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Abstract. The current state-of-the-art methods in 3D instance segmen-
tation typically involve a clustering step, despite the tendency towards
heuristics, greedy algorithms, and a lack of robustness to the changes
in data statistics. In contrast, we propose a fully-convolutional 3D point
cloud instance segmentation method that works in a per-point prediction
fashion. In doing so it avoids the challenges that clustering-based meth-
ods face: introducing dependencies among different tasks of the model.
We find the key to its success is assigning a suitable target to each sam-
pled point. Instead of the commonly used static or distance-based assign-
ment strategies, we propose to use an Optimal Transport approach to
optimally assign target masks to the sampled points according to the dy-
namic matching costs. Our approach achieves promising results on both
ScanNet and S3DIS benchmarks. The proposed approach removes inter-
task dependencies and thus represents a simpler and more flexible 3D
instance segmentation framework than other competing methods, while
achieving improved segmentation accuracy.

Keywords: Clustering-free, Dependency-free, 3D instance segmenta-
tion, Dynamic target assignment, Optimal Transport

1 Introduction

3D instance segmentation describes the problem of identifying a set of instances
that explain the locations of a set of sampled 3D points. It is an important step
in a host of 3D scene-understanding challenges, including autonomous driving,
robotics, remote sensing, and augmented reality. Despite this fact, the perfor-
mance of 3D instance segmentation lags that of 2D instance segmentation, not
least due to the additional challenges of 3D representation, and variable density
of points.

Most of the top-performing 3D instance segmentation approaches [17, 7, 14,
21, 4, 10] involve a clustering step. Despite their great success, clustering-based
methods have their drawbacks: they are susceptible to the performance of the
clustering approach itself, and its integration, due to either (1) error accumu-
lation caused by the inter-task dependencies [17, 14, 4] or (2) non-differentiable
processing steps [21, 10]. For example, in PointGroup [17], instance proposals
are generated by searching homogenous clusters that have identical semantic
predictions and close centroid predictions. However, the introduced dependen-
cies on both tasks make the results sensitive to the heuristics values chosen.
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Fig. 1. A comparison of the instance segmentation results achieved by DyCo3D [14]
and our method. The subpar performance of instance segmentation for DyCo3D [14] is
caused by the dependency on semantic segmentation. Our method addresses the task in
a per-point prediction fashion and removes the dependencies between different tasks of
the model. Thus, it is free from the error accumulation introduced by the intermediate
tasks. Best viewed in colors.

DyCo3D [14] addressed the issue by encoding instances as continuous functions.
But the accuracy is still constrained by the semantic-conditioned convolution. As
a result, it can be impossible to recover from errors in intermediate stages, par-
ticularly given that many methods greedily associate points with objects (which
leaves them particularly susceptible to early clustering errors). Even with careful
design, because of the diversity in the scales of instances, and the unbalanced
distribution of semantic categories, the performance of these intermediate tasks
is often far from satisfactory. This typically leads to fragmentation and merging
of instances, as shown in Fig. 1.

In this paper, we remove the clustering step and the dependencies within the
model and propose a much simpler pipeline working in a per-point prediction
fashion. Every sampled point will generate a set of instance-related convolutional
parameters, which are further applied for decoding the binary masks of the corre-
sponding instances. However, building such a clustering-free and dependency-free
pipeline is non-trivial. For example, removing the clustering step and conditional
convolution in DyCo3D causes mAP to drop by more than 8% and 6%, respec-
tively. We conduct comprehensive experiments and find the reason for the huge
drop in performance is the ambiguity of the targets for the sampled points. In
2D instance segmentation and object detection, the center prior, which assumes
the predictions from the central areas of an instance are more likely to pro-
vide accurate results, offers a guideline to select well-behaved samples [32, 31, 8].
This distance-based prior is hard to apply in 3D, however, as the distribution of
high-quality samples in 3D point clouds is irregular and unpredictable. The fact
that objects can be arbitrarily close together in real 3D scenes adds additional
complexity. Thus, the resulting ambiguity in point-instance associations can con-
taminate the training process and impact final performance. Instead of applying
a static or widely used distance-based strategy, we propose to optimally assign
instances to samples via an Optimal Transport (OT) solution. It is defined in
terms of a set of suppliers and demanders, and the costs of transportation be-
tween them. We thus associated a demander with each instance prediction of
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the sampled point, and a supplier with each potential instance ground truth.
The cost of transport reflects the affinity between each pair thereof. The OT
algorithm identifies the optimal strategy by which to supply the needs of each
demander, given the cost of transport from each supplier. The points will then
be associated with the target corresponding to the demander to which it has
allocated the greatest proportion of its supply. The costs of transporting are
determined by the Dice Coefficient, which is updated dynamically based on the
per-point predictions. The OT solution not only minimizes the labor for heuris-
tics tuning but allows it to make use of the sophisticated tools that have been
developed for solving such problems. In particular, it can be efficiently solved by
the off-the-shelf Sinkhorn-Knopp Iteration algorithm [5] with limited computa-
tion in training.

To summarise, our contributions are listed as follows.

– We propose a clustering-free framework for 3D instance segmentation, work-
ing in a per-point prediction fashion. In doing so it removes the dependencies
among different tasks and thus avoids error accumulation from the interme-
diate tasks.

– For the first time, we address the target assignment problem for 3D in-
stance segmentation, which has been overlooked in the 3D community. Our
proposed Optimal Transport solution is free from heuristics with improved
accuracy.

– We achieve promising results on both ScanNet and S3DIS, with a much
simpler pipeline.

2 Related Work

Target Assignment in 2D Images. The problem of associating candidates
to targets arises commonly in 2D object detection. Anchor-based detectors [30,
23, 22] apply a hard threshold to an intersection-over-union measure to divide
positive and negative samples. This approach can also be found in many other
methods [3, 11]. Anchor-free detectors [32, 42, 18] have drawn increasing atten-
tion due to their simplicity. These methods observe that samples around the
center of objects are more likely to provide accurate predictions. Inspired by
this center prior, some methods [31, 33, 18, 38] introduce a classifier by treating
these central regions as positive samples. ATSS [39], in contrast, is adaptive in
that it sets a dynamic threshold according to the statistics of the set of closest
anchors. Free-Anchor [40] frames detector training as a maximum likelihood es-
timation (MLE) procedure and proposes a learning-based matching mechanism.
Notably, OTA [8] formulates the task of label assigning as Optimal Transport
problem.

Instance Segmentation on 3D Point Cloud. The task of instance seg-
mentation in the 3D domain is complicated by the irregularity and sparsity of the
point cloud. Unlike instance segmentation of images, in which top-down methods
are the state-of-the-art, the leader board in instance segmentation of 3D point
clouds has been dominated by bottom-up approaches due to unsatisfactory 3D
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Fig. 2. The framework of our proposed method. The ‘inst head’ is designed to generate
instance masks by applying dynamic convolution. K points are sampled via the farthest
point sampling strategy. Each sampled point is responsible for one specific instance
mask or background. The targets are calibrated dynamically via an Optimal Transport
solution, which takes as input the mask prediction from the auxiliary head and outputs
the calibrated ground truth for the main instance head. The targets for the auxiliary
instance prediction ‘preda’ are consistent with the instance label of the sampled points.

detection results. SGPN [34], for instance, predicts an N ×N matrix to measure
the probability of each pair of points coming from the same instance, where N
is the number of total points. ASIS [35] applies a discriminative loss function
from [2] to learn point-wise embeddings. The mean-shift algorithm is used to
cluster points into instances. Many works (e.g. [41, 13, 12, 27]) follow this metric-
based pipeline. However, these methods often suffer from low accuracy and poor
generalization ability due to their reliance on pre-defined hyper-parameters and
complex post-processing steps. Interestingly, PointGroup [17] exploits the voids
between instances for segmentation. Both original and center-shifted coordinates
are applied to search nearby points that have identical semantic categories. The
authors of DyCo3D [14, 15] addressed the sensitivity of clustering methods to the
grouping radius using dynamic convolution. Instead of treating clusters as in-
dividual instance proposals, DyCo3D utilized them to generate instance-related
convolutional parameters for decoding masks of instances. Chen et al. proposed
HAIS [4], which is also a clustering-based architecture. It addressed the problem
of the over- and under-segmentation of PointGroup [17] by deploying an intra-
instance filtering sub-network and adapting the grouping radius according to the
size of clusters. SSTN [21] builds a semantic tree with superpoints [20] being the
leaves of the tree. The instance proposals can be obtained when a non-splitting
decision is made at the intermediate tree node. A scoring module is introduced
to refine the instance masks.

3 Methods

The pipeline of the proposed method is illustrated in Fig. 2, which is built upon
a sparse convolution backbone [9]. It maintains a UNet-like structure and takes
as input the coordinates and features, which have a shape of N × 3 and N × I,
respectively. N is the total number of input points and I is the dimension of
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input features. There is one output branch of mask features, which is used to
decode binary masks of instances. It is denoted as Fm ∈ RN×d′ , where d′ is
the dimension of the mask features. Inspired by DyCo3D [14], we propose to
encode instance-related knowledge into a set of convolutional parameters and
decode the corresponding masks with several 1×1 convolutions. Different from
DyCo3D, which requires a greedy clustering algorithm and a conditioned de-
coding step, our proposed method, on the other hand, removes the clustering
step and the dependencies among different tasks, simplifying the network in a
point-wise prediction pipeline.

3.1 Preliminary on DyCo3D

DyCo3D [14] has three output branches: semantic segmentation, centroid offset
prediction, and mask features. The breadth-first-searching algorithm is used to
find out the homogenous points that have identical semantic labels and close
centroid predictions. Each cluster is sent to the instance head and generates a set
of convolution parameters for decoding the mask of the corresponding instance.
Formally, the mask M̂k predicted by the k-th cluster can be formulated as:

M̂k = Conv1x1(feature, weight)

= Conv1x1(Fm ⊕ Ck
rel,mlp(G(Ps, Pc)k))� 1(Ps = sk)

(1)

The input features to convolution contains two parts: Fm and Ck
rel. Fm is the

mask features shared by all instances. Ck
rel ∈ RN×3 is the instance-specific rel-

ative coordinates, which are obtained by computing the difference between the
center of the k-th cluster and all input points. Fm and Ck

rel are concatenated
(‘⊕’) along the feature dimension. The convolutional weights are dynamically
generated by an mlp layer, whose input is the feature of the k-th cluster. The
clustering algorithm G(·) takes the semantic prediction Ps ∈ RN and centroid
prediction Pc ∈ RN as input and finds out a set of homogenous clusters. The
k-th cluster is denoted as G(·)k. Besides, the dynamic convolution in DyCo3D is
conditioned on the results of semantic segmentation. For example, DyCo3D can
only discriminate one specific ‘Chair’ instance from all points that are semanti-
cally categorized as ‘Chair’, instead of the whole point set. It is implemented by
an element-wise production (‘�’) with a binary mask (‘1(·)’). sk is the seman-
tic label of the k-th cluster. Finally, the target mask for M̂k is decided by the
instance label of the k-th cluster. More details can be found in [14].

3.2 Proposed Method

Although promising, DyCo3D [14] involves a grouping step to get the instance-
related clusters, depending on the accuracy of semantic segmentation and offset
prediction. Besides, the conditional convolution also forces the instance decod-
ing to rely on the results of semantic segmentation. These inter-task dependen-
cies cause error accumulation and lead to sub-par performance (See Fig. 1). In
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Fig. 3. The left image is an indoor scene with three instances of ‘Chair’. The right image
is the quality of instance predictions by each point. The brighter the color, the more
accurate the mask predicted by the point. Different from the 2D image, the distribution
of the positive samples in 3D point cloud is irregular, making it hard to learn a criterion
to select informative samples for each instance. In addition, the ambiguity of target
assignment is widespread in the 3D scenes. Some samples in instance ‘C’ show high-
quality predictions of the instance ‘D’. Best viewed in color.

this paper, we propose a clustering-free and dependency-free framework in a
per-point prediction fashion. Total K points are selected via the farthest point
sampling strategy. The instance head takes as input both the mask feature Fm

and point-wise feature fkb . The k-th mask M̂k predicted by the instance head
can be formulated as:

M̂k = Conv1x1(feature, weight)

= Conv1x1(Fm ⊕ Ck
rel,mlp(f

k
b ))

(2)

where fkb is the feature of the k-th sampled point from output of the backbone.
Ck

rel ∈ RN×3 is the relative position embedding, obtained by computing the
difference between the coordinate of the k-th point and all other points.

However, building such a simplified pipeline is non-trivial. Removing the
clustering step and conditional convolution causes the mAP of DyCo3D to drop
dramatically.

Observation To find out the reasons that cause the failure of this point-wise
prediction pipeline, we visualize the quality of masks predicted by each point (ac-
cording to Eq. 2). For training, the target mask for each point is consistent with
its instance label. As shown in Fig. 3, the distribution of high-quality samples is
irregular and can be influenced by many factors: (1) disconnection, (2) distance
to the instance center, and (3) spatial relationships with other objects. Besides,
the fact that objects can be arbitrarily close together in real 3D scenes adds
additional complexity. As illustrated in Fig. 3(c,d), the poorly behaved samples
in ‘chair c’ can accurately predict the mask of the ‘desk’. Such ambiguity intro-
duced by the static assigning strategy contaminates the training process, leading
to inferior performance.
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Target Assignment Although the task of target assignment has shown its
significance in 2D object detection and instance segmentation [40, 39, 8], to the
best of our knowledge, there is very little research in the 3D domain. One of the
most straightforward ways is to define a criterion to select a set of informative
samples for each instance. For example, thanks to the center prior [32], many
approaches [31, 42, 18, 38] in the 2D domain treat the central areas of the instance
as positive candidates. However, such regularity is hard to define for the 3D point
cloud, as shown in Fig. 3. Quantitative results can be found in Tab. 1.

Instead of applying a static strategy or learning an indicative metric, we
propose to assign a suitable target for each sample based on its prediction. A
background mask (i.e. all zeros) is added to the target set to address the poorly-
behaved points.

Optimal Transport Solution Given K sampled points (via farthest point
sampling) and their corresponding mask predictions {M̂k}K (using Eq. 2), the
goal of target assignment is to find a suitable target for each prediction in train-
ing. There are T+1 targets in total, including T instance masks {Mt}T and one
background mask MT+1 (zero mask). Inspired by [8], we formulate the task as
an Optimal Transport problem, which seeks a plan by transporting the ‘goods’
from suppliers (i.e. Ground Truth and Background Mask) to demanders (i.e.
predictions of the sampled points) at a minimal transportation cost.

Supposing the t-th target has µt unit of goods and each prediction needs one
unit of goods, we denote the cost for transporting one unit of goods from the
t-th target to the k-th prediction as Ctk. By applying Optimal Transport, the
task of the target assignment can be written as:

U∗ = arg min
U∈R(T+1)×K

+

∑
t,k

CtkUtk

s.t. U1K = µT+1, U
T1T+1 = 1K ,

(3)

where U∗ is the optimal assignment plan, Utk is the amount of labels transported
from the t-th target to the k-th prediction. µT+1 is the label vector for all T + 1
targets. The transportation cost Ctk is defined as:

Ctk =

{
Ldice(Mt, M̂k) t ≤ T
Ldice(1−Mt, 1− M̂k) t = T + 1

(4)

where Ldice denotes the dice loss. To calculate the cost between the background
target and the prediction, we use 1 −Mt and 1 − M̂k for a numerically stable
training. The restriction in Eq. 3 describes that (1) the total supply must be
equal to the total demand and (2) the goods demand for each prediction is 1
(i.e. each prediction needs one target mask). Besides, the label vector µT+1,
indicating the total amount of goods held by each target, is updated by:

µt =

{
int(

∑
k IoU(M̂k,Mt)) t ≤ T

K −
∑T

i=1 µi t = T + 1
(5)
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where µT+1 refers to the target amount maintained in the background target
and int(·) is the rounding operation. According to Eq. 5, the amount of supplied
goods for each target is dynamically decided, depending on its IoU with each
prediction. Due to the restriction in Eq. 3, we set µT+1 equal to K −

∑T
t=1.

The efficient Sinkhorn-Knopp algorithm [5] allows it to obtain U∗ with limited
computation overhead. After getting the optimal assignment U∗, the calibrated
targets for the K sampled points can be determined by assigning each point with
the target that transports the largest amount of goods to it.

Compared with [8], the number of the demanders is much fewer. Thus, the
minimum supply of each target can be zero in training. Doing so may make the
model fall into a trivial solution when K is small: all predictions are zero masks
and assigned to the background target due to the lowest transportation cost
in Eq. 4. To this end, we propose a simple yet effective way by introducing an
auxiliary instance head, whose targets are consistent with the instance labels of
the sampled points. We use the predictions from this auxiliary head to calculate
the cost matrix in Eq. 4. The dynamically calibrated targets are used for the
main instance head. To alleviate the impact of the wrongly assigned samples in
the auxiliary head, the loss weight for this auxiliary task is decreasing in training.

3.3 Training

To summarize, the loss function includes two terms for training, including the
auxiliary loss term La and the main task loss term Lm:

L = wa

K∑
k=1

La(Ma
k , M̂

a
k ) +

K∑
k=1

Lm(Mm
k , M̂

m
k ) (6)

where {Ma
k }K ∈ {0, 1}K×N is the ground truth masks for the K predictions.

These targets are static and decided by the instance labels of the K sampled
points. {Mm

k }K ∈ {0, 1}K×N is the set of the calibrated targets for the main

instance head. {M̂a
k }K and {M̂m

k }K are the predictions from auxiliary and main
instance heads, respectively. wa is the loss weight for the auxiliary task. We set
wa to 1.0 with a decaying rate of 0.99. Early in the training phase, the static
targets for the auxiliary task play a significant role in stabilizing the learning
process. The loss of the main task is involved until the end of a warming-up
period, which is set to 6k steps. So far, we have obtained a set of binary masks.
There are many ways to obtain the corresponding categories, for example, adding
a classification head for each mask proposal. In our paper, we implement it by
simply introducing a semantic branch. The category ck of the k-th instance is
the majority of the semantic predictions within the foreground mask of M̂m

k .
Instances with a number of points less than 50 are ignored.
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Table 1. Component-wise analysis on ScanNetV2 validation set. CP: the center prior
tailored for 3D point cloud. DT: dynamic targets assignment using Optimal Trans-
portation. AUX: the auxiliary loss used in Eq. 6.

Method CP DT AUX mAP AP@50 AP@25

Baseline 33.7 52.4 65.0
X 34.1 53.2 65.4

X 36.8 54.8 65.9
X 36.5 54.3 65.7

Ours X X 39.6 59.2 70.4

4 Experiments

We conduct comprehensive experiments on two standard benchmarks to validate
the effectiveness of our proposed method: ScanNet [6] and Stanford 3D Indoor
Semantic Dataset (S3DIS) [1].

4.1 Datasets

ScanNet has 1613 scans in total, which are divided into training, validation,
and testing with a size of 1201, 312, and 100, respectively. The task of instance
segmentation is evaluated on 18 classes. Following [14], we report the results on
the validation set for ablation study and submit the results on the testing set
to the official evaluation server. The evaluation metrics are mAP (mean average
precision ) and AP@50.

S3DIS contains more than 270 scans, which are collected on 6 large in-
door areas. It has 13 categories for instance segmentation. Following the pre-
vious method [35], the evaluation metrics include: mean coverage (mCov), mean
weighed coverage (mWCov), mean precision (mPrec), and mean recall (mRec).

4.2 Implementation Details

The backbone model we use is from [9], which maintains a symmetrical UNet
structure. It has 7 blocks in total and the scalability of the model is controlled by
the channels of the block. To prove the generalization capability of our proposed
method, we report the performance with both small and large backbones, de-
noted as Ours-S and Ours-L, respectively. The small model has a channel unit
of 16, while the large model is 32. The default dimension of the mask features
is 16 and 32, respectively.

For each input scan, we concatenate the coordinates and RGB values as the
input features. All experiments are trained for 60K iteration with 4 GPUS. The
batch size for each GPU is 3. The learning rate is set to 1e-3 and follows a
polynomial decay policy. In testing, the computation related to the auxiliary
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head is ignored. Only Non-Maximum-Suppression (NMS) is required to remove
the redundant mask predictions for inference, with a threshold of 0.3.

4.3 Ablation Studies

In this section, we verify the effectiveness of the key components in our proposed
method. For a fair comparison, all experiments are conducted on the validation
set of ScanNet [6] with the smaller model.

Baseline. We build a strong baseline by tailoring CondInst [31] for the 3D
point cloud. It works in a per-point prediction fashion and each sampled point
has a static target, which is consistent with the corresponding instance label.
As shown in Tab. 1, our method achieves 33.7% 52.4%, and 65.0% in terms
of mAP, AP@50, and AP@25, respectively. With a larger number of sampled
points and longer iterations, our baseline model surpasses the implementation
of DyCo3D [14] by a large margin.

Center Prior in 3D. To demonstrate the difficulty of selecting informative
samples in 3D, we tailor the center prior [32] to 3D point cloud. As points are
collected from the surface of the objects, centers of 3D instances are likely to
be in empty space. To this end, we first predict the offset between each point
and the center of the corresponding object. If the distance between the center-
shifted point and the ground truth is close (≤ 0.3m), the point is regarded as
positive and responsible for the instance. If the distance is larger than 0.6m, the
point is defined as negative. Other points are ignored for training. As presented
in Tab. 1, selecting positive samples based on the 3D center prior only boosts
0.4% and 0.8% in terms of mAP and mAP@50, respectively. The incremental
improvement demonstrates the difficulty of selecting informative samples in 3D.
In contrast, we propose to apply a dynamic strategy, by which the target for
each candidate is determined based on its prediction.

Fig. 4. Ablation study on the number of the sampling point.

Dynamic Targets. To show the effectiveness of the dynamic strategy, we
implement an experiment by removing the auxiliary head. As the predictions are
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Table 2. The performance of 3D object detection, tested on ScanNet validation set.
AP@50 is reported.

3D Object Detection

ScanNetV2 AP@50%

MRCNN 2D-3D [11] 10.5
F-PointNet [29] 10.8

GSPN [37] 17.7
3D-SIS [16] 22.5
VoteNet [28] 33.5

PointGroup [17] 42.3
DyCo3D [14] 45.3
3D-MPA [7] 49.2

Ours 51.0

basically random guesses in the early stage of the training, we first warm up the
model for 12k iterations with a static assignment to avoid the trivial solution. In
the remaining steps, targets are calibrated by the Optimal Solution. As shown
in Tab. 1, our approach boosts the performance of the baseline model by 3.1%,
2.4%, and 0.9%, in terms of mAP, AP@50, and AP@25, respectively.

Auxiliary Supervision. As illustrated in Fig. 2, we propose to regularize
the intermediate layers by introducing an auxiliary instance head for decoding
the instance masks. The targets for this task are static and consistent with the
instance labels. Besides, as the generated parameters are convolving with the
whole point set, large context and instance-related knowledge are encoded in the
point-wise features. To remove the influence of the dynamic assignment, both
auxiliary and the main task are applying a static assignment strategy. As shown
in Tab. 1, the auxiliary supervision brings 2.8%, 1.9%, and 0.7% improvement in
terms of mAP, mAP@50, and mAP@25, respectively. In addition to the encoded
large context, the predicted instance masks are also applied to the Optimal
Solution to obtain calibrated targets. Combining with the proposed dynamic
assignment strategy, it further boosts mAP, AP@50, and AP@25 for 3.1%, 4.4%,
and 4.5%, respectively, achieving 39.6% in terms of mAP with a small backbone.

Analysis on Efficiency. Our method takes the whole scan as input, with-
out complex pre-processing steps. Similar to DyCo3D [14], the instance head
is implemented in parallel. To make a fair comparison, we set K equal to the
average number of clusters in DyCo3D. Using the same GPU, the mAP of our
proposed method is 1.8% higher than DyCo3D and the inference time is 26%
faster than DyCo3D.

Number of Random Selected Samples. We randomly select K points,
each of which is responsible for one specific instance or the background (all
zeros). In this part, we study the influence of the value of K. The performance
is shown in Fig. 4. We set K to 256 for its highest mAP.
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Fig. 5. Comparison with the results of DyCo3D [14] and PointGroup [17]. The el-
lipses highlight specific over-segmentation/joint regions. Instances are presented with
different colors. Best viewed in color.

The Dimension of the Mask Feature. The mask feature contains the
knowledge of instances. We conduct experiments to show the influence of differ-
ent dimensions of the mask feature. We find the fluctuation of the performance
is relatively small when the dimension is greater than 8, showing the strong ro-
bustness of our method to the variation of d′. We set d′ to 16 in our experiments.

4.4 Comparison with State-of-the-art Methods

We compare our method with other state-of-the-art methods on both S3DIS and
ScanNet datasets.

3D Detection. Following [14, 7], we evaluate the performance of 3D detec-
tion on the ScanNet dataset. The results are obtained by fitting axis-aligned
bounding boxes for predicted masks, as presented in Tab. 2. Our method sur-
passes DyCo3D [14] and 3D-MPA [7] by 4.8% and 1.8% in terms of mAP, re-
spectively. The promising performance demonstrates the compactness of the seg-
mentation results.

Instance Segmentation on S3DIS. Following the evaluation protocols
that are widely applied in the previous approaches, experiments are carried out
on both Area-5 and 6-Fold cross-validation. As shown in Tab. 3, our proposed
method achieves the highest performance and surpasses previous methods with a
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Table 3. Instance segmentation results on S3DIS. The performance on both Area-5
and 6-fold cross-validation is reported.

Method mCov mWCov mPrec mRec

Test on Area 5

SGPN’18 [34] 32.7 35.5 36.0 28.7
ASIS’19 [35] 44.6 47.8 55.3 42.4

3D-BoNet’19 [36] - - 57.5 40.2
3D-MPA’20 [7] - - 63.1 58.0
MPNet’20 [12] 50.1 53.2 62.5 49.0
InsEmb’20 [13] 49.9 53.2 61.3 48.5

PointGroup’20 [17] - - 61.9 62.1
DyCo3D’21 [14] 63.5 64.6 64.3 64.2

HAIS’21 [4] 64.3 66.0 71.1 65.0
SSTNet’21 [21] - - 65.5 64.2

Ours 64.3 65.3 73.1 65.2

Test on 6-fold

SGPN’18 [34] 37.9 40.8 31.2 38.2
MT-PNet’19 [27] - - 24.9 -
MV-CRF’19 [27] - - 36.3 -

ASIS’19 [35] 51.2 55.1 63.6 47.5
3D-BoNet’19 [36] - - 65.6 47.6
PartNet’19 [25] - - 56.4 43.4
InsEmb’20[13] 54.5 58.0 67.2 51.8
MPNet’20 [12] 55.8 59.7 68.4 53.7

PointGroup’20 [17] - - 69.6 69.2
3D-MPA’20 [7] - - 66.7 64.1

HAIS’21 [4] 67.0 70.4 73.2 69.4
SSTNet’21 [21] - - 73.5 73.4

Ours 71.5 74.1 76.4 74.0

much simpler pipeline. With 6-fold validation, our method improves HAIS [4] by
4.5%, 3.7%, 3.2%, and 4.6% in terms of mConv, mWConv, mPrec, and mRec, re-
spectively. The proposed approach works in a fully end-to-end fashion, removing
the error accumulation caused by the inter-task dependencies.

Instance Segmentation on ScanNet. The performance of instance seg-
mentation on the validation and testing sets of ScanNet [6] is reported in Tab. 4
and Tab. 5, respectively. On the validation set, we report the performance
with both small and large backbones, denoted as Ours-S and Ours-L, respec-
tively. It surpasses previous top-performing methods on both architectures in
terms of mAP, demonstrating strong generalization capability. Compared with
DyCo3D [14], our approach exceeds it by 4.2% in terms of mAP. The qualitative
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Table 4. Quantitative comparison on the validation set of ScanNetV2. To make a fair
comparison, we report the performance with different model scalability. The perfor-
mance of HAIS-S is obtained by using the official training code.
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SGPN [34] 11.3 - 10.1 16.4 20.2 20.7 14.7 11.1 11.1 0.0 0.0 10.0 10.3 12.8 0.0 0.0 48.7 16.5 0.0 0.0
3D-SIS [16] 18.7 - 19.7 37.7 40.5 31.9 15.9 18.1 0.0 11.0 0.0 0.0 10.5 11.1 18.5 24.0 45.8 15.8 23.5 12.9
3D-MPA [7] 59.1 35.3 51.9 72.2 83.8 66.8 63.0 43.0 44.5 58.4 38.8 31.1 43.2 47.7 61.4 80.6 99.2 50.6 87.1 40.3
PointGroup [17] 56.9 34.8 48.1 69.6 87.7 71.5 62.9 42.0 46.2 54.9 37.7 22.4 41.6 44.9 37.2 64.4 98.3 61.1 80.5 53.0
DyCo3D-S [14] 57.6 35.4 50.6 73.8 84.4 72.1 69.9 40.8 44.5 62.4 34.8 21.2 42.2 37.0 41.6 62.7 92.9 61.6 82.6 47.5
HAIS-S [4] 59.1 38.0 54.4 76.0 87.7 69.4 66.5 47.5 48.5 53.1 43.6 24.0 50.9 55.8 45.1 58.5 94.7 53.6 80.8 53.0
Ours-S 59.2 39.6 51.1 75.9 86.5 72.8 67.3 45.2 52.3 57.2 43.8 25.7 40.5 53.7 37.2 59.4 98.2 58.9 87.0 52.9

DyCo3D-L [14] 61.0 40.6 52.3 70.4 90.2 65.8 69.6 40.5 47.2 48.4 44.7 34.9 52.3 47.5 51.5 70.3 94.8 74.3 77.4 56.4
HAIS-L [4] 64.0 43.5 55.4 70.2 82.5 67.7 75.3 48.1 51.5 49.4 48.7 47.8 58.5 55.7 53.0 76.1 100.0 69.2 87.1 56.3
Ous-L 63.7 45.6 58.5 78.5 93.6 63.2 76.5 55.6 48.5 59.4 38.3 36.9 54.2 50.7 46.2 72.3 98.3 68.8 87.1 59.5

Table 5. Quantitative results on ScanNetV2 testing set.
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R-PointNet [37] 15.8 35.6 17.3 11.3 14.0 35.9 1.2 2.3 3.9 13.4 12.3 0.8 8.9 14.9 11.7 22.1 12.8 56.3 9.4
3D-SIS [16] 16.1 40.7 15.5 6.8 4.3 34.6 0.1 13.4 0.5 8.8 10.6 3.7 13.5 32.1 2.8 33.9 11.6 46.6 9.3
MASC [24] 25.4 46.3 24.9 11.3 16.7 41.2 0.0 37.4 7.3 17.3 24.3 13.0 22.8 36.8 16.0 35.6 20.8 71.1 13.6
PanopticFusion [26] 21.4 25.0 33.0 27.5 10.3 22.8 0.0 34.5 2.4 8.8 20.3 18.6 16.7 36.7 12.5 22.1 11.2 66.6 16.2
3D-BoNet [36] 25.3 51.9 32.4 25.1 13.7 34.5 3.1 41.9 6.9 16.2 13.1 5.2 20.2 33.8 14.7 30.1 30.3 65.1 17.8
MTML [19] 28.2 57.7 38.0 18.2 10.7 43.0 0.1 42.2 5.7 17.9 16.2 7.0 22.9 51.1 16.1 49.1 31.3 65.0 16.2
3D-MPA [7] 35.5 45.7 48.4 29.9 27.7 59.1 4.7 33.2 21.2 21.7 27.8 19.3 41.3 41.0 19.5 57.4 35.2 84.9 21.3
DyCo3D [14] 39.5 64.2 51.8 44.7 25.9 66.6 5.0 25.1 16.6 23.1 36.2 323.2 33.1 53.5 22.9 58.7 43.8 85.0 31.7
PointGroup [17] 40.7 63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.0 25.6 56.2 34.1 86.0 29.1
HAIS [4] 45.7 70.4 56.1 45.7 36.4 67.3 4.6 54.7 19.4 30.8 42.6 28.8 45.4 71.1 26.2 56.3 43.4 88.9 34.4
Ours 43.8 81.5 50.7 33.8 35.5 70.3 8.9 39.0 20.8 31.3 37.3 28.8 40.1 66.6 24.2 55.3 44.2 91.3 29.3

OccuSeg∗ [10] 44.3 85.2 56.0 38.0 24.9 67.9 9.7 34.5 18.6 29.8 33.9 23.1 41.3 80.7 34.5 50.6 42.4 97.2 29.1
SSTN∗ [21] 50.6 73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0

result is illustrated in Fig. 5. We also make a fair comparison with HAIS [4], the
highest mAP is achieved on the validation set.

5 Conclusion and Future Works

In this paper, we propose a novel pipeline for 3D instance segmentation, which
works in a per-point prediction fashion and thus removes the inter-task depen-
dencies. We show that the key to its success is the target assignment, which is
addressed by an Optimal Transport solution. Without bells and whistles, our
method achieves promising results on two commonly used datasets.

The sampling strategy used in our method is fps, which is slightly better than
random sampling. We believe there exist other informative strategies that can
further improve the performance. In addition, due to the continuity represen-
tation capability, our method offers a simple solution to achieve instance-level
reconstruction with the sparse point cloud. We leave these for future works.
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