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In Section 1, we provide an elaborate illustration of the proposed Signed
Distance Regularisation (SDR), followed by implementation details (Section 2)
and evaluation protocols (Section 3). In Section 4, we perform an in-depth ab-
lation study to quantitatively justify the efficacy of different components in our
pipeline. In Section 5, we extend the robustness analysis by discussing the ability
of our approach to endure varying noise levels and the impact of training data
required to achieve optimal performance. Notably, we compare against methods
trained with 100× more training shapes with data-augmentation and show that
our approach, trained on a fraction of data is more robust. Finally, we conclude
by discussing the known shortcomings of our method in Section 7 and show
more qualitative results over different challenging datasets in Section 6. We em-
phasize that for this supplementary material, we do not perform any additional
parameter tuning or improve upon our reported results in the main submission.

1 Signed Distance Regularization

To recall, we are given a template volume and target volume, denoted as [T ],
[S] respectively, which, we wish to align by learning a deformation field Dω(·).
Let ti ∈ [T ] be a point sampled in the template volume and xi ∈ [S] be a
point in the shape volume. Let x̂i := ti +Dω(αi) be a point in space upon ap-
plying the deformation field Dω(ti). We drop subscript i for brevity. Let σ̂x̂ be
the signed distance of x̂ in the shape volume σ̂x̂ := d(x̂, ∂S) that we wish to
estimate. Similarly, let σt, be the signed distance of t in the template volume
σt := d(t, ∂T ). Then, our regularisation aims to preserve the SDF under the
deformation σt ≈ σ̂x̂ as shown in Figure 1.

This regularisation is straightforward if σ̂x̂ is known. However, in discrete
settings, measuring σ̂x̂ is not well-defined. To that end, we elaborate on the
approximation technique using Radial Basis Function (RBF), introduced in the
main paper. We begin by constructing the neighbourhood N (x̂i) = [x1 . . . xK ]T

of x̂ in the target shape volume [S]. Please note that N (x̂i) consists of points
sampled in [S], whose SDF values are available as the result of pre-processing.
Accordingly, let ∆ = [σ1 . . . σK ]T be the signed distance of xj ∈ N (x̂i) j ∈
[1,K].

We used multiquadric kernel function as our interpolant, φ(||pi, pj ||) :=√
ε0 + ||pi − pj ||2 with Φ being the corresponding kernel matrix. Then, the in-
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Fig. 1: Illustrating the key intuition behind Signed Distance Regularisation. (a)
Given a point near the surface in [T ], (b) its corresponding point upon applying
the deformation Dω(·) must approximately have same the SDF. (c) and (d) : A
particular case that shows SDF preserving the deformation field, owing to LSDR.

terpolated signed distance at the deformed point w.r.t target shape volume [S]
is given as follows,

σ̂x̂ = φ(x̂)Φ−1∆ (1)

The above equation has a solution iff the kernel matrix Φ is invertible. For
our choice of kernel function, it is easy to infer the following properties,

1. φ(||pi, pj ||) ≥ 0 ∀pi, pj ∈ R3

2. φ(||pi, pj ||) > 0 ∀pi, pj ∈ R3, s.t pi ̸= pj

Therefore, φ satisfies elementary properties of positive definiteness [20] and
hence our matrix Φ is always invertible. Furthermore, since we estimate σ̂x̂ as a
differentiable function of x̂, the interpolation is differentiable w.r.t the input t
and can be used with auto-grad libraries.

2 Additional Implementation Details

First, we provide additional details on pre-processing and training details con-
cerning our method. Subsequently, we elaborate on the experimental setting of
different baselines.

2.1 Pre-Processing

We start with a fixed template T and a set of shapes {S0 . . .SN} with a known
correspondence Π. We scale all shapes to fit within a unit sphere and align them
along Y-axis, similar to previous works [6,26,9,21]. This pre-processing step is
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Fig. 2: Template meshes and respective volumes for human and animal experi-
ments. For visualization purposes, we depict 10,000 points sampled in the tem-
plate volume.

performed for all baselines. We construct the shape volume [S̃i] by sampling
400,000 points off-the surface of the shape. We perform this sampling aggressively
close to the surface by displacing points sampled on the surface with a small
Gaussian noise. We estimate the signed distance of displaced points by placing
100 virtual laser scans of the shape from multiple angles, similar to [16]. This
setup enables us to simultaneously compute surface normals for 20,000 points
sampled on the surface of the shape. This pre-computed surface normals are used
to enforce normal consistency prior in Equation 7 of the main paper. We perform
this pre-processing independently and identically for template T to obtain [T̃ ]
and σT . As mentioned previously, we use two templates (analogously template
volumes) across all experiments, namely, one human and one animal as depicted
in Figure 2.

2.2 Training and Inference

We train all our networks, namely Hyper-S, Hyper-D, SDFNet and DeFieldNet
end-to-end and update the latent vector through back-propagation, a common
practise in auto-decoder frameworks [16,24]. Although our two Hyper-Networks
share the same input latent embedding, we stress their weights are distinct and
are initialized by the same latent vector. We use a learning rate of 1e-4 and train
for 30 epochs with a batch size of 20. For experimental settings with no reliable
information on ground truth SDF or normal information, we do not impose
LSDR and normal consistency terms of LSDF . In addition, at inference time, for
point clouds, we consider SDF=0 for all points. We use the same coefficients as
Sitzmann et al. [24] for our geometric regularization applied in Equation 7 of the
main paper. We train our network on an Nvidia A100 GPU for 12hrs requiring
2.3Gb of memory per-batch. We will release our code, pre-trained models and
dataset variants introduced for full reproducibility.
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Fig. 3: Figure depicting the details of our SDFNet, DeFieldNet (left) and an
individual Hyper-network block corresponding to Hyper-S and Hyper-D. Please
refer to Section 2.3 for more details.

2.3 Network Architecture

A detailed depiction of our network’s architecture is visualized in Figure 3. The
input coordinates (denoted as (X,Y,Z)) correspond to template volume for De-
FieldNet and the target shape volume for SDFNet. “H” denotes the hidden
dimension which we set to 256 for experiments with fewer than 1000 training
shapes (c.f Section 4.1, 4.3 from the main paper) and 512 when using more than
2000 training shapes (c.f Section 4.2, 4.4 from the main paper). “O” denotes
the output that lies in R3 for DeFieldNet and R for SDFNet. Each Hyper-Net
operates individually, predicting the weights and biases of corresponding layers
of DeFieldNet and SDFNet respectively. An individual block of Hyper-Net is
visualized in the right of Figure 3, where each block denotes MLP followed by
ReLU activation.

2.4 Run-time

We report the run-time comparison between our approach and different base-
lines. For this, we consider one (top-performing, c.f. Table.2, main paper) base-
line per category. Our observation is summarized in the Table 1. The run-
time is measured per-pair, in seconds, averaged across 430 evaluation shapes
of SHREC’19 [13]. While GeoFM outperforms the remaining approaches, this
method is not built to handle point cloud inputs. On the other-hand, the second
best performing axiomatic method S-Shells [4] has a costly run-time.

Method S-Shells [4] CorrNet [26] GeoFM [3] 3DC [6] Ours

Run-time 904.1 26.1 4.2 14.3 12.1

Table 1: Comparison of inference run-time of different methods.
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2.5 Baselines

We provide more details on various baselines used in our main paper. Ax-
iomatic: First, we solve for a Functional Map [15] using 40 Eigenvalues on each
shape with 20 Wave Kernel descriptors [1] and refine the point-to-point map by
spectral upsampling [14], expanding the map size to 120x120. We refer to this as
ZoomOut in our experiments. By introducing the orientation preservation oper-
ator, we optimize for the same map as before and refer to as BCICP [17]. For
Smooth Shells [4] and PFM [19] we used the available code as is, using prescribed
parameters in the respective papers. Spectral Basis learning : For GFM [3],
we used DiffusionNet [22] feature extractor consisting of 4 diffusion blocks with
128 dimensional layer-wise features. For all the point cloud based experiments,
we computed the Point Cloud Laplacian [23] and used 33 Eigenvalues on each
shape. For DeepShells [5], we re-trained the author provided code without mod-
ifying the hyper-parameters. Template learning : We trained DIF-Net [2],
DIT [27] and 3D-CODED [6] for 70 epochs, 2000 epochs and 100 epochs respec-
tively. For 3D-CODED, we used the high-res template (230k vertices) and scaled
the point cloud to match the spatial extents of template. Point Cloud learn-
ing : For DPC [9], we used the author provided code and pre-trained model as
their experimental setting are comparable to ours. For Corrnet3D [26] and Diff-
FMap [12], we re-train on the same dataset as DPC using the author provided
code for a fair evaluation. Additionally, Corrnet3D and DPC are trained only
on 1024 input points. To scale the evaluation to arbitrary resolution, we follow
the solution prescribed by the respective authors.

3 Evaluation

3.1 Meshes

We follow the Princeton benchmark protocol [8] for evaluating non-rigid shape
matching accuracy for our mesh-based experiments. Given a predicted corre-
spondence Π̃ and a ground truth correspondence Π for shape X , we measure
the geodesic error as

εM(Π̃,Π) =
dG(Π̃,Π)√
area(X )

(2)

In the partial setting, correspondence is evaluated only on the vertices that
are present [18].

3.2 Point Clouds

Unlike for meshes, there is no universally accepted protocol for correspondence
evaluation on point clouds. Hence, we created point cloud variants of SHREC’19 [13]
and FAUST [17] based on meshes from respective benchmarks for correspondence
evaluation. We measure the correspondence error in two main steps. First, for
each point in the source and target Point Clouds x ∈ X , y ∈ Y, we construct
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Fig. 4: Qualitative summary of our ablation study. Figures depict the recon-
structed template mesh corresponding to different ablations. Inclusion of LSDR
results in a smooth deformation field for points on and close to the surface.

Euclidean maps Fx,Fy that maps them to the nearest vertex in the underlying

mesh. Given Π̃ and Π to be predicted point-to-point map between point clouds
and underlying mesh, we compose the two aforementioned maps to measure
correspondence defined on mesh vertices as follows:

εP(Π̃,Π) = εM(FY ◦ Π̃(X ), Π ◦ FX (Y)) (3)

Where εM is given in Equation 2.

3.3 Key Point Evaluation

We perform key point evaluation on the CMU-Panoptic dataset [7]. This dataset
consists of point clouds acquired from 3D-scans for which key-points annotations
are available in the form 3D skeleton joints. There are in total 19 key-points
following the Microsoft-COCO19 format [25]. For our evaluation, we consider
these 19 key-points to be in correspondence, e.g. right-hip of two persons are
in correspondence and measure the error in a small key-point neighbourhood.
More precisely, let κX

i and κY
j be two key-points in correspondence, belonging

to source X and target Y respectively. Let N : κX
i ∈ R3 → X ∈ RK×3 be a map

that constructs a Euclidean neighbourhood around key-point κX
i in the source

such that X ⊂ X . Here, K denotes the size of neighbourhood and we set K=32
in our evaluation. Similarly, let G : Y ∈ RK×3 → κY

j ∈ R3 be a map between

points on target shape Y ⊂ Y to its nearest key-point. Considering Π and Π̃
to be the ground truth map between key-points and predicted point-wise map
respectively, the key-point error is measured as follows,

εP(Π̃,Π) = dE(G(Π̃(N (κX
i ))), Π(κY

j )) (4)

Where dE is the Euclidean distance.

4 Ablation Studies

We justify the presence of each component in our network through an ablation
study. We perform experiments on the FAUST-Remesh [17] and SHREC’19 [13]
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datasets respectively. Training data and hyper-parameter details are in accor-
dance with the main paper. We gauge the efficacy of each individual component
by measuring correspondence accuracy of our network without different compo-
nents listed herewith.

1. w/o SDFNet: The purpose of SDFNet is to regularize the latent em-
bedding constructed from the deformation field through the gradients of
DeFieldNet. We test the necessity of SDFNet by removing it. Our learning
objective then becomes,

Ltrain = LSDR + Lsurf + Lvol + Lsmooth

Where we jointly optimize for shape latent space purely based on defor-
mation. Analogously, at test time we minimize the same objective without
LSDF .

2. W/o Lsurf: In the similar spirit of two conceptually similar prior works [27,2],
we try to reason for correspondence only through SDF representation. How-
ever, please note that different from the two aforementioned approaches,
we use an explicitly defined template volume. Our new training objective is
given by

Ltrain = LSDR + Lvol + Lsmooth

3. Tr-Te W/o LSDR: Our proposed SDR aims to regularize the deformation
field by making preserve signed distance under deformation. To understand
its necessity, we remove LSDR with the resulting loss that we minimize at
training time,

Ltrain = LSDF + Lvol + Lsmooth + Lsurf

Similarly, we remove LSDR from the inference objective, corresponding to
Equation. 9 in the main paper.

4. Te W/o LSDR: While regularizing the deformation field at training time
alone seem sufficient, it is also important to have a spatially consistent de-
formation field at test time, i.e, the field must only map between level-sets.
We hypothesize the highly non-convex nature of the optimisation to solve
for a shape latent embedding to be a possible cause for this requirement.
We empirically test this hypothesis by removing the LSDR term only during
inference.

αi = argmin
αi

Λ1LSDF

ω := ΓHD(αi)

Our training objective remains unchanged.
5. W/O Field-Regul. :Here, we try to understand different off-surface reg-

ularisations applied to the deformation flow. such as Lsmooth, LSDR, Lvol.
Our training objective is therefore,
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Ltrain = Lsurf + LSDF

Analogously, we remove the aforementioned terms at test-time.
6. W/O Opt: Lastly, we remove Chamfer’s Distance optimization (detailed in

Equation 10 of the main paper) that is performed to enhance the deforma-
tion.

Observation: We summarize our quantitative results in Table 2. We make
the following two main observations. First, while it might seem straightforward to
learn a shape latent embedding only by supervising the deformation field, we ob-
serve a noticeable performance difference in correspondence accuracy across the
two benchmarks SHREC’19 [13] and FAUST [17] without our SDFNet. A possi-
ble explanation, coherent with our motivation, could be the efficacy of learning an
implicit surface through the auto-decoder framework in providing geometrically
meaningful and compact latent embedding. Second, we also observe a discernible
difference in performance with and without our proposed regularization, LSDR.
This observation is consistent with our hypothesis on the necessity to make the
flow-field for points close to the surface spatially consistent. Moreover, making
the deformation field preserve SDF also leads to a smoother reconstruction of
template mesh as depicted in Figure 4.

5 Further robustness analysis

We perform two additional experiments to consolidate our robustness discussion.
First, we analyze the necessary training effort for our model to achieve optimal
robustness in comparison to the closest supervised baseline, 3D-CODED [6].
Second, we vary the levels of noise and clutter points for the experimental set-
ting discussed before. Furthermore, in our second analysis, we compare our pre-
trained model used in the main paper against baselines that were trained on
100× more training data, i.e 230,000 shapes and with data-augmentation in the
form of noise. We refer to such baselines as Oracle baselines to the scope of
this study. Subsequently, we demonstrate that our approach outperforms the
baselines with a fraction of training data and without data-augmentation.

5.1 Effect of training data

We gradually increase the amount of training data and compare the correspon-
dence accuracy across Scenario 1, Scenario 3 and Scenario 4 from Table. 2 in the

Experiment W/O SDFNet W/O Field-Regul Tr-Te W/O LSDR Te W/O LSDR W/OLsurf W/O Opt Ours

SHREC’ 19 11.6 7.3 7.5 6.8 17.0 10.8 6.5

FAUST 14.8 4.9 3.7 3.6 26.8 5.0 2.6

Table 2: Quantitative comparison of ablation study reported as mean geodesic
error (in cm). Note that our model, using all components and losses leads to the
lowest error
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Fig. 5: Number of training shapes and corresponding geodesic error on SHREC19
and its variants. Since we perform partial (source) to full (target) shape match-
ing, the evaluation in the last graph only consists of a subset.

main paper respectively. We construct four training sets consisting of 100, 500,
1000 and 2000 shapes from the SURREAL dataset [6]. Our motivation behind
this study is to demonstrate the efficacy of our approach in settings with paucity
of training data. To this end, we compare with the closest supervised baseline,
3D-CODED [6], and show that in spite of being supervised, our approach needs
significantly less training data, fractions to be precise. Our approach and the
baseline are trained with the same hyper-parameters as previously discussed.

Discussion: Across three scenarios, we observe that our approach con-
sistently outperforms the baseline irrespective of the number of samples in the
training set as shown in Figure 5. Interestingly, in Scenario 3, where we introduce
corruption to the data in the form of outliers, our approach achieves an error
when trained on 100 shapes that is comparable to 3D-CODED trained on 2000
shapes. Finally, we observe over a two-fold improvement in performance in the
partial setting with 100 training shapes. We posit that a stronger conditioning
of the latent embedding through SDF regularization and learning a volumetric
map, which is independent of the underlying geometry to be a possible reason
behind this observation.

5.2 Comparison to Oracle baselines

We compare our approach with three baselines, namely, 3D-CODED [6], Diff-
FMaps [12] and CorrNet3D [26]. The three aforementioned baselines are trained
on 230k SURREAL shapes [6] and thereby referred to as Oracle baselines. How-
ever, we stress again that we use our pre-trained network discussed in the main
paper, trained on 2k SURREAL shapes.

We compare our method to the baselines by varying the level of corruption
to data, across experimental settings studied in the main paper. To that end,
we further subdivide this study in two experimental settings. First, we consider
the variant of FAUST consisting of point clouds with clutter points. Second,
we evaluate on the variant of SHREC’19 involving point clouds with noise and
outliers respectively. For the first case, we use 15%, 25% and 30% clutter points
in contrast to 20% of the total points discussed in the main paper. Similarly,
for the second case, we vary the standard deviation of the Gaussian noise added
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to the surface between 0.5% and 25%, in contrast to 10% discussed in the main
paper. Furthermore, for the second case, we add a stronger Gaussian Noise with
standard deviation σ = 0.1 to 20% of the points in the point cloud.

Fig. 6: Quantitative comparison for matching point clouds with varying levels
of noise. Our method is trained on 2000 training shapes while all the Oracle
baselines are trained on 230k shapes.

Fig. 7: Quantitative comparison between our method and different baselines for
matching point clouds in the presence of varying levels of clutter points. Our
method is trained on 2000 training shapes while all the baselines are trained on
230k shapes.

Discussions: Our results are summarized quantitatively through geodesic
accuracy graphs [8] in Figure 6 and Figure 7 respectively. Consistent with our
observation in the main paper, our method shows high resilience towards noise
and imperfection in data. Our aim of reducing the amount of noise is to show
that performance of existing state-of-the-art methods rapidly degrades even in
the presence of negligible imperfection in the data.

6 Qualitative results

Finally, we show qualitative results across different benchmarks, namely the
noisy point cloud variant of SHREC’19 mentioned in our main paper, additional
qualitative examples of scanned point clouds from CMU Panoptic dataset [7],
animal shapes from Deforming Things 4D [10] and real-world scans of humans
in clothing with registration artifacts from CAPE Scans dataset [11].
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6.1 SHREC’19 Point clouds with outliers

Fig. 8: Additional qualitative results of our approach and the baselines 3DCoded
[6], CorrNet3D [26] on SHREC’19 point clouds with outlier introduced in the
main paper. For ease of observation, we highlight stark differences in map quality
in red. In the final row, we also report a failure case of our approach.
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6.2 Point Clouds from CMU Panoptic dataset

3D-CODED OursCorrNet GTSource

Fig. 9: Additional qualitative results on CMU Panoptic dataset through texture
transfer. Stark differences are highlighted using a bounding box for better visu-
alization. Last row depicts a failure case of our method.
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6.3 Deforming Things 4D

For the sake of completeness, we report additional qualitative results on inter-
class point clouds consisting of animals from the Deforming Things 4D dataset [10].
This dataset consists of point clouds with self-occlusion and partiality, emulated
through Blender. Please note that unlike previous cases, there is no ground truth
information available for inter-class shapes. For our qualitative example, we con-
sider Cow, Bear, Fox and Deer classes. Our choice is based on large inter-class
variability and non-isometry. All methods are trained on SMAL dataset [28] as
mentioned in the main paper.

3D-CODED OursCorrNet DPCSource

Fig. 10: Additional qualitative results on Deforming Things 4D animals dataset
through color transfer. Our approach shows better qualitative correspondence
for large non-isometry between point clouds.
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6.4 Clothed humans : CAPE Scans

3D-CODED OursCorrNet TargetSource

Fig. 11: Additional qualitative results on clothed humans from CAPE scans [11]
consisting of noisy meshes with outliers.

7 Limitations

While our method is largely robust through learning a volumetric map with
strong regularisations, similar to all approaches that purely learn from extrinsic
information, our approach suffers from generalization to unseen poses as de-
picted in the last row of Figure 8. This issue can in part be attributed towards
the ill-posed problem of learning an embedding space purely from Cartesian co-
ordinates. However, our current framework of joint learning of latent spaces by
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continuous functions opens possibilities for descriptor learning alongside purely
extrinsic information. Another notable failure case of our method occurs at the
area of self-intersection as depicted in the last row of Figure 9. Making our ap-
proach robust to self-intersections is also an interesting future work.
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14. Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., Ovsjanikov, M.: Zoomout:
Spectral upsampling for efficient shape correspondence. ACM Trans. Graph.
38(6) (nov 2019). https://doi.org/10.1145/3355089.3356524, https://doi.org/

10.1145/3355089.3356524 5
15. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional

maps: a flexible representation of maps between shapes. ACM Transactions on
Graphics (TOG) 31(4), 1–11 (2012) 5

16. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 165–
174 (2019) 3

17. Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Continuous and
orientation-preserving correspondences via functional maps. ACM Trans. Graph.
37(6) (dec 2018). https://doi.org/10.1145/3272127.3275040, https://doi.org/

10.1145/3272127.3275040 5, 6, 8
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