Learning Self-prior for Mesh Denoising using
Dual Graph Convolutional Networks
—Supplementary Document—

Shota Hattori, Tatsuya Yatagawa, Yutaka Ohtake, and Hiromasa Suzuki

School of Engineering, The University of Tokyo
{hattori ,tatsy,ohtake, suzuki}@den .t.u-tokyo

A Choice of Input Features

Although we explained the original DIP [29] input a static random code to the
neural network, the paper of DIP also reported the better performance of dif-
ferent input features for specific tasks (e.g., they input pixel coordinates for the
sake of image completion). Therefore, we investigate what features are appropri-
ate to reproduce positional displacements and facet normals. We compare the
denoising performances of several input features and evaluate their effectiveness
for mesh denoising.

In this experiment, we consider six feature vectors, which are (r6) the 6D
random vector, (r16) the 16D random vector, (p-r) the 3D coordinates of a posi-
tion (the position of vertex for PosNet, but that of face’s centroid for NormNet)
concatenated with a 3D random vector, (n-r) the 3D normal vector (of a vertex
for PosNet, but of a face for NormNet) concatenated with a 3D random vector,
(p-n) the 3D coordinates of a position concatenated with the 3D normal vector,
and (p-n-a) the 7D vector comprised of the 3D coordinates of a position, 3D
normal vector, and area of a facet. The last one is tested only with NormNet
because it uses the area of a facet. Note that the positions and normals included
by the feature vectors involve noise because our method only uses noisy input
meshes.

The results for PosNet and NormNet are shown in Tabs. A.1 and A.2, respec-
tively. According to Tab. A.1, random vectors (i.e., (r6) and (r16)), rather than
those including vertex positions and normals, obtain better reproduction for po-
sitional displacements. Intuitively, we may obtain better performances if input
features are correlated with positional displacement. However, the coordinates of
positions do not correlate with the magnitude of vertex displacements. Neither
do the normal vectors, although the orientation of the displacement may some-
what correlate with them. According to these observations, the performances
using (p-r), (n-r), and (p-n) may not have been very high. In contrast, it is
demonstrated that random vectors obtain the structural patterns of positional
displacements due to the nature of neural networks.

On the contrary, the results in Tab. A.2 suggest that the feature vectors
involved with positions and normals increase the performance of NormNet. Dur-
ing the experiment, we found that the convergence of training NormNet became

2 S. Hattori et al.

Table A.1. The AADs obtained by DDMP where PosNet is given different input
features.

Model Type r6 rlé p-r n-r p-n
sharp CAD 5.21 4.90 5.23 5.40 5.43
twelve CAD 1.09 1.20 1.63 1.09 1.63
carter non-CAD 5.00 4.95 7.34 5.36 7.33
grayloc non-CAD 7.23 7.24 7.10 7.14 7.09

Table A.2. The AADs obtained by DDMP where NormNet is given different input
features.

Model Type r6 rl6 p-r n-r p-n p-n-a
sharp CAD 6.39 5.47 5.50 5.32 4.90 4.90
twelve CAD 1.32 2.23 1.92 1.17 1.34 1.20
carter non-CAD 4.93 4.88 6.13 5.47 4.93 4.95
grayloc non-CAD 11.74 11.84 7.39 7.36 7.27 7.25

unstable, and the performance was decreased when the input code tensor was
set to a random one. Unfortunately, this slow convergence was not alleviated
by including only the centroid positions of faces. In contrast, after including
the facet normals to feature vectors, the convergence of the training was sig-
nificantly speeded up. Furthermore, when the feature vectors include all the
centroid positions, normal vectors, and areas of faces, the AADs got smaller fur-
ther. Therefore, we decided to use the 7D feature vector (i.e., (p-n-a) in Tab. A.2)
for NormNet.

B Hyperparameters

As we mentioned in the main text, we used different hyperparameters (i.e., the
sets of weights in Eq. (10)) for CAD and non-CAD models. We compared the
denoising performances of different combinations of weights in Eq. (10) to deter-
mine the hyperparameters for the different types of models. The default values
for both CAD and non-CAD models are determined based on the result of hy-
perparameter tuning by Ray Tune [18], as we mentioned in the main text.

In this experiment, we varied the value of each weight discretely in a domain
[0.0,5.0] at intervals of 0.5, while the other weights were set to the default values.
Figure B.1 shows the denoising performance in AADs for different combinations
of weights. Although the optimal weight values varied for different models, the
performances did not differ significantly around the default values (highlighted
with a black frame in Fig. B.1). Consequently, the default parameters we set are
robust to different models in each category and obtain a sufficiently reasonable
performance for models in both categories.

C Input Meshes and Time Performances

Figure C.1 and Tab. C.1 show all the meshes that we used in the experiments
and details on them, respectively. Although our method spends more than 20

Learning Self-prior for Mesh Denoising using Dual GCNs 3

ki k2 k3 ké k5 kI k2 k3 k2 k3 kté K5 kI k2 k3 ki ks
0.0 558 1338 120] 099 204. . 5250634 482 4.96 1 7.79 7.659:20/
05 496 515 529 111 126 149 181 506 559 4.85 487 7.63 694 755 7.81
10 534 496 514 505 110 113 122 150 195 | 558 493 539 491 495 724 7.16 695 7.56] 7.2

15 493 485 492 503 502 104 122 147 125 131 533 487 520 484 510 7.11) 858 7.06 742 7.2
20 475 532 475 492| 490| 120 129 105 133 120 522 487 510 492 519 7.08 7.85 699 7.42 7.02
500 474 117 153 102 115 114 506 490 511 491 529 720 7.66 7.07 7.41 7.00

4.86 4.80 182 120 122 1.22 486 5.03 493 541 753 7.13 733 7.03

498 474 504 120 194 1.06 136 1.24 4.88 491 499 492 554 741 735 7.13 732 7.10

491| 4.90] 495 133 196 101 1.20] 138 4.79| 4.95| 4.95] 4.95| 560 7.71| 7.25 7.25| 7.25| 7.17

45 5.04 497 541 497 142 222 112 114 188 481 506 495 496 563 801 7.17 731 7.17 7.17
5.0 535 555 500 478 4.98 148 231 097 111 216 4.80 5.09 4.87 4.99- 833 7.1 743 7.25 7.28
sharp-sphere twelve carter grayloc

CAD models non-CAD models

Fig. B.1. Comparison of AADs obtained by different sets of hyperparameters. For
models in each of CAD and non-CAD categories, the default parameter set is high-
lighted by black frames.

minutes for meshes with 100000 triangles, as shown in Tab. C.1, it does not
require hours of training the neural network using a huge number of shape mod-
els. Furthermore, our method can take the meshes with such a large number
of triangles directly, although many previous studies (e.g., DNF-Net [15] and
GCN-Denoiser [24]) need to separate the input meshes into small patches be-
fore processing them. Hence, our computation time is sufficiently reasonable for
practical use.

408700

block fandisk part-lp trim-star sharp-sphere twelve
ankylosaurus fertility nicolo suit-man carter grayloc pyramid david

Fig. C.1. Meshes we used in the experiments. As summarized in Tab. C.1, the CAD
models are shown in the top, and the non-CAD and real scan models are shown in the
bottom.

4 S. Hattori et al.

Table C.1. Details on each input mesh, such as noise level, number of triangles and
faces, and computation time spent by the proposed method.

Model Type Noise level Vertices Faces Iteration Time
block CAD 0.4 8771 17550 1000 4min 42sec
fandisk CAD 0.3 6475 12946 1000 3 min 42sec
nut CAD 0.2 7476 14784 1000 4min 6sec
part-1p CAD 0.2 4261 8530 1000 2min 46 sec
trim-star CAD 0.3 5192 10384 1000 3min 9sec
sharp-sphere CAD 0.2 10443 20882 1000 5min 23sec
twelve CAD 0.2 4610 9216 1000 2min 51 sec
ankylosaurus non-CAD 0.1 14762 29520 1000 7min 35sec
fertility non-CAD 0.2 13971 27954 1000 7min 14sec
nicolo non-CAD 0.3 50419 99 994 1000 22 min 18sec
suit-man non-CAD 0.1 49996 100 000 1000 23 min 24 sec
carter non-CAD 0.1 49988 100000 1000 22min 16 sec
grayloc non-CAD 0.3 34274 68 580 1000 16 min 39sec
pyramid real scan — 35261 59511 50 Omin 50sec
david real scan — 51789 101937 50 1min 12sec

D Additional Results

D.1 Visual comparison with AHD

In the main text, we visually compared only the angular differences due to limi-
tations of space. Here, Fig. D.1 shows the visual comparison based on distances
between meshes. In this figure, each vertex on a mesh is colorized based on the
distance to the ground-truth mesh, and the AHD to the ground-truth mesh is
noted by e below each mesh. Although the performances for non-CAD mod-
els of our method are approximately the same as previous methods, those for
CAD models differ. Namely, our method performs better than the others, even
though our method does not use a large number of training data. As shown in
this figure, the distances are different, particularly at non-corner regions, which
suggests the necessity of filtering vertex positions along with facet normals by
the neural network, although some previous studies, such as DNF-Net [15], only
filter facet normals.

D.2 Effect of iterative vertex updating

As mentioned in the main text, the consistency loss F,, allows PosNet and
NormNet to interact with each other to be trained jointly. Thus, the iterative
vertex updating performed in many previous studies is unnecessary. On the
other hand, we can perform the vertex updating in postprocessing. To check
the necessity of E.o, rather than the post vertex updating, we compared their
performances. As shown in Table D.1, the post vertex updating does not neces-
sarily improve the accuracy of denoising. This result suggests that E.., and our
end-to-end joint training of PosNet and NormNet is effective.

Learning Self-prior for Mesh Denoising using Dual GCNs 5

Noisy input

}

e =0.33 e =0.42 e=0.22 e =0.20 e =0.17 e=0.21

Fig. D.1. Each vertex of meshes are colorized based on the distance to the ground-
truth mesh. We denote the AHD in the unit of 10™% below each mesh.

sharp twelve carter grayloc
DDMP 4.90° 1.20° 4.95° 7.25°
DDMP with IVU 4.41° 0.49° 5.28° 7.40°

Table D.1. Change in AADs by adding iterative vertex updating (IVU) to our DDMP
as a postprocess.

