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Abstract. Establishing a correspondence between two non-rigidly de-
forming shapes is one of the most fundamental problems in visual com-
puting. Existing methods often show weak resilience when presented with
challenges innate to real-world data such as noise, outliers, self-occlusion
etc. On the other hand, auto-decoders have demonstrated strong ex-
pressive power in learning geometrically meaningful latent embeddings.
However, their use in shape analysis has been limited. In this paper,
we introduce an approach based on an auto-decoder framework, that
learns a continuous shape-wise deformation field over a fixed template.
By supervising the deformation field for points on-surface and regulariz-
ing for points off-surface through a novel Signed Distance Regularization
(SDR), we learn an alignment between the template and shape volumes.
Trained on clean water-tight meshes, without any data-augmentation,
we demonstrate compelling performance on compromised data and real-
world scans. 1
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1 Introduction

Understanding the relations between non-rigid 3D shapes through dense cor-
respondences is a fundamental problem in computer vision and graphics. A
common strategy is to leverage the underlying surfaces of shapes represented
as triangle meshes. While recent advancements [65,21] demonstrate near-perfect
correspondence accuracies, they strongly rely on idealistic settings of clean input
data, which unfortunately is far from typical 3D acquisition setups. The question
of generalizability of non-rigid shape correspondence to artifacts such as noise,
outliers, self-occlusions, clutters, partiality, etc. which are innate to general 3D
scans, is largely unanswered.

On the other hand, 3D shape representations through neural fields [80] or
learned implicit functions have been shown to achieve remarkable accuracy, flex-
ibility and generative power for a wide range of shape and scene modeling tasks
[46,14,54,67]. Unlike standard shape representations, learning implicit functions
through a neural network allows one to capture continuous surfaces, while seam-
lessly adapting to changes in topology. Indeed, implicit surface representations

1 Our code is available at https://github.com/Sentient07/IFMatch

https://github.com/Sentient07/IFMatch
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Fig. 1: Key advantages of our non-rigid shape correspondence pipeline: Our ap-
proach is extremely robust to common artifacts in 3D shapes like: (a) variations
in sampling density, (b) significant noise, (c) cluttered outliers and (d) partiality.

not only allow to introduce an adaptive level of detail, but can also benefit
from strong network regularization to control the desired resolution [71,66]. As
a result, although initial efforts have focused on using implicit representations
primarily for generative modeling and shape recovery, several recent works have
shown their utility in other tasks including differentiable rendering for image syn-
thesis [40,68], part-level shape decomposition [55], modeling dynamic geometry
[51] and novel view synthesis [48,50] among many others.

This flexibility of implicit surface representations, however, comes at a cost,
especially in applications that involve multiple shapes, such as shape corre-
spondence or comparison. Since the surface is defined as the zero-level set of
a function, individual points are no longer easily identifiable. As a result, recent
methods based on implicit surface representations that have aimed at shape
alignment, try to model a warping field over an underlying template [17,84,33],
or between shape pairs [7]. All of these works, however, primarily focus on de-
formations across nearby, sufficiently similar 3D shapes.

In this paper, we introduce an efficient method for establishing correspon-
dences across arbitrary non-rigid shapes, using neural field representations. To
this end, we develop a new architecture based on the auto-decoder framework [54],
that aims to recover a 3D deformation field between a fixed template and a target
shape volume. The key ingredient of our architecture is defining the shape-wise
deformation field from the latent embedding, augmented with two effective regu-
larizations. First, we regularize the deformation field for arbitrary points in space
through a novel Signed Distance Regularization (SDR). Second, we simultane-
ously condition the latent embedding to be compact and geometrically meaning-
ful by learning a continuous Signed Distance Function (SDF) representation of
the target shape. The resulting method is able to compute dense point-to-point
correspondences between shapes while being extremely robust in the presence
of varying sampling density, noise, cluttered outliers and missing parts as shown
in Figure 1. To the best of our knowledge, ours is the first non-rigid correspon-
dence method, based on neural field representation, that can be generalized to
arbitrary shape categories such as articulated humans and animals.
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Training on clean watertight meshes without any data-augmentation, we eval-
uate on a wide range of challenges across multiple benchmarks as well as real
data captured by a 3D-scanner. Our approach shows compelling resilience to
challenging artifacts and is more robust than existing point-based, mesh-based
and spectral methods. In summary, our main contributions are: (1) We intro-
duce an efficient approach based on the auto-decoder framework, capable of
recovering a volumetric deformation field to align a source and a target shape
volumes, even for significant non-rigid deformations. (2) We propose a novel way
of regularizing the deformation of arbitrary points in space through the Signed
Distance Regularization (SDR). (3) We perform rigorous evaluations by intro-
ducing challenges to existing benchmarks and on real-world data acquired by a
3D-scanner.

2 Related Work

2.1 Mesh-based Shape Correspondence

There is a large body of literature on shape matching, for shapes represented
as triangle meshes. We refer interested readers to recent surveys [73,70,9,63]
for a more comprehensive overview. Notable axiomatic approaches in this cat-
egory are based on the functional maps paradigm [53,37,2,61,23,13]. Typically,
these methods solve for near isometric shape correspondence by estimating lin-
ear transformations between spaces of real-valued functions, represented in a
reduced functional basis. The conceptual framework of functional maps was fur-
ther improved by learning-based formulations [39,30,62,19,22] that predict and
penalize the map as a whole. Concurrently, recent advances in geometric deep
learning have also tackled the correspondence problem by designing novel archi-
tectures for mesh and point cloud representation [49,12,43,58,78,38,83,21]. Such
methods typically treat the correspondence learning problem as vertex labelling,
which is learned efficiently using the respective architectures.

However, these methods that are predominantly based on mesh based repre-
sentation of shapes are prone to sub-par performance when exposed to artifacts
like sensitivity to variations in mesh discretization [65], sampling, missing or
occluded parts, noise and other challenges that are common in typical 3D acqui-
sition setups.

2.2 Template Based Shape Correspondence

Deforming a template to fit any given shape is a well-established technique in
non-rigid shape registration [3,4]. The advent of learning-based skinning tech-
niques [41,86,85] enabled deformation of a fixed template to an arbitrary shape
and pose by calibrating a fixed set of SMPL model parameters. The introduction
of parametric models has opened the avenue for generating copious amounts of
training data [75,26,74] for data-driven methods. Such data-driven techniques
have led to some seminal works in: 3D pose estimation [35,28,52], digitizing
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humans [16,81] and even model-based 3D shape registration for articulated hu-
mans [10,57,11,56,8]. Most relevant to our work is LoopReg [8], which proposes
to diffuse SMPL parameters in space to learn correspondence. In contrast, our
approach does not require any parametric models as priors and can be general-
ized across arbitrary categories.

On the other hand, there are techniques that learn a model-free deformation
to align a fixed template to a target shape [26,18,27,77]. Most notable among
them is 3D-CODED [26], which learns to deform a fixed template mesh to a
target shape. While this approach is succinct and well-founded, it requires sig-
nificant amounts of training data to achieve optimal performance. Moreover, the
deformation space is confined only to the surface of a mesh and can suffer from
deformation artifacts. To ameliorate this, recent methods [17,84] have chosen to
“implicitly define the template”. However, their application in non-rigid shape
matching is limited.

2.3 Neural Field Shape Representations

Coordinate-based neural networks are emerging methods for efficient, differen-
tiable and high-fidelity shape representations [54,6,15,66,51,25,31,79,82] whose
fundamental objective is to represent zero level-sets using parameters of neural
network. In its most general form [54,66,67], these methods share two principal
common goals - to perform differentiable surface reconstruction and to learn a
latent shape embedding. This has given rise to numerous applications especially
in the field of generative 3D modelling [72], such as shape editing [31,69,76],
shape optimization [47,24] and novel view synthesis [48,71,50,64] to name a few.
Most relevant to our work are DIF-Net [17] and SIREN [66] which achieve shape-
specific surface reconstruction through Hyper-Networks [29]. However, leveraging
the power of this representations in the domain of dense correspondence learning
has so far been limited to nearly rigid objects [17,84,25,33].

3 Method

Notation: Throughout this manuscript, we use S to denote the target shape
whose latent embedding is denoted by αS ∈ R512 and T as the fixed template.
X and Y denote an arbitrary pair of shapes between which we aim to find a
correspondence. We let x̃ ∈ ∂S be a point on the surface of the target shape S,
x ∈ R3 denotes a point in space and σx be its signed distance, σx := d(x, ∂S).
We define [S] := {x ∈ R3|σx < ζ} to be the shape volume, which is the set of
points sampled in space, in the vicinity of the shape surface ∂S, with ζ being a
constant. Analogously, [T ] := {ti ∈ R3|σti < ζ} denotes the template volume.

3.1 Overview

Given a pair of shapes X and Y, represented either as triangle meshes or point
clouds, our goal is to estimate a point-wise map Π : X → Y. To this end, we
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Fig. 2: Given a target shape volume (left) and a template volume (right) as
input, DeFieldNet (Sec 3.2) aligns the template to target volume regularized by
SDFNet (Sec 3.3). Shape-specific network weights are modeled by latent code
(Sec 3.1). Points sampled within volumes (input) are shown only for visualization
purposes to emphasize that our network operates over the 3D domain.

learn a shape-specific deformation field Dω(.) : R3 → R3 which when applied
to a fixed template volume [T ], yields the target shape volume [S]. Then, by
using Dω(.) to independently align [T ] to [X ] and [Y], we obtain correspondence
between X and Y through nearest neighbor search. We stress that differently
from previous data-driven works [26,18] that align a template mesh to a target
mesh, our approach aligns two volumes. This is because, we observe that learning
a volumetric alignment between arbitrary points in space naturally leads to a
more robust map estimation as the deformation field is not constrained to an
underlying surface defined by a mesh or a point cloud. While aligning on-surface
points is straightforward in the supervised setting, aligning off-surface points
is ill-posed. To this end, we propose a novel Signed Distance Regularization
(SDR) for constraining the change in the SDF brought about by the deformation
field. Learning a continuous deformation field also allows us to impose useful
smoothness and volume preservation constraints, for enhancing the regularity of
the map.

To make the deformation shape-specific, we learn a latent embedding αS ,
which governs the parameters ωS of DωS (·). We drop the subscript of ω for
the sake of brevity. This latent embedding is learned following the auto-decoder
framework [54]. However, constructing an embedding based on the deformation
field alone leads to topological inconsistencies as we discuss in the ablation stud-
ies (refer to Suppl). Therefore, we introduce a geometric prior to αS by learning
a continuous Signed Distance Function (SDF) representation of the shape, re-
sulting in two concurrent auto-decoder networks as shown in Figure 2. On one
side (left), we learn the continuous Signed Distance Function (SDF) of the tar-
get shape, which we refer to as SDFNet. Simultaneously (right of Figure 2), we



6 R.Sundararaman et al.

learn a deformation field Dω over [T ] through DeFieldNet. The parameters of
our SDFNet θ := ΓHS(αS) and DeFieldNet ω := ΓHD(αS) are defined as two
functions of the latent embedding, through Hyper-S and Hyper-D respectively.
We perform an end-to-end training, to jointly learn the latent embedding αS ,
through the gradients of SDFNet and DeFieldNet, similar to [29,66]. In sum-
mary, we learn a latent embedding by concurrently learning a deformation field
over the template volume and the target shape’s SDF. We stress that our main
objective is to learn a plausible deformation field (via DeFieldNet) and the role
of learning an implicit surface (via SDFNet) is to act as a geometric regularizer.

3.2 DeFieldNet

The main objective of DeFieldNet is to learn a smooth continuous shape-specific
deformation field over the fixed template volume. We apply on surface supervi-
sion and off-surface regularization in order to deform the template volume [T ]
to the target shape volume [S].

On Surface Supervision: For two corresponding points x̃i ∈ ∂S and t̃i ∈
∂T , where Π(x̃i) = t̃i, our goal is to find a deformation Dω : t̃i ∈ R3 → v⃗ ∈
R3, s.t. t̃i + v⃗ ≈ x̃i. Thus, solving for the desirable deformation field amounts
to optimising the following loss:

Lsurf =
∑

x̃i∈∂S

||x̃i − ˆ̃xi||2

where, ˆ̃xi = Dω(t̃i) + t̃i

(1)

Signed Distance Regularization (SDR): In addition to supervising
the deformation of points on the surface, we also regularize the deformation
field applied to arbitrary points in the template volume t ∈ [T ] ∈ R3. For
this, we propose a Signed Distance Regularization which preserves the Signed
Distance Function under deformation for points sampled close to the surface.
More specifically, given signed distances: σti , σx̂i of points ti, x̂i respectively
where x̂i = Dω(ti)+ ti, we require σti ≈ σx̂i

, for all points sampled closed to the
surface.

While σti is available as a result of pre-processing, computing σx̂i
requires

a continuous signed distance estimator as the SDF is measured w.r.t deformed
shape. Therefore we perform discrete approximation of the signed distance at
any predicted point using Radial Basis Function (RBF) interpolation [32]. For
any x̂i ∈ R3, we first construct the RBF kernel matrix Φ as a function of its
neighbors in the target shape volume N (x̂i) ∈ [S].

Φij := φ(pi, pj) =
√
ε0 + ||pi − pj ||2 (2)

Where, φ is the radial basis function and pi,j ∈ N (x̂i). Assuming ∆ =
[σ1 . . . σK ]T to be the vectorized representation of the SDF values of neighbors,
the estimated SDF σ̂x̂i

of x̂i w.r.t deformed template T̃ is given as:

σ̂x̂i
= φ (x̂i)Φ

−1∆ (3)
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We use shifted multiquadric functions as our RBF interpolant to avoid a singular
interpolant matrix (refer to Suppl for more details). Therefore, our final SDF
Regularization constraint can be written as:

LSDR =
∑

ti∈[T ]

|| clamp(σti , η)− clamp(σ̂x̂i
, η)||2 (4)

Where clamp(x, η) := min(η,max(−η, x)) is applied to make sure that the
penalty is enforced only to points close to the surface. We highlight that this
clamping is necessary, since the change in SDF under a considerable non-rigid
deformation may differ significantly for points far from the surface.

Smooth Deformation: For the deformation field to be locally smooth, we
ideally expect the flow vectors at neighboring points to be in “agreement” with
each other. We enforce this constraint by encouraging the spatial derivatives to
have minimal norm:

LSmooth =
∑

ti∈[T ]

|| ∇Dω( ti)∥2 (5)

Volume Preserving Flow: Since a volume-preserving deformation field
must be divergence-free, it must have a Jacobian with unit determinant [1].

Lvol =
∑

ti∈[T ]

|det(∇Dω(ti))− 1| (6)

We use autograd to compute the Jacobian.

3.3 SDFNet

Given a set of N target shapes {S0 . . .SN}, our goal is to regularize their latent
embedding {αS0

. . . αSN
} through implicit surface reconstruction. We adopt the

modified auto-decoder [66] framework with sinusoidal C∞ activation function as
our SDFNet. Given fθ(·) : x ∈ R3 → σx ∈ R to be the function that predicts the
Signed Distance for a point x ∈ [S], SDFNet’s learning objective is given by,

LSDF =
∑
x∈[S]

(
| ∥∇xfθ(x)∥2 − 1|+ |fθ(x)− σx|

)
+

∑
x̃∈∂S

(1− ⟨∇xfθ(x̃), n̂(x̃)⟩)

+
∑
x\∂S

ψ(f(x))
(7)

The first term penalizes the discrepancy in the predicted signed distance and
enforces the Eikonal constraint for points in the shape volume. The second term
encourages the gradient along the shape boundary to be oriented with surface
normals. The last term applies an exponential penalty where ψ := exp(−C ·
|σx|), C ≫ 0, for wrong prediction of fθ(x) = 0.
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3.4 Training Objective:

In summary, the energy minimized at training time can be formulated as a
combination of aforementioned individual constraints:

ETrain = Λ1LSDF + Λ2Lsurf + Λ3LSDR + Λ4LSmooth + Λ5Lvol (8)

Here, Λi are scalars provided in Sec 3.6. The first term helps to regularize
the latent space, while the other terms encourage a plausible deformation field.

3.5 Inference

At inference time, given X ,Y to be a pair of unseen shapes, our approach is
three-staged. First, we find the optimal deformation function Dω associated with
X ,Y to deform [T ]. We solve for optimal parameters for our deformation field
ω through Maximum-a-Posterior (MAP) estimation as:

αi = argmin
αi

Λ1LSDF + Λ3LSDR

ω := ΓHD(αi)
(9)

Second, similar to [26] we enhance the deformation field applied by minimiz-
ing the bi-directional Chamfer’s Distance

αopt = argmin
αi

∑
s̃∈∂S

min
t̃i∈∂T

∣∣Dω (̃ti)− s̃
∣∣2 + ∑

t̃i∈∂T

min
s̃∈∂S

∣∣Dω (̃ti)− s̃
∣∣2 (10)

Finally, we establish the correspondence between X ,Y through their respec-
tive deformed templates using a nearest neighbor search.

3.6 Implementation details

Our two Hyper-Networks, SDFNet and DeFieldNet all use 4-layered MLPs with
20% dropout. SDFNet uses sinusoidal activation [66] while DeFieldNet uses
ReLU activation. We fix Λ1 = 1, Λ2 = 500, Λ3 = 50, Λ4 = 5, Λ5 = 20, namely
the coefficients in Equation 8. For a shape in a batch, we use 4,000 points for
on-surface supervision Equation 1. We use 8,000 points for SDF regularization in
Equation 4 and η = 0.1 after fitting all shapes within a unit-sphere. We provide
additional pre-processing details in the Suppl.

4 Experiments

Overview: In this section we demonstrate the robustness of our method in com-
puting correspondences under challenging scenarios through extensive bench-
marking. We perform our experiments across 4 datasets namely, FAUST [59],
SHREC’19 [44], SMAL [86] and CMU-Panoptic dataset [34]. The first three are
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mesh based benchmarks and are well-studied in non-rigid shape correspondence
literature. In addition, we introduce challenging point cloud variants of these
benchmarks which will be detailed below. CMU-Panoptic dataset [34], on the
other hand, consists of raw point clouds acquired from a 3D scanner.

For evaluation, we follow the Princeton benchmark protocol [36] to measure
mean geodesic distortion of correspondence on meshes. We perform evaluation on
our point cloud variants by composing the predicted map to the nearest vertex
point and measure the mean geodesic distortion [36]. On the CMU-Panoptic
dataset [34], we measure the error on established key-points. We stress that
across all experiments, while the evaluations are performed under challenging
scenarios, our model is trained on clean water-tight mesh without any data-
augmentation. Across all tables, “*” denotes a method that requires a mesh
structure and cannot be evaluated on point clouds. “**” refers to computational
in-feasibility in evaluating a baseline.

Baselines: We compare our method against several shape correspondence
methods which can be broadly categorized into four main classes - axiomatic,
spectral learning, template based and point cloud learning (PC Learning). We
use ZoomOut (ZO) [45], BCICP [59] and Smooth Shells (S-Shells) [20] as
our axiomatic baselines. For spectral basis learning baselines, we use Geomet-
ric Functional Maps (GeoFM) [19] with the recent more powerful Diffusion-
Net [65] feature extractor and DeepShells (D-Shells) [22]. We use 3D-CODED
(3DC) [26], Deformed Implicit Fields (DIF-Net) [17] and Deep Implicit Tem-
plates (DIT-Net) [84] as template based baselines. We use Diff-FMaps (Dif-
FM) [42], DPC [38] and Corrnet [83] as our point cloud learning baselines. For a
fair evaluation, we identically pre-train them according to their category for dif-
ferent experimental settings as mentioned in the respective sections. We provide
more details on the hyper-parameters used for baselines in the Supplementary.

4.1 FAUST

Dataset: FAUST [10] dataset consists of 100 shapes where evaluation is per-
formed on the last 20 shapes. Recently, Ren. et al. [59] introduced a re-meshed
version of this dataset and Marin et al. [42] proposed a non-isometric, noisy
point cloud version. For our robustness discussion, we introduce two additional
challenges on top of the aforementioned variants. First, complimentary to [42],
we introduce a dense point cloud variant consisting of 45,000 points perturbed
with Gaussian noise. Second, we introduce 10% clutter points by random sam-
pling of points in space. In summary, we perform evaluation on (1) Re-meshed
shapes [59], (2) Non-isometric noisy point cloud (NI-PC) [42], (3) Dense point
clouds with noise (De-PC) and (4) Clutter.

Baselines: We train our model and all data-driven methods on the first
80 meshes of the FAUST dataset. All baseline methods are trained using the
publicly available code, following the configuration stipulated by the respective
authors.
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Fig. 3: Correspondence quality through color transfer on challenges we intro-
duced to FAUST [59]. 1st Row: Point clouds corrupted with 10% clutter shown
in black. In contrast to baselines, our method shows strong resilience in the pres-
ence of clutter. 2nd Row: Point cloud with 45k points and noise.

Category Axiomatic PC Learning Spectral Learning Template Based

Method
BCICP
[59]

ZO
[45]

S-Shells
[20]

Dif-FM
[42]

DPC
[38]

CorrNet
[83]

D-Shells
[22]

GeoFM
[19]

3DC
[26]

DIF-Net
[17]

DIT-Net
[84]

Ours

Remesh [59] 10.5 6.0 2.5 34.0 27.1 28.1 1.7 2.7 2.5 21.0 20.1 2.6

NI-PC
+ Noise [42]

11.5 8.7 * 6.6 8.4 25.2 * 31.3 7.3 14.6 13.6 3.1

De-PC
+ Noise

* * * 31.8 ** 27.9 * 53.7 9.1 18.1 18.0 4.1

Clutter * * * 17.7 50.0 51.1 * 52.2 22.1 14.7 14.3 8.1

Table 1: Quantitative results on FAUST-Remesh dataset and its variants re-
ported as mean geodesic error (in cm) scaled by shape diameter.

Discussion: Our main quantitative results are summarized in Table 1. On
the re-meshed shapes [59], our method demonstrates comparable performance
with existing state-of-the-art methods. However, as we decrease the perfection of
data, our method shows compelling resilience towards artifacts and consistently
outperforms all the other baselines by a noticeable margin. It is also worthy to
remark that among all baselines that we compare with, our method is the only
one that is capable of providing reasonable (less than 10cm) correspondence in
the presence of clutter points. We also show two qualitative examples on our
newly introduced variant in Figure 3.
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Fig. 4: Correspondence quality on SHREC’19 [44] and its variants. 1st Row:
Meshes. 2nd Row: Point clouds with noise and outliers. 3rd Row: Missing parts.
Compared to baselines, our method exhibits strong resilience to artifacts.

4.2 SHREC’19

Dataset: SHREC’19 [44] is a challenging shape correspondence benchmark due
to significant variations in mesh sampling, connectivity and presence of multiple
connected components. It consists of 44 shapes and a total of 430 evaluation
pairs. In addition, we introduce 3 challenging scenarios with different data im-
perfections. Scenario 1: We compare the meshes provided by Melzi et al. [44].
Scenario 2: We subsample the meshes to 10,000 points and introduce 20%
outliers. Scenario 3: We further corrupt the surface information in Scenario 2
using Gaussian noise. Scenario 4:We introduce partiality in the form of missing
parts, to a subset for a part-to-whole evaluation scheme [60].

Baseline: We pre-train all template based and point cloud learning baselines
on 2,000 SURREAL shapes [75] including 10% humans in bent poses [26]. For
our spectral basis learning baselines, we pre-train them on the training set of
FAUST+SCAPE [5], consisting of

(
80
2

)
+

(
51
2

)
shape pairs, a setting which is

demonstrated to be best suited for them [22,19]. We use Partial Functional Map
(PFM) [60] as an additional axiomatic baseline for Scenario 4.

Discussion: Quantitative results across 4 scenarios are summarized in Ta-
ble 2. Our method demonstrates state-of-the-art performance across all variants
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of the SHREC’19 dataset and remains inert to imperfections in the data. While
Smooth-Shells [20], is comparable to our approach in Scenario 1, it cannot be
evaluated in other scenarios due to its strong dependence on spectral informa-
tion. Moreover, even among template based methods, it is important to note
that the supervised learning baseline 3D-CODED [26] demonstrates significant
decline in performance in the presence of outliers and noise. We posit that a well
defined shape embedding, obtained by learning a volumetric mapping, plays a
crucial role in our method’s performance. Even among methods that construct
a shape space through an auto-decoder framework, DIF-Net [17] and DIT [84],
are not reliable when presented with non-rigid shapes. Among point cloud learn-
ing methods, while DPC [38] shows comparable performance to our approach in
Scenario 2, their performance declines in Scenario 3, when surface information is
corrupted by noise. Furthermore, since DPC [38] depends on input point cloud
resolution, it is infeasible to be evaluated in Scenarios 1 and 4. Finally, despite
training on clean meshes with no missing components, the performance of our
approach is unaffected by the partiality introduced in Scenario 4. We attribute
our learning of volumetric alignment coupled with off-surface regularization to be
the reason behind robustness to missing components. We summarize this discus-
sion by qualitatively depicting Scenarios 1, 3 and 4 in Figure 4, wherein, despite
subsequently increasing artifacts, our method shows compelling resilience. Ad-
ditional qualitative results in different poses are provided in the Supplementary.

Category Axiomatic PC Learning Spectral Learning Template Based

Method
S-Shells
[20]

PFM
[60]

CorrNet
[83]

DPC
[38]

Diff-FM
[42]

GeoFM
[19]

D-Shells
[22]

3DC
[26]

DIF-Net
[17]

DIT-Net
[84]

Ours

Scenario: 1
(Meshes) [44]

7.6 N/A 13.4 ** 29.6 11.7 15.2 9.2 14.9 41.4 6.5

Scenario: 2
(Outliers)

* N/A 35.9 8.5 17.1 26.1 * 12.2 12.4 12.6 7.4

Scenario: 3
(Outliers + Noise)

* N/A 36.0 11.5 16.7 27.8 * 14.4 36.2 12.5 7.7

Scenario: 4
(Missing parts)

* 52.4 23.5 ** 26.3 48.6 23.8 6.0 11.9 41.1 4.3

Table 2: Quantitative results on 430 test set pairs of SHREC’19 dataset reported
as mean geodesic error (in cm), scaled by shape diameter.

4.3 SMAL

Dataset: In this section, we show the generalization ability to inter-class non-
rigid shape correspondence among to non-human shapes. To this end, we use
the SMAL dataset [86], a parametric model that consists of 5 main categories
of animals. We construct the training set by sampling 100 animals per each
category. For correspondence evaluation, we generate 20 new shapes consisting of
4 animals per category, resulting in 180 inter-class evaluation pairs. We relax the
degrees of freedom for selected joints while generating the test-set to introduce
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new poses, unseen in the training set. In addition, we introduce partiality to this
dataset in the form of multiple connected components.

Baseline Settings: We train all template based methods, including ours, on
the aforementioned 500 training shapes. For our method and 3D-Coded, which
are supervised template based methods, we share the same animal template.
Since spectral basis learning baselines learn correspondence pairwise, we train
all data-driven spectral methods on

(
100
2

)
shapes with 20 animals per-category.

Fig. 5: Quantitative and qualitative inter-class correspondence on SMAL[86]
dataset. Our approach produces a smooth map, unaffected by partiality.

Discussion: Our main quantitative and qualitative results are summarized
in Figure 5. We observe that Geo-FM[19,65] that is a representation agnostic
method and Partial Functional Maps, an approach built to tackle partial non-
rigid shape correspondence methods fail to establish reasonable correspondence.
Our approach on the other hand, remains agnostic to shape connectivity arising
from inter-class non-isometry and introduced partiality. Finally, our method sur-
passes the template-based baseline method, 3D-Coded by a considerable margin.

4.4 CMU-Panoptic Dataset

Dataset: In this section, we demonstrate the generalization ability of our ap-
proach to real-world sensor data. To that end, we use the CMU Panoptic [34]
dataset, which consists of 3+hrs footage of 8 subjects in frequently occurring
social postures captured using the Kinect RGB+D sensor. This dataset con-
sists of point clouds with noise, outliers, self-occlusions and clutter, allowing
to evaluate correspondence methods on real-world data. We sample 200 shape
pairs consisting of 3 distinct humans in 7 distinct poses. We measure non-rigid
correspondence accuracy using the sparsely annotated anatomical landmark key-
points. More specifically, for each keypoint in the source, we consider 32 neigh-
bors points and measure the disparity (as Euclidean distance, in cm) between
their closest keypoint in the target and source.

Discussion: In order for a fair evaluation of generalizability, we test all ap-
proaches using the trained model elaborated in Section 4.2. Quantitative results
of keypoint errors are summarized in Table 3. Our approach shows convincing
performance in comparison to baselines, and more noticeably, it outperforms the
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Fig. 6: Qualitative comparison using texture transfer on noisy point clouds from
the CMU-Panoptic [34] dataset.

Method Dif-FM[42] GeoFM[19] 3D-CODED[26] DIF-Net[17] CorrNet[83] DPC [38] Ours

Keypoint Error 39.4 23.9 17.1 15.3 14.8 ** 8.5

Table 3: Avg. Euclidean keypoint error (cm) for 200 test pairs, scaled by shape
diameter.

conceptually closest supervised baseline, 3D-CODED [26] by a twofold margin.
We also show a qualitative example through texture transfer in Figure 6, high-
lighting the efficacy of our approach in comparison to existing approaches on
real-world data.

5 Conclusion, Limitations and Future work

We presented a novel approach for robust non-rigid shape correspondence based
on the auto-decoder framework. Leveraging its strong expressive power, we
demonstrated the ability of our approach in exhibiting strong resilience to prac-
tical artifacts like noise, outliers, clutter, partiality and occlusion across multiple
benchmarks. To the best of our knowledge, our approach is the first to success-
fully demonstrate the use of Neural Fields, which predominantly are used as
generative models, to the field of non-rigid shape correspondence, generalizable
to arbitrary shape categories.

Despite various merits, we see multiple avenues for improvement and possi-
ble future work. Firstly, our current framework of joint learning of latent spaces
by continuous functions opens possibilities for local descriptor learning along-
side purely extrinsic information. This can potentially lead to an unsupervised
pipeline in contrast to our existing supervised method. Also, auto-decoder style
learning approaches are not rotation invariant and conventional techniques like
data-augmentation can prove costly in terms of training effort. Making Neural
Fields rotational invariant is also an interesting future direction.
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