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The supplemental material consists of both video results and this PDF. The
PDF portion of the supplemental material shows: detailed descriptions of model
architectures (Section 1), details about the experimental setup (Section 2), and
additional results (Section 3). Video results visualize qualitative reconstructions
from the main paper from a variety of viewpoints.

1 DModel Architecture

Table 1. Model Architecture. We define the number of planes from view i be
M;, M = My + M, dimension D = 899. Embeddings are passed through a 5-layer
transformer encoder which has 1 head, dropout probability of 0.1 and a feedforward
network dimension of 2048. We create a pair-wise feature tensor of dimension M X
M x 4D and pass this tensor through 4 separate MLP heads to estimate the plane
correspondence, camera correspondence, rotation residual and translation residual. We
mask out entries in the MLP outputs such that only the pairwise predictions between
planes across views are considered during average pooling in the camera correspondence
and residual heads (note: the shape after masking in the table represents non-zero
entries). Finally, we apply a sigmoid function to the plane correspondence and the
camera correspondence scores, and extract plane correspondences across views.

Index Inputs Operation Output Shape
(1)  Inputs Input Embedding M x D
(2) (1) 5-Layer Transformer Encoder M x D
3) (2 Create Pair-wise Feature Tensor M x M x 4D

Plane Correspondence: Linear(4D — 2D),
Linear(2D — D), Linear(D — D/2),

4) (3 Linear(D/2 — D/4), Linear(D/4 — 1), My x Ma
Sigmoid(M x M),

Extract Submatrix(M x M — My X Ms)
Camera Correspondence: Linear(4D — 2D),
Linear(2D — D), Linear(D — D/2),

B) (3 Linear(D/2 — D/4), Linear(D/4 — 1), 1
Mask Matrix(M X M — M; X M),
AveragePool(M; x My — 1), Sigmoid(1)

Rotation Residual: Linear(4D — 2D),
Linear(2D — D), Linear(D — D/2),

©) (3) Linear(D/2 — D/4), Linear(D/4 — 4), 4
Mask Matrix(M X M x 4 — M; X M3 x 4),
AveragePool(M; X My x 4 — 4)

Translation Residual: Linear(4D — 2D),
Linear(2D — D), Linear(D — D/2),

™ (3 Linear(D/2 — D/4), Linear(D/4 — 3), 3
Mask Matrix(M X M x 3 — My X M3 X 3),
AveragePool(M; X Ms x 3 — 3)
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2 Experimental Details

2.1 Multiview Dataset Creation

The two view dataset is the same as [1]. For 3-view and 5-view datasets, we use
the single images sampled by [1], then randomly sample combinations of images
within each floor of the house. We select sets of images where each image in any
pair has > 3 matches and > 3 unique planes. The maximum number of sets per
floor is 10. We finally get a three-view test set of size 258 and a five-view test set
of size 76. We do not need training set or validation set for 3-view and 5-view
cases since our network is not trained on the multiview dataset.

2.2 Multiview Evaluation

We compared our proposed approach with baselines on the same view graph
that was built as discussed in the approach section. For multi-view evaluation, we
consider all combinations of input views in a sample and independently compute
the pair-wise IPAA, rotation error and translation error for each combination.
For instance, in the 3-view case, we consider the IPAA and camera error metrics
independently between view 1 and view 2, view 1 and view 3, and view 2 and
view 3.

The relative camera transformations and plane correspondences between any
combination of views is computed by chaining together relative camera transfor-
mations and plane correspondences across the created view graph, and is then
compared to the ground-truth. Finally, we compute IPAA-X and camera error
statistics over all combinations of views across samples in the test set (i.e. we
consider each combination of views in a test sample as an independent datapoint
while computing our metrics).

2.3 Ablation Details

For fair comparison, we use our same training setup for ablations. Ablations are
trained until validation accuracy plateaus, which in practice is 40k iterations;
the same as for the full model.

Feature Ablations. Ablating features results in a smaller input feature space.
For fair comparison, we therefore use a linear layer to project this smaller input
feature to features the same size as the full model. Transformer layers then
operate at the same size as in the case of the full model.

Model Ablations. In our full model, we classify camera pose into clusters from
[1], and predict a corrective residual camera pose to the predicted cluster. In the
without residual ablation, we remove this residual camera pose; this tests if the
corrective residual improves predicted pose. Our without transformer ablation
takes input features as direct input to final camera and plane MLP layers, testing
if the transformer improves plane features for final prediction.
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3 Additional Results

3.1 Quantitative Results

Additional Plane Correspondence Results We report IPAA-100 and IPAA-
80 for the feature and network ablations in addition to IPAA-90 that was pro-
vided in our experiments in Tables 2 and 3, respectively.

Table 2. IPAA-100, IPAA-90 and TPAA-80 for feature ablations.

Feature IPAA-100 1T TPAA-90 1T IPAA-80 1
Proposed 19.6 40.6 71.0
- Appearance 11.3 26.9 57.1
- Plane 16.5 35.2 65.6
- Mask 15.1 34.5 67.2

Table 3. IPAA-100, IPAA-90 and TPAA-80 for network ablations. The IPAA-X results
for the model without residual are the same as the proposed method since the camera
residual affects the relative camera pose prediction but not the plane correspondences.

Network TPAA-100 T IPAA-90 T IPAA-80 1

Proposed 19.6 40.6 71.0
- Transformer 13.8 32.7 64.3
- Residual 19.6 40.6 71.0

Additional Relative Camera Pose Estimation Results We report median
error and % error < 1m or 30° for the predicted relative translation and rotation
for the feature and network ablations in addition to mean error that was provided
in our experiments in Tables 4 and 5 respectively.

3.2 Qualitative Results

Video Results. Video results bring to life the reconstructions from the main
paper. As stated, PlaneFormer planar reconstructions are often quite close to
the ground truth even faced with large view changes and challenging coplanar
settings. If 3 or 5 views are available, the model continues to produce coherent
results.

Additional Examples. We include additional outputs for 2 input views (Figure
2), and 3 and 5 views (Figure 3). These results are consistent with those in the
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Table 4. Median error, mean error and % error < 1lm or 30° for translation and

rotation for the feature ablations.

Translation Rotation
Method Med. Mean (<1m) Med. Mean (<30°)
Proposed 0.66 1.19 66.8 5.96 22.20 83.8
- Appearance 0.69 1.23 65.2 6.01 22.78 83.3
- Plane 0.81 1.32 59.6 10.34 25.92 814
- Mask 0.75 1.26 61.9 4.65 21.21 84.3

Table 5. Median error, mean error and % error
rotation for the network ablations.

< 1m or 30° for translation and

Translation Rotation
Method Med. Mean (<1m) Med. Mean (<30°)
Proposed 0.66 1.19 66.8 5.96 22.20 83.8

- Transformer 1.02 1.48 49
- Residual 0.88 1.34 57.7

10.54 26.43 80.8
6.22 22.38 83.7

Sparse Planes

Input Views Proposed

Ground Truth

Fig. 1. Additional reconstruction comparison, extending Fig. 4 Sparse Plane
reconstructions are a good baseline, but PlaneFormer yields superior results. It pro-
duces both better stitched planes (top), and more accurate camera (bottom).

paper: plane correspondences tend to be accurate even in challenging cases, and
reconstructions are reasonable in very large view change cases and accurate in
smaller view change cases.

Additional reconstruction comparison, extending Fig. 4. See Figure 1.

Limitations and Failure Cases. We also include limitations and failure cases
in Figure 4. One limitation of a plane representation is that planes struggle to
model small details in scenes, which sometimes leads to incomplete reconstruc-
tions (top two examples). The model may also perform poorly in some circum-
stances. Plane correspondences struggle when many small, similar objects are
visible across large view change (second two examples). Predicting camera can
sometimes be difficult given large view change leading to significant difference
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Fig. 2. Additional 2 View Results.

in appearance (bottom two examples in two-view case). Sometimes both cam-
era and correspondence are poor (bottom example, two-view case). When more
views are present, planes are not always fused cleanly, leading to intersections
(final two examples, multi-view case).
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Fig. 3. Additional 3 and 5 View Results.



PlaneFormers

Ground Truth
e
<it
h
L

]
N - B
-

Input Views Plane Correspondence Proposed

=

Proposed Ground Truth Proposed Ground Truth

Fig. 4. Limitations and Failure Cases.
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