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Abstract. The superiority of deep learning based point cloud repre-
sentations relies on large-scale labeled datasets, while the annotation of
point clouds is notoriously expensive. One of the most effective solutions
is to transfer the knowledge from existing labeled source data to un-
labeled target data. However, domain bias typically hinders knowledge
transfer and leads to accuracy degradation. In this paper, we propose
a Masked Local Structure Prediction (MLSP) method to encode tar-
get data. Along with the supervised learning on the source domain, our
method enables models to embed source and target data in a shared fea-
ture space. Specifically, we predict masked local structure via estimating
point cardinality, position and normal. Our design philosophies lie in:
1) Point cardinality reflects basic structures (e.g., line, edge and plane)
that are invariant to specific domains. 2) Predicting point positions in
masked areas generalizes learned representations so that they are robust
to incompletion-caused domain bias. 3) Point normal is generated by
neighbors and thus robust to noise across domains. We conduct experi-
ments on shape classification and semantic segmentation with different
transfer permutations and the results demonstrate the effectiveness of our
method. Code is available at https://github.com/VITA-Group/MLSP.

Keywords: Point cloud representation learning, unsupervised domain
adaptation, shape classification, semantic segmentation.

1 Introduction

Point cloud representation learning based on deep neural networks constitute
the recent achievements in 3D vision [28,29,42,19]. However, most of them are
conducted under supervised learning and therefore require a large amount of
annotated data. The expensive labeling cost limits the scalability to more un-
seen environments. To alleviate this problem, we can transfer the knowledge
from existing labeled source data to unseen unlabeled target data. However, due
to different point scales, object styles, LiDAR viewpoints, incompletion, sensor
noise, etc, models often suffer the problem of domain bias, leading to poor accu-
racy. Although part of the biases can be addressed by data preprocessing, e.g.,

https://github.com/VITA-Group/MLSP
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Fig. 1: Illustration of the proposed method. To encode unlabeled target data,
we predict masked local structure via estimating point cardinality, position and
normal. Point cardinality reflects basic structures such as line, edge and plane,
which are invariant to specific domains. Predicting the positions of missing points
enables the network to infer structure from partial observation, thus learning
a robust representation for incompletion-caused domain bias. Point normal is
generated by a few neighbors and thus robust to different individual noisy points
across domains. Along with the supervised learning on the source domain, source
and target data are embedded into a shared feature space.

unifying point scales and normalizing object sizes, the other biases have to be
reduced via well-designed learning approaches.

To alleviate the problem of domain bias, the first solution is to employ ad-
versarial learning [12,41] to directly learn unbiased representations. Specifically,
a discriminator is trained to judge whether the learned representations are from
the target domain or the source domain, whereas the model is trained to con-
fuse the discriminator [30]. The second solution is to directly align source and
target representations in a shared feature space via assigning pseudo labels to
target data [10]. The key to this solution is how to achieve pseudo labels and
avoid adding noise [47,7]. The third solution is to design self-supervised learning
tasks to learn the internal structure of unlabeled target data [1,47,36,7]. Along
with the supervised learning on labeled source data, self-supervised tasks enable
models to embed source and target data in a shared feature space. Note that, the
adversarial learning and pseudo label solutions are independent of point cloud
modality and can be borrowed from general learning methods. Therefore, in this
work we emphasize exploiting point cloud characters for self-supervised learning
tasks design, and make a minor effort in the pseudo label solution.

In this paper, we propose a Masked Local Structure Prediction (MLSP)
method for point cloud domain adaptation. Different from most existing meth-
ods [1,47], which mainly focus on designing multiple effective SSL tasks (e.g.,
predicting the angle between two point clouds and the location of distorted
area [47]), our method focuses on exploiting domain-invariant features or at-
tributes. Specifically, we mask a random local area of the input point cloud and
then ask models to predict the area structure by estimating the neighborhood
cardinalities (the number of neighboring points within a predefined radius), po-
sitions and normals of the missing points, respectively. First, we find that point
cardinality can reflect basic structures of local areas, e.g., line, edge and plane.
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As shown in Fig. 1, points at the chair seat have larger cardinalities than points
at the legs. Predicting neighborhood cardinality enables models to learn the
primitive structure of target objects, which is invariant to different domains. Sec-
ond, incomplete point clouds are usually encountered in sim-to-real adaptation.
Therefore, we follow [1] to predict the positions of missing points to generalize
learned representations so that they are invariant to different region missing sce-
narios between source and target domains. Third, different from image pixels,
point clouds are usually not smooth with noisy points, to different degrees in
different domains. This hinders models to learn accurate features across different
domains[31]. To mitigate this problem, we integrate a normal prediction task in
our framework, because point normal is generated by a few neighbors and can be
robust to noise. In addition to MLSP, we develop a self-paced learning [17,14,10]
variant that leverages prediction probability entropy to select reliable pseudo-
labeled samples. The motivation is that a target sample with small entropy of
prediction probability is discriminative and its pseudo label is most probably
correct.

We conduct extensive experiments including shape classification on the PointDA
dataset [30] and semantic segmentation on the PointSegDA dataset [1]. Results
demonstrate the effectiveness of our method. Our main contributions are three-
fold:

⋆ We propose a novel Masked Local Structure Prediction (MLSP) method for
point cloud domain adaption, which exploits three types of local attributes
to encode unlabeled target data.

⋆ We propose a new point cloud attribute, i.e., neighborhood cardinality, which
is able to reflect the basic or primitive structure of point clouds.

⋆ We achieve the new state-of-the-art accuracy of unsupervised domain adap-
tion on shape classification and segmentation benchmarks.

2 Related Work

Point Cloud Representation Learning Point clouds, which use a set of
points with 3D coordinates to specify object positions, are the most straightfor-
ward way to preserve 3D spatial information and are very closed to a number of
3D environment understanding applications (e.g., autonomous driving, indoor
scene parsing). Point cloud object-level classification and point-level segmenta-
tion are two of the fundamental tasks for point cloud processing. Recently, a
number of deep neural networks have been proposed to address the two prob-
lems [28,29,42,19,46,39,9]. For example, PointNet [28] pioneeringly proposes the
first deep neural networks to directly deal with raw point clouds. The successor
PointNet++ [29] is based on PointNet and is enhanced to extract both local and
global geometric information in a hierarchical way. PointCNN [19] proposes a
novel convolution on point cloud to aggregate features in local and equipped with
a bottom-up network structure. Recently, PointTransformer [46] adopts the self-
attention mechanism to point cloud processing alone with an encoder-decoder
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structure and achieves state-of-the-art performance in several point cloud bench-
marks. Although straightforward to use, point clouds are difficult to be annotated
because it requires a huge amount of labor work, especially for point-level label-
ing. Therefore, it is necessary and urgent for us to develop an effective method
for point cloud-based unsupervised domain adaptation to mitigate the domain
gap between labeled data in the source domain and unlabeled data in another
domain.

Unsupervised Domain Adaptation Unsupervised domain adaptation (UDA)
methods for 2D tasks mainly focus on reducing the discrepancy across different
domains. For example, UDA for image classification can be roughly classified
into two categories: 1) Minimize the domain discrepancy of a proxy. Methods
in [23,5,26,44,32,15,20] measure such discrepancy using the domain distribu-
tion statistics. 2) Align feature distributions in an adversarial manner. Works in
[11,27,41,12,11,3,18,34,33] either play minimax games at domain level or cate-
gory level. UDA has also been applied to point cloud processing in works [1,30],
which also faces the challenge of gaps in semantic level and domain-agostic fea-
ture encoding from local geometries of the point cloud. In the above works, [30]
proposes a node module with an adaptive receptive field to model the discrimi-
native local structures and minimize MMD loss to align features in different do-
mains. [1] adopts a self-supervised manner to learn an informative representation
with local geometries. The work [24] proposes a multi-level consistency network
for 3D detection domain adaptation and enjoys the benefits of the detector-
agnostic feature. GAST [47] aims to learn a domain-shared representation of
semantic categories by proposing two self-supervised geometric learning tasks as
feature regularization.

Self-Supervised Learning on Point Clouds Self-supervised learning (SSL)
aims to leverage the raw input as supervision signals by a pre-defined rule or
task. SSL is able to learn the representation which benefits downstream tasks.
A comprehensive summary of existing methods in SSL can be found in [22].
Several recent works [13,21,35,38,45] studied using SSL framework for learning
rich representations of point cloud. [1] studied point cloud reconstruction for DA
on point clouds. [13] adopted three tasks including clustering, prediction and
reconstruction from noisy input. The work [35] proposed to generate new point
cloud by splitting a shape into voxels and then shuffling them. The task is defined
as finding the voxel assignment to reconstruct the original point cloud. [38]
proposed a task to predict the next point in a space-filling sequence which further
boosts the performance. [37] proposed normal prediction for point cloud and
aims at multi-task geometric learning network to improve semantic analysis. [45]
splitted the point cloud into two parts and proposed to learn a classifier to
determine which part it comes from.
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Fig. 2: Overview of the proposed framework for unsupervised domain adapta-
tion on point clouds. The supervised pathway takes as input the point clouds
from the source domain and calculates the cross-entropy loss with ground-truth
labels. The self-supervised pathway takes point clouds from target domain and
calculates the self-supervised loss with the proposed masked local structure pre-
diction, including cardinality, position and normal.

3 Method

In this section, we present our proposed Masked Local Structure Prediction
(MLSP) for point cloud domain adaptation. We first formulate the general setup
of unsupervised point cloud domain adaptation in Sec. 3.1. Then, we introduce
our solution to domain adaptation and describe the proposed MLSP scheme in
Sec. 3.2. In Sec. 3.3, we design entropy-based self-paced learning to select reliable
pseudo-labeled target data for global representation alignment. We conclude our
framework with the overall loss function during our training process in Sec. 3.4.
For clarity, we describe MLSP in the context of a classification task, but the
same principle applies to the segmentation task as well.

3.1 Overview

We follow the conventional unsupervised domain adaptation (UDA) framework
[30] for point cloud representation learning, which aims at transferring the knowl-

edge from a labeled source domain S = {(P (s)
i , y

(s)
i )}n(s)

i=1 to an unlabeled target

domain T = {P (t)
i }n(t)

i=1 , where n(s) and n(t) denote the numbers of source and

target point clouds, respectively. P
(s)
i and P

(t)
i denote two point clouds from

source and target domain, respectively. y
(s)
i ∈ Y = {1, · · · , L} is the label for

source point cloud P
(s)
i .

We employ a common approach to tackle this learning setup for UDA, which
is to learn a shared feature encoder f and trained on two tasks: (1) a supervised
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task over source domain S, and (2) a self-supervised task that can be trained over
both source domain S and target domain T . In this work, we propose the MLSP
method which includes three distinct components: cardinality, position and nor-
mal prediction. An overall pipeline is illustrated in Fig. 2. During training, the
supervised task and MLSP task will be trained in an alternating fashion. Specif-
ically, in the supervised task flow, the labeled source samples will be processed
by shared encoder f and a classification head hsup to produce the prediction
result. A supervision loss will be applied to it. In MLSP flow, after the shared
encoder, the unlabeled source/target samples will be passed separately through
hcard, hpos and hnorm to predict the cardinality, position and normal of missing
points. Different losses are applied to each prediction.

3.2 Masked Local Structure Prediction

ModelNet ShapeNet ScanNet

endpoint line surfaceedge

Fig. 3: Top: Visualization of point car-
dinality. It reflects the basis geome-
try structure, e.g., the cardinalities of
points on lines are smaller than that of
those on edges and larger than those
on endpoints. Bottom: Cardinality vi-
sualization in three point cloud do-
mains. Cardinalities of different regions
or parts show a strong pattern. There-
fore, we can use the cardinality at-
tribute to reflect basic local structures,
e.g., endpoint, line, edge and surface.
This representation is invariant across
different domains and classes.

The main idea of the proposed do-
main adaptation scheme is to learn
an unbiased feature across both source
and target domains. To this end, we
enforce models to predict cardinal-
ity, position and normal of masked
points so that they can encode the
internal structure of unlabed target
data. To be more specific, point car-
dinality reflects the primitive struc-
ture of local areas, e.g., line, edge and
plane, which is invariant to different
domains. Missing position prediction
enables models to infer point cloud
structure from partial observation. In
this way, models can learn robust
representation against incompletion-
caused domain bias. Point normal
is generated from a few neighboring
points and thus robust to noisy points.
By predicting point normal, our mod-
els can learn features mitigating the
noisy point distortion across different
domains.

We refer to p ∈ R3 as an indi-
vidual point and denote PM as the
point cloud after masking P . For each
masked point p ∈ P \PM, we denote
prediction of cardinality as fcard(p) =
hcard ◦ f(PM), position as fpos(p) =
hpos ◦ f(PM), and normal vector as
fnorm(p) = hnorm ◦ f(PM), respectively. Following [1], we employ the voxel
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partition-based method to generate masked point set PM, which uniformly sam-
ples one of the spatial partition of 3 × 3 × 3 cubes and remove all the points
in the sampled cube. The masked points are replaced with new points sampled
from a Gaussian distribution around the mask center.

Neighborhood Cardinality Prediction Given a sampled point cloud, neigh-
borhood cardinality indicates the basis geometry structures (e.g., line, edge and
plane) around each point. As shown in Fig. 3, for points lie on lines (e.g., chair
legs), the number of neighbors within a given radius is generally smaller than that
of points on planes (e.g., tabletop). The basic geometry structures are shared
across different domains and object categories. This observation motivates us
to predict point cardinalities to learn domain-invariant features across different
domains. More formally, we define neighborhood cardinality as follows:

N (p, r) =
{
q ∈ P

∣∣ ∥p− q∥ ≤ r, q ̸= p
}
, C

(
p, r

)
=

∣∣N (p, r)
∣∣, (1)

where r is the radius of the neighborhood. As point cardinality only reflects a
few basic structures, representing these discrete values in a regression manner
is not necessary. Therefore, we formulate the cardinalty prediction task as a
classification problem. Specifically, we first experimentally choose the maximum
cardinality value of a dataset, denoted by Cmax. Then we choose the number of
cardinality bins K and obtain cardinality interval c0 = Cmax/K. We consider
K as a hyperparameter in our method. From here, we can convert C(p, r) into a

groudtruth class label c =
⌊
C(p,r)

c0

⌋
. For each point p, the cardinality head will

predict its cardinality class. To calculate the cardinality classification loss, we
convert the one-hot classification labels into a two-points probability vector rep-
resentation which is justified in Fig. 4. Specifically, for each point p, we convert
its cardinality C(p, r) into a probability vector λ with two non-zero values:

λi =


1− C(p,r)−c∗c0

c0
i = c,

C(p,r)−c∗c0
c0

i = c+ 1,

0 otherwise.

(2)

Such a representation includes richer distribution information than a one-hot
vector. Cardinality prediction for point p will be λ̂ = hcard ◦ f(PM) and we em-
ploy KL divergence as the measurement to minimize the gap between prediction
weights λ̂ and “ground-truth” weights λ, leading to the following cardinality
loss:

Lcard(PM, fcard) =
∑

p∈P\PM

K∑
i=1

λi log(λ̂i). (3)

Point Position Prediction To recover the missing or masked region, point
coordinate information is necessary. Even though non-smoothness and noisiness
appear in point cloud input, reconstructed points can not deviate too much from
the given ground-truth points. Similar to [1], we utilize the Chamfer distance
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Fig. 4: The proposed two-point representations for the neighborhood cardinality.
It is represented by two adjacent bins instead of one-hot vectors

[6] between the predicted point cloud coordinates and ground-truth point coor-
dinates at the masked region. The loss of position prediction has the following
form:

Lpos(PM, fpos) =
∑

p∈P\PM

min
q∈fpos(PM)

∥p− q∥2 +
∑

q∈fpos(PM)

min
p∈P\PM

∥q − p∥2. (4)

Point Normal Prediction Normal vector estimation of a point cloud is rele-
vant to maintaining local geometric features. It is generated from a few neigh-
boring points and thus robust to noisy points. Motivated by this observation, we
integrate normal estimation as a self-supervised task into our method and ex-
pect that models can learn features mitigating the noisy point distortion across
different domains. The ground-truth normal vector at the point p is obtained
via least-square fit based on all the points in the original point cloud in the
neighboring region:

n(p) = argmin
n∈R3

∑
q∈N (p)

(n · (q − p))2, (5)

where n̂(p) = fnorm(p) is the predicted normal vector of masked point p. As
shown in Fig 5, the normal is robust against instrumental noise from the point
cloud data acquisition. To obtain the appropriate neighbouring point set N (p) of
p, we test with using both neighbouring points defined with a radius r of point
p as N (p) = N (p, r) in Equ. 1 and nearest neighbors search, where N (p) =
kNN(p, k). The orientation of normal vector is defined towards the center of
the object. We use the cosine-similarity metric to measure the distance between
predicted normal and the estimated “true” normal, leading to the following self-
supervised loss:

Lnorm(PM, fnorm) =
∑

p∈P\PM

n(p) · n̂(p)
∥n(p)∥∥n̂(p)∥ . (6)

At last, we define the total loss of MLSP for a given masked point cloud PM
as:

Lpred(PM) = α1Lcard(PM, fcard) + α2Lpos(PM, fpos) + α3Lnorm(PM, fnorm)
(7)

where α1, α2, α3 are hyperparemters that control the weights of masked point
cloud attribute predictions.
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Fig. 5: Normal regression visualization under different scales of Gaussian noise.
Top row: our normal regression scheme fits a least-square plane using neighboring
points to obtain the pseudo label of “true” normal n at target domain T . As the
noise increases, even though the point coordinates are shifting, the estimation of
normal shall be consistent. Bottom row: An example point cloud in the PointDA-
10 dataset. The estimated normals (blue arrows) are mostly robust even when
point position are shifted under large-scale noise (σ = 0.05). Value of standard
derivations σ shown below are set under the normalized point cloud scaling.

3.3 Entropy-guided Self-paced Global Representation Alignment

In addition to the MLSP, we also exploit pseudo labels to boost the domain
adaptation accuracy by aligning source and target global representations. The
key to this approach is how to assign correct pseudo labels and avoid introducing
noise. To this end, we follow [47] to employ self-paced learning [17,14,10,8] to
select reliable pseudo-labeled target samples. We first assign the corresponding
class of the maximum prediction probability as the pseudo label of each target
sample. Then, we only use the target samples whose prediction probability en-
tropies are small enough to train the model with their pseudo labels. We denote

y
(t)
i as the prediction probability vector of the i-th target sample. We first pre-

dict the pseudo label as ŷ
(t)
i = argmaxl y

(t)
i,l . Then, we select the target samples

as follows,

vi =

{
1,

∑L
l=1 −y

(t)
i,l log y

(t)
i,l ≤ γ,

0, otherwise,
(8)

where vi = 1 indicates the i-th target sample is selected.

The value of the threshold γ controls how confident the predicted class label-
ing is. Our motivation is that small entropy means the sample is discriminative
and can be easily recognized. Therefore, pseudo labels with small prediction
probability entropies are more likely correct. Compared to [47], which selects
pseudo labels whose probabilities are large enough, entropy is robust and re-
flects the “entire discriminativeness” of target samples. Note that, although with
a fixed γ, as models become stronger and domain bias reduces during training,
more and more target samples are selected. As the number of selected target
samples increases, models are improved in return. In this way, the accuracy
progressively increases.
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3.4 Overall Loss

The overall loss function is the sum of supervision loss under S and linear com-
bination of three estimation tasks as well as the self-paced learning loss under
T :

L(S, T ,M) =

n(s)∑
i=1

Lsup(P
(s)
i , y

(s)
i ) +

n(t)∑
i=1

Lpred(P
(t)
i,M) + β

n(t)∑
i=1

viLsup(P
(t)
i , ŷ

(t)
i ),

(9)

where β controls the importance of the self-paced loss. Both β and α1, α2, α3 in
Equ. 7 are selected empirically and more details can be found in supplementary.

The classification loss Lsup(P
(t)
i , ỹ

(t)
i ) under the target is the sum of all the

samples that are selected and assigned pseudo labels.

4 Experiments

We evaluate the proposed method under the standard protocol of unsupervised
domain adaptation on the task of point cloud data classification and segmenta-
tion. We conduct experiments on PointDA-10 and PointSegDA datasets.

4.1 Datasets

PointDA-10[30] contains three widely-used datasets: ModelNet[43], ShapeNet[2]
and ScanNet[4]. All three datasets share the same ten categories (bed, table, sofa,
chair, etc.). ModelNet(M) contains 4183 train samples and 856 test samples
and ShapeNet(S) contains 17,378 train samples and 2492 test samples. Both
ModelNet and ShapeNet are sampled from 3D CAD models. ScanNet(S∗) is
a more challenging dataset, which contains 6110 train and 1769 test samples.
Samples from this dataset are scanned and reconstructed from real-world indoor
scenes. The objects often lose some parts and get occluded by surroundings. We
follow the data preparation procedure used in [1]. Specifically, all object point
clouds in all datasets are aligned along the direction of gravity, while arbitrary
rotations along the z-axis are allowed. Each sample is down-sampled to 1024
points and normalized within a unit ball. A typical 80%/20% data split for
training and validation on both source and target domains is employed.

PointSegDA is based on a dataset of meshes of human models proposed by
[1] and consists of four subsets: ADOBE, FAUST, MIT, and SCAPE. They share
eight classes of human body parts (hand, head, feet, etc.) with difference in point
distribution, pose and human shapes. PointSegDA differs from PointDA-10 in the
type of the domain shifts and the actual shapes representing deformable objects.
Thus, PointSegDA allows us to evaluate the proposed method in a fundamentally
different setup. For data processing, we follow the data processing in [1] and
aligned the shapes with the positive Z-axis and scaled them to the unit cube.
Each sample contains 2048 points sampled from mesh vertices and downsampled
by farthest point sampling.
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4.2 Implementation details

Network architecture We adopt DGCNN [42] with the same configurations
as in the official implementation for feature extractor backbone and supervised
task head. As for SSL heads, they share the same input as global feature vector
concatenated to point-wise feature from the backbone network. Please refer to
the supplement for more details about network architecture.

Training procedure During training, we alternate between a batch of source
samples and a batch of target samples in all methods. We run each configuration
with 3 different random seeds for 150 epochs and use source-validation-based
early stopping. We use a fixed batch size of 32 for PointDA-10 and a batch size of
16 for PointSegDA. We adopt ADAM [16] optimizer with learning rate 0.001 and
weight decay 0.00005. A cosine annealing learning rate scheduler implemented
via PyTorch is assigned in training. β is selected to be 1 and γ is selected over
{1.516, 1.549, 1.551, 1.628} and we empirically set it to be 1.549. Please refer to
the supplement for more details about training.

4.3 Classification Results on PointDA-10 Dataset

We compare our proposed method with a list of recent state-of-the-art point-
based DA methods including Domain Adversarial Neural Network (DANN) [11],
Point Domain Adaptation Network (PointDAN)[30], Reconstruction Space Net-
work (RS) [35] , Deformation Reconstruction Network with Point Cloud Mixup
(DefRec+PCM) [1] and Geometry-aware self-training (GAST) [47]. [1] demon-
strates the effectiveness of Mixup training on source domain and we adopt this
setup in our PointDA-10 experiments. The supervised model is trained on la-
beled target data and the baseline model is trained only with labeled source
samples. All comparative methods take the same training protocol and the best
models are selected according to source-validation based early stopping. Results
are presented in Table 1.

By only adopting a self-supervised learning strategy, our approach outper-
forms all competing domain adaptation methods by a significant margin. Partic-
ularly, it improves the average accuracy by relative 2.2% and 3.5% over the state-
of-the-art DefRec+PCM [1] and Geometry-aware self-training (GAST) [47]. Con-
sidering that our model uses the same backbone DGCNN as the baseline, this
performance gain should be attributed to the design of the local feature pre-
diction algorithm, which helps to learn a more adaptive representation across
domains. More importantly, in comparison with [1], MLSP achieves superior
performance on almost all six adaptation tasks. This demonstrates the effective-
ness of our designed local point structure. Particularly, we improve with a large
margin on M → S* (55.4% vs. 51.8%), S*→M (78.2% vs. 73.7%) and S* → S
(76.1% vs. 71.1%) tasks.

After adopting the pseudo label strategy, MLSP can outperform all previous
domain adaptation methods. Using entropy-based global alignment(EGA) strat-
egy, we further boost our model’s performance to a high level of average accuracy
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74.0%. The superior of MLSP+EGA over MLSP+SPST demonstrates the effec-
tiveness of our entropy-guided pseudo label selection design. It is noteworthy
that we are able to reach a remarkable performance on two synthetic-to-real M
→ S* and S → S* tasks, with mean accuracy 59.1% and 57.6% respectively.

Table 1: Comparative evaluation in classification accuracy (%) averaged over 3
seeds (± SEM) on the PointDA-10 dataset. BS indicate baseline method, PS
means Pseudo Label.

Methods SSL PS M→S M→S∗ S→M S→S∗ S∗ →M S∗ →S Avg.

Supervised 93.9±0.2 78.4±0.6 96.2±0.1 78.4±0.6 96.2±0.1 93.9±0.2 89.5±0.3
BS (w/o adap.) 83.3±0.7 43.8±2.3 75.5±1.8 42.5±1.4 63.8±3.9 64.2±0.8 62.2±1.8

DANN [11] 74.8±2.8 42.1±0.6 57.5±0.4 50.9±1.0 43.7±2.9 71.6±1.0 56.8±1.5
PointDAN [30] 83.9±0.3 44.8±1.4 63.3±1.1 45.7±0.7 43.6±2.0 56.4±1.5 56.3±1.2
RS [35] ✓ 79.9±0.8 46.7±4.8 75.2±2.0 51.4±3.9 71.8±2.3 71.2±2.8 66.0±1.6
DefRec+PCM [1] ✓ 81.7±0.6 51.8±0.3 78.6±0.7 54.5±0.3 73.7±1.6 71.1±1.4 68.6±0.8
GAST [47] ✓ 83.9±0.2 56.7±0.3 76.4±0.2 55.0±0.2 73.4±0.3 72.2±0.2 69.5±0.2

Ours ✓ 83.7±0.4 55.4±1.8 77.1±0.9 55.6±0.7 78.2±1.5 76.1±0.5 71.0±0.8
GAST+SPST [47] ✓ ✓ 74.8±0.1 59.8±0.2 80.8±0.6 56.7±0.2 81.1±0.8 74.9±0.5 73.0±0.4
Ours+SPST ✓ ✓ 85.7±0.6 59.4±1.3 82.3±0.9 57.3±0.7 82.2±0.5 76.4±0.5 73.8±1.0
Ours+EGA ✓ ✓ 86.2±0.8 59.1±0.9 83.5±0.4 57.6±0.6 81.2±0.4 76.4±0.3 74.0±0.5

4.4 Segmentation Results on PointSegDA Dataset

We evaluate the generalization ability of MLSP beyond classification tasks on
PointSegDA dataset. We compare against several methods including unsuper-
vised baseline, RS [35], Adapt-SegMap [40] and DefRec+PCM [1] on the mean
Intersection over Union (IoU). As is shown in Table 2, our model achieves the
highest accuracy compared with all previous adaptation methods, which demon-
strates that MLSP can generalize well on segmentation task. Particularly, it
demonstrates the best performance on most adaptations.

4.5 Ablation Study and Analysis

In this section, we conduct ablation study experiments to analyze the effec-
tiveness of different components of the model. Experiments are conducted on
PointDA-10 dataset.

Effect of neighborhood cardinality, position and normal prediction In
this part, we separately evaluate the performance of neighborhood cardinality,
position and normal prediction. To get a unified measure of performance, we
tuned the loss weight between SSL loss and source domain supervised loss, so
that the best performance can be reached for each prediction component. More
details can be found in supplementary and the result is shown in Table 3. Ev-
idently, all three prediction components can improve the domain adaptation
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Table 2: Point Cloud Segmentation Performance(mean IoU.) on PointSegDA
dataset, averaged over three runs (± SEM).
Methods

FAUST to
ADOBE

FAUST to
MIT

FAUST to
SCAPE

MIT to
ADOBE

MIT to
FAUST

MIT to
SCAPE

ADOBE to
FAUST

ADOBE to
MIT

ADOBE to
SCAPE

SCAPE to
ADOBE

SCAPE to
FAUST

SCAPE to
MIT

Avg.

Supervised-T 84.0±1.8 84.0±1.8 84.0±1.8 81.8±0.3 81.8±0.3 81.8±0.3 80.9±7.2 80.9±7.2 80.9±7.2 82.4±1.2 82.4±1.2 82.4±1.2 82.3±2.6

Unsupervised 78.5±0.4 60.9±0.6 66.5±0.6 26.6±3.5 33.6±1.3 69.9±1.2 38.5±2.2 31.2±1.4 30.0±3.6 74.1±1.0 68.4±2.4 65.5±0.5 53.6±1.6
Adapt-SegMap [40] 70.5±3.4 60.1±0.6 65.3±1.3 49.1±9.7 54.0±0.5 62.8±7.6 44.2±1.7 35.4±0.3 35.1±1.4 70.1±2.5 67.7±1.4 63.8±1.2 56.5±2.6
RS [35] 78.7±0.5 60.7±0.4 66.9±0.4 59.6±5.0 38.4±2.1 70.4±1.0 44.0±0.6 30.4±0.5 36.6±0.8 70.7±0.8 73.0±1.5 65.3±0.1 57.9±1.1
DefRec [1] 79.7±0.3 61.8±0.1 67.4±1.0 67.1±1.0 40.1±1.4 72.6±0.5 42.5±0.3 28.9±1.5 32.2±1.2 66.4±0.9 72.2±1.2 66.2±0.9 58.1±0.9

Ours 80.9±0.4 60.0±0.2 65.5±0.5 67.3±0.3 40.4±0.6 70.8±1.0 45.4±1.0 31.1±0.8 38.4±0.5 74.8±1.0 72.5±0.5 66.6±0.9 59.5±0.6

Table 3: Ablation study of MLSP prediction tasks on PointDA-10 dataset

Cardinality Position Normal M→S M→S∗ S→M S→S∗ S∗ →M S∗ →S Avg.

✓ 83.0 54.3 74.0 53.5 71.9 75.6 68.7
✓ 82.1 52.3 76.2 53.7 75.1 72.4 68.6

✓ 83.5 49.4 74.9 53.4 75.5 72.4 68.2
✓ ✓ 83.6 52.6 74.8 52.7 74.5 75.6 69.0

✓ ✓ 83.1 56.0 77.8 55.7 76.4 72.2 70.2
✓ ✓ 82.5 54.9 76.6 55.5 76.8 77.3 70.6
✓ ✓ ✓ 83.7 55.4 77.1 55.6 78.2 76.1 71.0

performance by a good margin. Among them, cardinality prediction can provide
the highest average accuracy of 68.7%. By combining these three components
together, we are able to further improve the performance, which demonstrates
the compatibility between these components. The combination of position es-
timation and normal estimation provides the best accuracy in the sim-to-real
scenario.

Effect of class number of cardinality For cardinality estimation, we con-
sider the number of cardinality classes as a hyper-parameter and analyze its
influence on the domain adaptation performance. As is shown in Table 3 in
supplement, 8-class reaches the highest performance accuracy on PointDA-10.
When we further increase the class number, we notice a performance drop. This
might be explained that when we over-classify the cardinality, features of some
similar geometric structure with different cardinalities will be encourage to be
separative.

Effect of loss for cardinality estimation In this part, we compare our pro-
posed cardinality estimation loss with cross-entropy loss. Experiments demon-
strate the superiority of our proposed loss over directly using cross-entropy loss.
And the former achieves better accuracy on four tasks and reaches a higher
average accuracy.

Effect of number of neighboring points for normal estimation To vali-
date that point normal attribute can help mitigate the distortion caused by noisy
points, we change the number of neighboring points to calculate each point’s
ground truth normal, and compare their performance in PointDA-10 bench-
mark. As shown in Fig.1 in supplement, we notice that improving the number
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(a) w/o DA: S∗ (b) w/o DA: S∗→M (c) MLSP:S∗ (d) MLSP: S∗ → M

Fig. 6: The t-SNE visualization of learnt feature vectors from model f under
source (Scannet) and target (ModelNet) domain. First two images are generated
without domain adaptation. Different colors reveals different classes.

Table 4: Cardinality prediction on PointDA-10 dataset with different loss.

Loss Function M→S M→S∗ S→M S→S∗ S∗ →M S∗ →S Average

CE 83.4 55.6 73.6 52.6 69.9 71.9 67.8
Ours 83.0 54.3 74.0 53.5 71.9 75.6 68.7

of neighboring points considered for normal estimation will help the transfer
learning process. While when we further increase it after 15 points, we witness
a small performance drop. This can be explained that if we use too many neigh-
boring points, the smoothing effect is too strong which can affect learning detail
structure.

Feature Visualization We utilize t-SNE [25] to visualize the feature distribu-
tion of the 1024-dimension latent codes in Fig. 6. Without domain adaptation,
features of different classes in the target domain are mixed up. After adaptation.
the distribution of the features in the target domain demonstrates clear clusters.

5 Conclusions

Our work focuses on designing an algorithm to solve the object point cloud do-
main adaptation problems. Starting from a self-supervised framework, we pro-
pose MLSP method that is beneficial to point cloud DA goal, which includes
cardinally, position and normal estimation. We validate the effectiveness of these
three point features in mitigating the domain bias problems. And our method
achieves state-of-art performance on point cloud shape classification and seman-
tic segmentation benchmarks.
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