore, motivated by PHASE [12],
we derive a minimal perimeter loss on SDF to suppress extra parts and hidden
surfaces, which also contributes to a high-quality reconstruction.

Partition-from-Motion helps us separate rigid parts, but this is insufficient
because non-rigid deformations are not negligible for human bodies and clothes.
We propose an APS (adjacent part seaming) algorithm that deforms points to
maintain the connection between parts. APS greatly relieves artifacts such as
cracks and exposure of hidden surfaces. Alike other non-rigid deformation algo-
rithms, APS also needs to define the blending weights of a point. Differently, we
define blending weights not by the absolute position but by the relative position
of a point to each bone and the competition between bones. Such a local defi-
nition of blending weights avoids overfitting of absolute positions, generalizing
better to unseen poses.

Overall, our contributions can be summarized as:

– We propose united neural implicit functions (UNIF) for clothed human re-
construction and animation from raw scan sequences.

– We decouple rigid parts without partition labels and enhance the robustness
with carefully designed initialization and regularization strategies.

– We design an adjacent part seaming (APS) algorithm for non-rigid deforma-
tion based on a localized definition of blending weights (Competing Parts).

– We show the effectiveness of our method by clothed human reconstruction
and animation on the CAPE [18] and the ClothSeq [31] dataset.

2 Related Work

Our method adopts compound neural implicit functions for human body recon-
struction and animation with special attention to part division and non-rigid
deformation.
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2.1 Neural Implicit Functions

Compared to classic geometry representations such as meshes, point clouds, and
voxels that are stored as discrete elements, neural implicit functions [19, 24, 5,
2, 9, 21] are stored with neural networks. They take in the coordinate of a point
and output an indicator of geometry, appearance, or other properties. Early
methods need dense supervision of occupancy or SDF [19, 24, 5]. Later works
make it possible to learn smooth surfaces with sparse supervision [2, 9, 12].
SAL [2] proposes a geometric initialization to realize signed distance learning
with unsigned ground-truth data. Benefitting from the Eikonal loss to maintain
a valid SDF field, IGR [9] only takes raw scans or triangle soups as the input.
Lipman et al. [12] unifies SDF and occupancy and proposes a minimal perimeter
loss to encourage tight surfaces. Our method follows this line of methods for
its lower requirement for the data. It is also possible to model a scene or an
object from 2D images without explicitly decoupling the geometry, appearance,
and lighting condition [21, 34, 22, 33, 32]. For the usage of compound implicit
functions, existing trials mainly lie in template-based shape learning [8, 7].

2.2 Human Body Reconstruction and Animation

As the most popular mesh-based human body model, SMPL [16] and its varia-
tions [11, 29, 26] dominate the area of human body reconstruction for its expres-
siveness and flexibility, supporting innumerable downstream task [14, 25, 2, 9,
28, 27, 13]. Since the new trend of neural implicit functions for shape learning,
several papers [6, 20, 1, 15, 4] have attempted to substitute SMPL with an im-
plicit counterpart for higher fidelity and flexibility. Besides the minimal-clothed
human body, later works also use neural implicit functions to model clothed
humans [30, 31, 23, 28, 27].

For body animation, there exist two types of pose representation - latent
vector and skeleton. SAL [2], IGR [9], and NPMs [23] model body poses with a
latent space, which is especially useful when no skeleton is available. But they
only support interpolation between poses instead of direct animation. As to pose
interpolation in the latent space, Atzmon et al. [3] regularize the deformation
field concerning the latent vector to maintain the as-rigid-as-possible property.

Among the skeleton-based methods, the mainstream practice is to learn a
canonical shape and animate it with LBS (linear blend skinning). However, since
a neural implicit function lacks point-wise correspondences, a forward and a
backward skinning network are introduced [30, 20, 27, 31] to save LBS weights
for the bidirectional mapping between a posed shape and the canonical shape.
The main limitation here is the poor generalization ability of inverse LBS since
the LBS weights vary when the pose changes. SCANimate [30] and LEAP [20]
use the cycle consistency to regularize the learned neural skinning weights. In
contrast, SNARF [4] only learns the stable forward skinning weights and solves
backward skinning by iteratively minimizing the cycle consistency error.

Aside from LBS-based methods, another series of methods model the human
body with separate parts. NASA [6] merges the output of a group of occupancy
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Fig. 2: The pipeline of our method. Given a point x, we first transform it into
the local space of each bone and then apply our adjacent part seaming algorithm
to obtain its position x̄(n) in the canonical space of the n-th bone. Each neural
implicit function takes the position x̄(n) and a pose condition vector z(n) to
predict the SDF value of a part d(n). The final output of our method is the
union of all output.

networks, each anchored on a joint of the body. Both LatentHuman [15] and
imGHUM [1] train combinational signed distance functions on muti-subject data.
LatentHuman [15] pays special attention to relieve part based artifacts, while
imGHUM [1] provides additional controllability on hands and expressions. A
common feature of the above part-based methods is that they all rely on the
LBS weights of SMPL to partite the body. In contrast, we learn part division
from body motion. As to the non-rigid deformation, previous part-based methods
[6, 15] simply feed skeleton states as an input of networks, leading to limited pose
generalization ability.

3 United Neural Implicit Functions

The input of our method is a sequence of point clouds, which captures the shapes
of a person in varying poses. For each frame, we fit the body skeleton (e.g., the
skeleton of SMPL [16]) represented by the orientations and translations of body
joints. Then, we set up local coordinate systems based on the skeleton and learn
a neural implicit function in each local space.

We illustrate the pipeline of our method in Fig. 2. For a point x in the
global space, we first transform it to the local space of each bone and get x(n).
Then we deform the point by an offset ∆x(n) with an adjacent part seaming
(APS) algorithm and get its position x̄(n) in the canonical space of the n-th
bone. Finally, we feed the position x̄(n) and a pose condition vector z(n) to each
neural implicit function and take the union of their output.



6 S. Qian et al.

3.1 Shape Representation and Learning

Our united neural implicit functions are based on IGR [9], which adopts a single
neural network to model the surface of an object. Given a point cloud X =
{xi}i∈I ⊂ R3 and corresponding surface normals N = {ni}i∈I ⊂ R3, IGR [9]
optimizes the parameters θ of an MLP fθ(x) to approximate the signed distance
function of the surface behind the point cloud X with the loss

L = Lrecon + λunitLunit, (1)

where

Lrecon =
1

|I|
∑
i∈I

(|fθ (xi)|+ λnormal ∥∇xfθ (xi)− ni∥2) , (2)

Lunit = Ex (∥∇xfθ(x)∥2 − 1)
2
. (3)

Lrecon supervises the zero-level set of f to go across X with the given normals
N . Lunit encourages the gradient of f to be unit-norm, which is necessary for a
signed distance function.

For our UNIF model, we use N (N = 20) separate MLPs (fθ1 , . . . , fθN ), each
learns the SDF of a body part. Given a point x from the input point cloud X ,
the output of UNIF is

d = ∪1≤n≤Nd(n), with d(n) = fθn

(
x(n)

)
. (4)

∪ is an union operation on the output of all networks. Geometrically, the union
of multiple signed distance functions is the minimum of all:

d = min
1≤n≤N

d(n). (5)

To ease learning and enhance robustness, we use an improved union operation,
which is presented in the supplementary material. x(n) is the local point position
for the n-th part with

x(n) = RT
n (x− tn), (6)

whereRn and tn are the global orientation and translation of the n-th coordinate
system.

Finally, the supervision on our UNIF model becomes

L = Lrecon + λunitLunit, (7)

where

Lrecon =
1

|I|
∑
i∈I

(|d|+ λnormal ∥∇xd− ni∥2) (λnormal = 0.01) , (8)

Lunit = Ex (∥∇xd∥2 − 1)
2
+

1

N

N∑
n=1

Ex

(∥∥∥∇xd
(n)

∥∥∥
2
− 1

)2

. (9)

The unit-gradient-norm loss Lunit has two terms. The first term is applied on
the SDF after the union operation (d), and the second term is applied on the
output of each part (d(n)). Both are necessary according to our experiments.
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(b) section normal computation(a) bone-centered initialization
(a) Bone-centered initialization. Each
neural implicit function is initialized
to a small sphere at the center of a
bone.

(b) section normal computation(a) bone-centered initialization
(b) Bone limit loss and section normal loss.
The boundary (in red) and section normals
(in blue) of a part are constrained by its
neighboring joints.

Fig. 3: Improving Partition-from-Motion with skeleton-based priors.

3.2 Partition-from-Motion

Unlike previous methods [6, 1, 15] that use ground-truth partition labels from
SMPL [16], we exploit separating parts automatically while learning the entire
shape. The key to achieving this is using SDF instead of occupancy because
occupancy is constantly zero for locations away from the surface, while SDF
provides distance information so that we can determine which part is closer to
the query point and then optimize that part to go across the point. This reveals
an implicit hypothesis of our method: a point should be assigned to the closest
part to it. However, the SDF of a part is randomly initialized and thus may not
provide correct distance information at the beginning of training. Therefore, we
propose a bone-centered initialization.

Bone-centered initialization. We set up local coordinate systems at the cen-
ter of bones and use the geometric initialization [2] to turn each part into a small
sphere (r = 0.01) at the bone center (Fig. 3a). Then, parts are not intersected,
and the SDF of a part approximately equals the distance to the bone center. This
ensures that most points are assigned to the right part when training begins.

Bone limit loss and section normal loss. With a proper initialization, we
can already separate parts, but the quality and stability of body partition highly
depend on the variance of training poses. For example, when two parts barely
have relative motions in the training set, they are at high risk of overlapping.
This leads to artifacts when the model is animated under novel poses. Therefore,
we propose a bone limit loss

Llim =
1

N ·
∣∣J (n)

∣∣ N∑
n=1

∑
j∈J(n)

∣∣∣d(n)j

∣∣∣ , (10)

and a section normal loss

Lsec =
1

N ·
∣∣J (n)

∣∣ N∑
n=1

∑
j∈J(n)

∥∥∥∇xd
(n)
j − n

(n)
j

∥∥∥
2
, (11)
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where J (n) is the n-th bone’s adjacent joints and
∣∣J (n)

∣∣ is the number of its

adjacent joints; d
(n)
j is the predicted SDF at joint j; n

(n)
j is the section normal

at joint j derived from the angle between adjacent bones. As illustrated by
Fig. 3b, these two terms utilize the positions of joints as a prior to limit the
range of a part along the axis of its bone and the normal of the sections.

Minimal perimeter loss. In experiments, our method often produces arti-
facts like extra surfaces, which are due to the insufficiency of the IGR [9] loss.
Considering Eq. (1), the reconstruction term Lrecon ensures a zero value at the
positions of raw scans and the unit-norm term Lunit regularize the gradient of
the neural field, but neither punish extra surfaces where no scan points lie. In-
spired by PHASE [12], we propose a minimal perimeter loss specifically for SDF:

Lperim = Ex ∥∇xσ(d)∥2 +
1

N

N∑
n=1

Ex

∥∥∥∇xσ(d
(n))

∥∥∥2 , (12)

where σ(x) = 1
1+e−βx (we use β = 10). This minimal perimeter loss Lperim is

applied both globally and locally, similar to Lunit. The global term ensures the
tightness of the overall shape, while the local term suppresses the extra surfaces
hidden behind the overall shape. We leave further discussion of this loss in the
supplementary material.

3.3 Adjacent Part Seaming

Now, we are able to learn separate parts automatically with proper initialization
and regularization. But be aware that the entire model is moving as rigid parts,
obviously insufficient for either human bodies or clothes. To support non-rigid
deformation, previous part-based methods [6, 1, 15] feed a descriptor of joints
into networks. We construct a similar descriptor by first transforming the orien-
tation matrices and translation vectors of all joints into each part’s local space,
then flattening and concatenating them into a pose condition vector

z(n) = ⊕1≤j≤N

(
RT

nRj ⊕RT
n (tj − tn)

)
, (13)

where Rn and tn are the orientation and translation of the n-th bone; Rj and
tj are the orientation and translation of the j-th joint; N is the number of parts
and ⊕ refers to vector concatenation. Then, our neural implicit functions become

d(n) = fθn

(
x(n), z(n)

)
, 1 ≤ n ≤ N. (14)

The above pose descriptor does help the network fit the training sequence but
generalizes poorly to unseen poses. As demonstrated in recent comparisons [4,
31], part-based models always produce broken parts in unseen poses.

Then, can we make non-rigid deformations of part-based models generalizable
to unseen poses? Here is an observation: when two linked parts have a relative
rotation (Fig. 4a), some regions are squeezed while others are stretched. We be-
lieve that explicitly modeling the phenomenon is the key to relieving part-based
artifacts. Therefore, we propose the adjacent part seaming (APS) algorithm.
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Fig. 4: 2D examples to illustrate the process of part seaming.

Adjacent part seaming by local rotations. Considering a point x on the
bone b1 (Fig. 4b), the adjacent bone b2 has rotated for an angle θ from the rest
pose. What we pursue is the original position of x in the rest pose. If the bone
b1 is infinitely rigid, then the point x on b1 would not have moved no matter
the rotation angle of b2. Otherwise, x should have rotated for an angle of wθ,
where 0 < w < 1 (we assume the blending weight w known at the moment and
will discuss it later). Then, we can obtain the original position of x under the
rest pose by

x̄ = RT
wθx, (15)

where Rwθ is the corresponding rotation matrix for wθ. While we use a 2D
example for illustration, the same process can be directly generalized to 3D
cases with axis-angles.

For the skeleton of SMPL [16], a bone can be connected to up to four neigh-
bors. We then consider the case of three connected bones, which also applies to
more connections. As shown in Fig. 4c, when trying to recover a point x on the
bone b0 to its original position, the point x is expected to go through two differ-
ent rotations. Since the axes of the two rotations are not the same, we cannot
simply blend the angles. Instead, we blend the offset vectors:

∆x =
(
RT

w1θ1(x− t1) + t1 − x
)
+

(
RT

w2θ2(x− t2) + t2 − x
)
, (16)

where t1 and t2 are the center points of the two rotations. Then we obtain the
original position of x by

x̄ = x+∆x. (17)

Finally, our neural implicit functions are formulated as

d(n) = fθn

(
x̄(n), z(n)

)
, 1 ≤ n ≤ N, (18)

with

x̄(n) = x(n) +∆x(n) = x(n) +
∑

b∈B(n)

(
RT

wbθb
(x(n) − tb) + tb − x(n)

)
, (19)

where B(n) is the indices of joints connected to the n-th part.
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Taking a step back, you may feel the above APS algorithm is quite like
inverse LBS since it cancels deformations by reversing transformations as well.
But there is a contradiction for inverse LBS: it needs the LBS weights defined
in the canonical space before reverting the deformation; but if we already know
where to take the LBS weights in the canonical space, we do not need this inverse
deformation. To evade this problem, we should avoid saving blending weights by
the absolute position. Therefore, we present “Competing Parts”, a method that
defines the blending weights of a point by its relative position to bones so that
the blending weights can generalize to arbitrary poses.
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𝑃𝑃
𝑏𝑏2

𝑏𝑏1

𝑄𝑄

Fig. 5: A 2D example to
illustrate the definition
of rigidness.

Blending weights from “Competing Parts”.
The basic idea here is that the deformation of a point
on a part is the result of the interaction between this
part and its adjacent parts. We define the tendency of
a point to stay static on the part as the rigidness at
this point. Then, we can construct a rigidness field for
a part with respect to each of its adjacent part. Tak-
ing Fig. 5 as an example, we connect the end points
of both bones and split the connecting line with point
Q by the ratio of bone lengths, then the rigidness of
bone b1 and bone b2 at the point X are defined as

r1 = exp(α1

−−→
QP ·

−→
QA

∥
−→
QA∥2

+ β1), r2 = exp(α2

−−→
QP ·

−−→
QB

∥
−−→
QB∥2

+ β2), (20)

where P is the projection of X onto the connecting line; α1 and β1 are learnable
parameters to adjust the rigidness of bone b1; α2 and β2 adjust the rigidness of
bone b2. When the point X moves closer to bone b1, its rigidness about bone b1
increases while its rigidness about bone b2 decreases.

Based on the defined rigidness, we define the blending weights of a point with
respect to bone b1 and b2 as

w1 =
r1

r1 + r2
, w2 =

r2
r1 + r2

. (21)

Given Eq. (21), w1 + w2 = 1, which is crucial for perfect part seaming. As an
explanation, when two parts undergo a relative rotation for angle θ, their sections
will have an angle gap of θ. To maintain the connection, the sum of relative
rotations w1θ + w2θ must equals to θ. Therefore, w1 + w2 = 1 is required.

3.4 Optimization

The complete supervision of our UNIF model is

L = Lrecon + λunitLunit + λlimLlim + λsecLsec + λperimLperim, (22)

where λunit = 0.1, λlim = 1.0, λsec = 0.01, λperim = 0.001.
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We follow the same network architecture of IGR [9] except that we lower
the largest width of each MLP from 256 to 64 for a comparable number of
parameters. For each frame of the raw scan sequence, we sample 5k points as
surface points for the reconstruction term Lrecon; we also sample 5k points near
the surface points with local disturbances (σlocal ∼ N (0, 0.1)) and another 5k
points in the enlarged bounding box (σglobal = 1.5) of the point cloud for the
regularization terms Lunit and Lperim. We use an NVIDIA A40 GPU for each
experiment with 4 scans in a batch. We train our model on each subject for 5k
epochs using the Adam optimizer [10] with a learning rate of 1e-3 and scale it
down with a coefficient of 0.3 three times every 1k epochs. To extract surfaces
from our learned neural implicit functions, we use the Marching Cubes algorithm
[17] with the help of MISE [19] under a resolution of 256.

4 Experiments

4.1 Settings

Datasets. We test our method on two datasets with raw scan sequences of
clothed humans. The CAPE [18] dataset contains 15 subjects registered by
SMPL [16] with additional vertex offsets to model the clothes. Only four of
the subjects have their raw scans released. Each of the four subjects has 4 to
6 sequences with 2 clothing types. We learn a model for each clothing type of
a subject with one sequence left out for the extrapolation test. The length of
each sequence ranges from about 200 to 550. For the training sequences, we use
the first frame of every 10 frames for training and the fifth frame of every 10
frames for the interpolation test. The ClothSeq [31] dataset contains three sub-
jects wearing loose clothes, therefore is more challenging. Each subject has one
sequence, the length of which ranges from about 500 to 750. We use the first
80 percent frames with a stride of 10 for training, the last 20 percent frames
for extrapolation test also with a stride of 10. For the interpolation test, we use
frames from the first 80 percent with an offset of 5.

Baselines. NASA [6] is a typical part-based method that learns a group of
occupancy networks anchored on joints. SCANimate [30] learns a forward and
a backward skinning network with cycle consistency. SNARF [4] conducts back-
ward skinning with iterative root finding to improve generalizing to novel poses.

Metrics. For quantitative evaluation, we sample 100k points from each raw
scan and our extracted surface, respectively. We report four metrics during our
experiments including the point-to-surface distance (p2s), the recall rate, the
Chamfer distance (CD), and the F-score. The point-to-surface distance is com-
puted by the mean distance from a point in the raw scan to its closet point on
our extracted surface. The recall rate counts the ratio of points with a point-
to-surface distance lower than a threshold (1 mm). The Chamfer distance is the
mean of the point-to-surface and the surface-to-point distance, and the F-score
is the harmonic mean of recall and precision.
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Table 1: Comparison with baselines on the CAPE [18] dataset. In the upper half
rows are the results of the extrapolation test, which shows the generalization
ability of a model, and the lower half are from the interpolation test, which
shows the expressiveness of a model.

seq.
SCANimate SNARF NASA Ours

CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑

E

0032-SL 10.19 66.16 10.19 67.31 10.71 65.40 10.68 66.96 98.23 15.78 103.35 15.16 8.06 75.09 7.87 75.93
0032-SS 9.89 65.56 9.45 66.54 15.49 49.58 15.55 48.58 131.79 9.01 74.52 11.81 8.37 72.55 8.18 72.86
0096-SL 14.53 56.97 16.89 57.25 12.19 63.70 14.35 63.93 92.74 10.69 93.72 10.53 10.40 64.36 10.04 65.54
0096-SS 11.25 64.89 11.51 65.50 23.57 72.47 24.68 73.42 101.51 14.37 86.82 14.77 8.74 71.57 8.50 72.87
0159-SL 7.93 75.24 7.49 76.96 29.34 68.65 33.26 67.22 118.10 8.08 153.04 7.47 6.64 82.42 6.28 83.05
0159-SS 6.52 84.34 6.15 85.71 20.76 78.39 26.82 77.42 85.46 11.73 81.09 12.37 5.91 86.20 5.66 87.61
3223-SL 8.12 77.95 8.60 78.28 25.29 68.29 30.17 67.20 66.91 21.31 73.49 20.06 6.24 86.77 5.47 88.99
3223-SS 9.45 75.08 10.93 74.24 13.90 83.83 16.32 84.41 70.15 22.78 67.47 23.04 5.61 87.88 5.31 89.61

I

0032-SL 6.86 85.81 6.80 88.76 4.93 95.51 5.06 97.93 10.00 74.16 10.01 75.38 4.14 95.46 3.72 97.60
0032-SS 5.70 90.45 5.23 93.39 4.07 96.79 3.99 98.23 10.28 68.45 10.38 69.26 4.17 95.30 3.83 97.01
0096-SL 8.48 89.50 10.69 91.94 6.48 96.93 8.92 98.07 15.47 61.22 18.34 62.08 4.69 96.05 4.47 98.33
0096-SS 7.08 82.76 6.47 85.05 4.05 96.41 3.84 97.84 12.73 67.40 11.29 69.12 3.74 97.08 3.42 98.94
0159-SL 5.18 91.79 4.35 96.01 3.77 96.35 3.18 99.27 11.82 66.37 11.39 69.81 3.39 96.80 2.72 99.91
0159-SS 4.77 93.75 4.20 96.71 3.42 97.74 3.18 99.19 12.28 65.86 12.04 67.05 2.94 98.00 2.69 99.81
3223-SL 5.31 93.40 5.26 96.81 5.06 95.70 5.86 95.84 8.17 84.47 7.92 85.61 3.89 96.55 3.07 99.58
3223-SS 4.89 94.09 4.74 97.15 3.76 97.68 3.88 99.24 7.80 86.61 6.95 87.93 3.09 97.81 2.84 99.68

Table 2: Comparison with baselines on the ClothSeq [31] dataset. In the upper
half rows are the results of the extrapolation test, and the lower half are from
the interpolation test.

seq.
SCANimate SNARF NASA Ours

CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑ CD↓ F1↑ p2s↓ Rec.↑

E
JP 14.33 56.25 14.29 58.02 17.72 58.49 21.58 59.16 69.76 16.88 68.24 16.59 13.04 58.60 11.24 62.06
JS 11.05 61.26 10.85 62.58 13.40 57.48 13.91 57.72 116.14 8.51 97.25 9.61 11.84 65.94 9.00 70.03
SP 14.32 54.06 14.19 54.80 15.06 60.22 16.47 60.19 65.73 19.93 39.26 21.29 12.10 65.90 9.81 69.46

I
JP 10.05 71.78 7.38 79.40 8.43 80.82 8.67 83.92 22.37 44.95 21.97 45.42 7.87 84.66 5.47 90.01
JS 8.84 74.84 7.77 78.33 8.81 80.20 7.86 81.80 33.66 31.61 34.35 31.34 8.89 81.48 5.96 86.72
SP 13.20 57.74 12.52 59.28 11.21 73.04 11.08 74.40 48.69 38.02 33.54 40.06 10.18 75.49 7.42 80.31

4.2 Comparisons

We show quantitative results in Table 1 and Table 2 and qualitative results in
Fig. 6. Our method shows clear superiority over NASA [6] (also a part-based
method) and outperforms SCANimate [30] and SNARF [4] in most cases.

The extrapolation test is extremely challenging, especially on CAPE [18]
because the test poses differ a lot from the limited training poses. Therefore,
NASA [6] completely collapses; SCANimate [30] and SNARF [4] produce distor-
tions due to bad neural skinning weights. Our method shows higher robustness
under novel poses, benefiting from the proper part division and the generalizable
non-rigid deformation modeling.

In the interpolation test, NASA [6] exhibits reasonable results on CAPE [18]
but has difficulty in partitioning and reconstructing the subjects in ClothSeq
[31]. Our method produces visually comparable results with SCANimate [30]
and SNARF [4] on CAPE [18]. However, on the ClothSeq [31] dataset, where
clothes are much more complex, our method makes less body distortion or extra
surfaces and reconstructs the pose of the subjects more precisely.
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Fig. 6: Qualitative comparison with baselines.

4.3 Visualization and Analysis

Ablation Study. To validate the effectiveness of our main components, we run
experiments with each of them disabled and visualize parts in an unseen pose
at the early stage of training in Fig. 7. Compared to our full model, dropping
the adjacent part seaming algorithm leaves the model almost rigid (e.g., the
sections near the knees are exposed and the neck is not completely connected
to the body). When disabling the bone limit loss, we lose the restriction on the
boundary of a part. Then we see the left foot and leg of the man falsely included
in the same part. However, merely using the bone limit loss is not sufficient. If we
drop the section normal loss, the model converges to a bad partition where the
surface does go across the joint but the main body of the part lies somewhere else.
Finally, the minimal perimeter loss is also necessary to suppress extra surfaces
such as the one on the right leg.

Limitations. Since the #13 and #14 joints of SMPL [16] are too close to the
spine, our method learns a small chest and large shoulders. When shoulders
move drastically, our model converges to overlapped parts to reconstruct the
shape. Therefore, we can observe inconsistent part division around the chest
during animation (Fig. 8). The current framework does not model the dynamics
of loose clothes. Seams between parts are still visible due to the generalization
problem caused by the pose condition vector.
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Fig. 7: Ablation study on main components of our method.

Fig. 8: Visualization of learned parts during animation.

5 Conclusions

We present a novel method for clothed human reconstruction and animation.
We explore initialization and regularization strategies to learn body parts with-
out ground-truth part labels. Towards a higher generalization ability to novel
poses, we propose an adjacent part seaming algorithm to model non-rigid defor-
mations by explicitly modeling the interaction between parts. Experiments on
two datasets validate the effectiveness of our method.
Acknowledgments: The work is supported by National Key R&D Program
of China (2018AAA0100704), NSFC #61932020, #62172279, Science and Tech-
nology Commission of Shanghai Municipality (Grant No. 20ZR1436000), and
”huguang Program” supported by Shanghai Education Development Founda-
tion and Shanghai Municipal Education Commission. This work is supported
by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020
Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding
Initiative, as well as cash and in-kind contribution from the industry partner(s).



Bibliography

[1] Alldieck, T., Xu, H., Sminchisescu, C.: imghum: Implicit generative models
of 3d human shape and articulated pose. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 5461–5470 (2021)

[2] Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw
data. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2565–2574 (2020)

[3] Atzmon, M., Novotny, D., Vedaldi, A., Lipman, Y.: Augmenting implicit
neural shape representations with explicit deformation fields. arXiv preprint
arXiv:2108.08931 (2021)

[4] Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: Differ-
entiable forward skinning for animating non-rigid neural implicit shapes.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 11594–11604 (2021)

[5] Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 5939–5948 (2019)

[6] Deng, B., Lewis, J.P., Jeruzalski, T., Pons-Moll, G., Hinton, G., Norouzi,
M., Tagliasacchi, A.: Nasa neural articulated shape approximation. In: Eu-
ropean Conference on Computer Vision. pp. 612–628. Springer (2020)

[7] Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 4857–4866 (2020)

[8] Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser,
T.: Learning shape templates with structured implicit functions. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 7154–7164 (2019)

[9] Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric
regularization for learning shapes. In: ICML (2020)

[10] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Pro-
ceedings of the 3rd International Conference on Learning Representations
(ICLR) (2014)

[11] Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of
facial shape and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1
(2017)

[12] Lipman, Y.: Phase transitions, distance functions, and implicit neural rep-
resentations. arXiv preprint arXiv:2106.07689 (2021)

[13] Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.:
Neural actor: Neural free-view synthesis of human actors with pose control.
ACM Transactions on Graphics (TOG) 40(6), 1–16 (2021)

[14] Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping gan:
A unified framework for human motion imitation, appearance transfer and



16 S. Qian et al.

novel view synthesis. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 5904–5913 (2019)

[15] Lombardi, S., Yang, B., Fan, T., Bao, H., Zhang, G., Pollefeys, M., Cui, Z.:
Latenthuman: Shape-and-pose disentangled latent representation for human
bodies. In: 2021 International Conference on 3D Vision (3DV). pp. 278–288.
IEEE (2021)

[16] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A
skinned multi-person linear model. ACM transactions on graphics (TOG)
34(6), 1–16 (2015)

[17] Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface
construction algorithm. ACM siggraph computer graphics 21(4), 163–169
(1987)

[18] Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black,
M.J.: Learning to dress 3d people in generative clothing. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 6469–6478 (2020)

[19] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Oc-
cupancy networks: Learning 3d reconstruction in function space. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4460–4470 (2019)

[20] Mihajlovic, M., Zhang, Y., Black, M.J., Tang, S.: Leap: Learning articu-
lated occupancy of people. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10461–10471 (2021)

[21] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi,
R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view syn-
thesis. In: European conference on computer vision. pp. 405–421. Springer
(2020)

[22] Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5589–5599
(2021)
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