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This supplementary material aims to provide additional contents and details
that are not included in the main paper due to the space limitation. In Sec. A,
we describe the design choices for the proposed Decoupled Neural Style Field
(DNSF) and justify our full model by comparing it with different settings. In
Sec. B, we describe the datasets and experimental details of human motion
recommendation. In Sec. C, we provide additional qualitative results of CLIP-
Actor. In Sec. D, we provide the overall algorithm for CLIP-Actor. Furthermore,
we provide training details of CLIP-Actor in Sec. E and provide the discussion
and possible future direction of CLIP-Actor in Sec. F. We also provide the video
results demonstrating the text-conforming stylized meshes in motion.

A Analysis on the Decoupled Neural Style Field

In this section, we introduce our design choices and implementation details
when composing and optimizing our decoupled neural style field, DNSF, and
corresponding effects. Moreover, we provide implementation details of our mask-
weighted embedding attention.

A.1 Effects of Content Mesh Resolution

Recall that the CLIP-Actor learns the best text-conforming per-vertex color
and displacement for the content meshes. Thus, the resolution of the content
meshes, i.e., the number of mesh vertices, would be the critical factor of the
texture generation quality. Text2Mesh also shows that the näıve neural style field
network can synthesize a more plausible style with high-resolution meshes, i.e.,
meshes with more vertices [8].

SMPL vs. SMPL-X: content mesh selection. We can change the content
mesh model with SMPL [5] variants, SMPL-H [13] and SMPL-X [9], which have
different numbers of vertices, to investigate the effects of the mesh resolution.
With its linear blend skinning operation, SMPL maps pose parameters, Rt and
shape parameters βt, to 6,890 mesh vertices, i.e., MSMPL ∈ R6890×3. SMPL-X,
on the other hand, has 10,475 vertices i.e., MSMPLX ∈ R10475×3. Furthermore,
SMPL-X can express detailed hand poses and expressive faces, which is essential
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Fig. a. Effects of content mesh resolution. (i) With SMPL, which has the smallest
number of vertices, CLIP-Actor shows unrealistic texture and geometric details. (ii)
With higher resolution mesh, SMPL-X, CLIP-Actor achieves much smoother geometry,
along with expressive hand and facial details. However, it still suffers from unrealistic
colors. (iii) With subdivided SMPL, CLIP-Actor achieves better texture and geometry
details than (i) and (ii). (iv) CLIP-Actor with subdivided SMPL-X achieves the most
realistic color configuration and fine-grained geometric details.

in modeling human interactions and expressions [9]. We conduct experiments
that compare the qualitative mesh stylization results with both mesh models
as the content mesh. Figure a(i),(ii) illustrate qualitative results of CLIP-Actor
with different body mesh models. With the lowest mesh resolution, i.e., SMPL,
CLIP-Actor generates unrealistic body configurations, such as sharp edges and
slim body parts. Also, using SMPL as the content mesh, CLIP-Actor cannot
represent detailed human actions. In Fig. a(i), the SMPL mesh spreads its hands,
thus fails to express the baseball player grabbing the bat. On the other hand,
SMPL-X, which has a higher resolution than SMPL, shows a smoother result,
detailed hand pose, and facial expressions.

Mesh subdivision for higher resolution. Furthermore, we utilize mesh
subdivision [12] to achieve higher mesh resolution (∼ 4× number of vertices).
Note that we use subdivided SMPL-X for the content mesh for our full model1.

Using subdivided meshes of SMPL and SMPL-X (Fig. a(iii),(iv)) as the
content mesh, they show detailed cloth geometry, texture generation and smooth
body curvatures than the basic SMPL, SMPL-X meshes. Also, SMPL-X-Sub,
which is our CLIP-Actor’s full version, shows the most realistic color configuration
compared to other mesh models. Since our text-driven optimization of decoupled
neural style field is based on the rendering of the stylized meshes, we postulate
that higher resolution of the content meshes results in better supervision signal,
thus leading to improved qualitative results.

1 Note that we denote our content mesh as SMPL in the main paper for simplicity.
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A.2 Mask-weighted Embedding Attention

In the main paper, we mentioned that 2D augmentations are essential for plau-
sible texture generation. Recall that, we apply differentiable 2D augmentations
before the rendered images are passed into the pre-trained CLIP encoder.

In practice, we adopt the multi-level 2D augmentations for the rendered
images, following Text2Mesh [8]. The multi-level 2D augmentation is the method
that renders both colored mesh and de-colorized mesh into images I∗ and I∗geo,
computes semantic loss for each rendered image, and leverage gradient accumula-
tion during optimization. The advantages of such multi-level 2D augmentations
are in two-folds. First, rendered images in diverse viewpoints and augmentations
improve generalization across views [4]. Next, separate rendering of textured and
de-colorized meshes, I∗ and I∗geo, and gradient accumulation enable guiding both
global context and local geometric details with only a single text prompt [8].

In detail, we apply a global 2D augmentation Tglobal(·) to the rendered images
I∗. Tglobal(·) does not contain the image crop but only random perspective
transformation. Also, the local 2D augmentation Tlocal(·) is applied to I∗ and
I∗geo. Tlocal(·) contains both random crops up to 10% of the original image and
the random perspective transformation.

However, the problem occurs in careless Tlocal(·). Prior work [8] simply applied
extreme close-ups to the de-colorized rendering of the meshes, which leads to
random, empty rendered images. Such empty images do not conform to the
text prompt, and these dummy images can distract the optimization process
with random gradient direction. In CLIP-Actor, we mitigate this problem with
mask-weighted attention embedding.

B Datasets of Human Motion Recommendation

In this section, we explain the dataset used in the retrieval system and
evaluation for human motion recommendation. Moreover, we provide the details
of the dataset and the experiment settings.

Retrieval dataset. We use BABEL [10] as a database of the retrieval system.
BABEL is a dataset that labels a large-scale human motion capture dataset [6]
with unique action categories. Although they provide over 250 action categories,
e.g ., arm movements, the categories are too abstracted to be matched with our
natural language prompt. Therefore, we utilize the raw labels untrimmed and
diverse, e.g ., walk without energy and walk fast, so that the variants of natural
language text prompt can be semantically matched with the raw labels. Instead
of using a limited number of closed-set action categories, the raw labels can
handle the open-set action descriptions.

Evaluation dataset. To evaluate the text-driven motion retrieval module, we
use the SICK [7] as an evaluation dataset. SICK consists of the sentence pairs
obtained from the Flickr8K dataset [3] and the video description dataset [1].
Since the sentences in SICK are composed of descriptions of images or video,
the dataset is well-matched with our multi-modal retrieval scenario in terms
of finding visual semantics. Each sentence pair in SICK is annotated with a
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relatedness score from 1 to 5 that indicates the degree of semantic relatedness
between two sentences. We set a range of scores from 4.4 to 4.8 for evaluation
settings to ignore unreliable pairs and exclude the pairs that are only different
with grammatical voice or article. SICK4.8 and SICK4.4 settings are constructed
with the sentences with the score 4.8 and 4.4, respectively and SICK[4.4,4.8]
setting comprises the sentences in the range. The samples of the SICK according
to the score are shown in Table 1b in the main paper.

C Additional Qualitative Results

In this section, we present additional qualitative results of CLIP-Actor, with
diverse subjects and actions (See Fig. b) We describe the text prompts we used
and the corresponding results. Since we cannot express dynamic action sequences
in images, video results are also attached in the supplementary files.

Fig. b. Additional qualitative results. The first two rows show that CLIP-Actor
recommends the human motion from the text description and generates plausible mesh
stylization in zero-shot. The last row shows the compositional mesh stylization that
allows users to stylize the same retrieved motion, “walking forwards” with different
identities via text prompt, e.g ., Hermione Granger.
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D CLIP-Actor: Algorithm

In this section, we provide a thorough algorithm for CLIP-Actor. CLIP-Actor
is a system that includes the recommendation module, text-driven DNSF op-
timization, and stylization, and we arrange the overall pipeline with the algorithm.

Algorithm 1 Overall pipeline of CLIP-Actor

Require: Pre-trained CLIP image encoder g(·), text encoder h(·),
Pre-trained MPNet text encoder, m(·), SMPL Linear Blend SkinningM(·),
BABEL dataset A, SMPL template mesh Mc

Input: Natural language text prompt y

Output: Text-conforming stylized meshes in motion M∗
1:T

# Text-driven Human Motion Recommendation

1: S(x,y) def
= x⊤y

∥x∥2∥y∥2
▷ Cosine similarity between two vectors, x, y

# top-k[·] returns top-k items and indices in tuple

2: [Ak, ]← top-k[S(h(ai),h(y))], ∀ai ∈ A ▷ Cross-modal aware matching

3: a∗ ← argmaxaj∈Ak
S(m(aj),m(y)); ▷ Textual semantic matching

# Get pose parameters from BABEL dataset with retrieved action label, a∗

4: R1:T = [R1, . . . ,RT ]← BABEL(a∗)
5: M1:T =M(R1:T ,β); ▷ Motion sequence of the content meshes

6: I1:T ← render(M1:T );
7: [ , idx ]← top-k[S(g(I1:T ),h(y))]; ▷ Multi-modal content mesh sampling

# DNSF optimization for L iterations

8: for iter = 1, 2, . . . , L do
9: Ls ← 0

10: c,d← Gθ(Mc); ▷ Decoupled Neural Style Field
11: for i ∈ idx do ▷ Temporal view augmentation
12: M∗

i ← texturize(c,d);
13: Sample N camera poses, p = [p1, . . . ,pN ] ▷ 3D Spatial augmentation
14: for j = 1, 2, . . . , N do
15: I∗ij ← render(M∗

i ,pj);
16: I∗ij ← 2D_augmentations(I∗ij); ▷ 2D Spatial augmentation
17: wij ← mask_weighted_att(I∗ij);
18: end for

19: ḡ(I∗i ) =
∑N

j=1 wijg(I
∗
ij)∑N

j=1 wij
; ▷ Mask-weighted embedding attention

20: Ls ← Ls + (1− S(ḡ(I∗i ),h(y)));
21: end for
22: θ∗ ← Update DNSF Gθ parameters, θ
23: end for

# Test time: Stylization of human meshes in motion

24: c∗,d∗ ← Gθ∗(Mc) ▷ Generate color and geometry with learned DNSF
25: for k = 1, 2, . . . , T do
26: M∗

1:T ← texturize(c∗,d∗) ▷ Stylize meshes in motion with c∗,d∗

27: end for



6 Youwang et al.

E Training Details

We provide training details of CLIP-Actor, including optimizer, training
hardware specifications, and training time. We use the Adam optimizer with the
initial learning rate set to 0.0005 and the learning rate decay factor as 0.9 every
100 iterations. We train CLIP-Actor for 1500 iterations using a single NVIDIA
TITAN RTX GPU. Total training takes about 30 minutes to one hour depending
on the motion sequence length, and training options such as the number of frames
we use for spatio-temporal view augmentation.

F Discussion

Fig. c. A case of
object projection on
mesh surface.

We find the observations about human mesh stylization
harnessing CLIP [11] text-image joint space. Given the
text prompt that describes an interaction with objects,
the objects are often projected onto the human mesh and
stylized together. For example, a basketball is depicted on
the player’s chest when the action prompt that interacts
with the ball is given, i.e., chest passing (see Fig. c). Since
CLIP is trained with the pairs of text and 2D images, a
depth ambiguity from the 2D images can be propagated
to the 3D mesh stylization. The further development of
object mesh manipulation can be applied to our work to
model Human-Object-Interaction [2, 14] as future work.

Since CLIP-Actor recommends the motion conforming to the input prompt
instead of generating motions, some prompts might not be compatible with the
BABEL [10]. CLIP-Actor has two major features to prevent such cases. First, our
retrieval module implements semantic matching; thus, it finds visual and textual
proximal action labels robustly. For example, given “Thor swinging Mjölnir” as
an input, where “swinging Mjölnir” is not included in BABEL, CLIP-Actor
retrieves “swing hammer side to side.”

Still, incompatible prompts might exist and harm the subsequent stylization
process. Our multi-modal content mesh sampling handles such cases. It finds
the best mesh frames within the motion to achieve reasonable stylization quality.
Our design choices on modules prevent the drastic degradation in stylization
even with incompatible prompts. We think that further improvements to handle
out-of-distribution cases would be an interesting future direction.
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